
A Low Complexity Image Compression Solution
for Onboard Space Applications

Antonio Lopes F.
National Institute for Space Research

Divisão de Eletrônica Embarcada
Av. dos Astronautas 1758, S. J. dos Campos

SP - Brazil
55 12 3208-6812

alopes@dea.inpe.br

Roberto d'Amore
Instituto Tecnológico de Aeronáutica

Divisão de Engenharia Eletrônica
Pça. Mal. Eduardo Gomes 50, S. J. dos Campos

SP - Brazil
55 12 3947-6876

damore@ita.br

ABSTRACT
In this work, a real time hardware data compression solution for
raster scan cameras, to be onboard the next generation of Remote
Sensing Brazilian satellites, is proposed. The options for image
data compression methods are briefly covered to substantiate the
choice: a low complexity implementation based on JPEG-LS,
near-lossless compression algorithm, which can be synthesized in
a single electronic device. JPEG-LS performance in terms of
compression rates and loss is evaluated by processing remote
sensing rough images through in-house developed software tool.
Finally, the description and results of an implementation in FPGA
are presented and compared to other works, emphasizing the
differences related to application requirements.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles –
Algorithms implemented in hardware.

General Terms
Algorithms, Performance, Design, Experimentation, Verification.

Keywords
Space applications, On board, Image, Compression.

1. INTRODUCTION
The upgrading performance of new generations of Remote
Sensing Instruments for Earth observation is in the sense of higher
spatial, radiometric and spectral resolutions. In consequence,
additional on-board mass memory, downlink data rate and power
consumption have to be considered for real time operation.
Furthermore, available x-band microwave link for Earth
Exploration-Satellite Service (EESS) ruled by
Radiocommunication Sector of International Telecommunication
Union (ITU-R) have stringent limitations in power and
bandwidth, frequently shared by different instruments in satellites.

Data compression is the usual solution to save data storage, data
rate (or transmission time for low rate links), bandwidth and
power resources at the cost that data compression algorithms are
complex for onboard software or hardware implementations, and
compressed data are more susceptible to errors. On board satellite
compression implementation options in use [6] are based on
software, hardware or in a both software and hardware solution.
Complex and massive data processing can be achieved with the
use of software based solutions like DSP or a high speed CPU, for
example. The spreading use of hardware implementations, based
on ASICs and more recently on FPGAs, is mainly due to its
relatively higher throughput. By mixing software and hardware
implementation the best of both worlds can be explored.

Budget, technology and commercial restrictions on qualified
components are the guide lines on which the work of searching
for a solution among the options for compression methods and
feasible hardware implementation possibilities were carried on, in
detriment of more software demanding implementation options.
JPEG-LS is a mature compression algorithm and a commercial
intellectual property (IP) core is available in an enclosed and
general purpose application version [10]. Related works in the
area have been carried out with good results for throughput but
with no resources of JPEG-LS near-lossless capabilities [4], or
with excessive area usage [3], and without any mention to error
propagation mitigation. Although JPEG-LS near-lossless mode
compression results are worse than the obtained by other lossy
compression methods [4], it offers a good trade-off between
performance and complexity. Moreover, differences in
application requirements, like fault-tolerant design and control
under space application point of view, justify a customized
solution.

In this work a real time hardware data compression solution for
raster scan remote sensing cameras is proposed. The compression
method is a low complexity implementation based on JPEG-LS,
near-lossless compression algorithm, to be synthesized in a single
electronic device.

In Section 2 of this paper, image compression basis and the most
common methods for onboard satellite systems, including JPEG-
LS standard, are briefly covered. In Section 3, the performance of
JPEG-LS for remote sensing images is evaluated by software test
results; the proposed hardware implementation is described; and
implementation results are presented. In Section 4, final
conclusions are exposed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SBCCI’10, September 6–9, 2010, São Paulo, Brazil.
Copyright 2010 ACM 978-1-4503-0152-7/10/09...$10.00.

174

2. IMAGE COMPRESSION METHODS
Basic concepts explored in data compression methods are
entropy, correlation and compression rate. The entropy figure of a
memoryless or uncorrelated source is related to redundancy of its
information contents so that the higher the entropy the lesser the
possibilities of compression. Correlation is a characteristic of
sources with memory where there is some kind of data
interdependency. In the case of image data, the compression is
evaluated also by the resulting distortion or the peak signal to
noise ratio (PSNR) figure, obtained from the mean square error
between original and the recovered image after
encoding/decoding processes.

Remote sensing imaging data present some characteristics that
contribute to compression: low entropy, caused by atmospheric
effects that reduces contrast and dynamic range and results in a
concentration of signal at mid levels; strong correlation between
different regions of an image and between different spectral
bands.

 An image compression process consists, basically, of a
decorrelator to map image information into a lower correlation
space, and an entropy coder to optimize output information
entropy. Most of the onboard compression systems in use [6] are
employing prediction or transform decorrelation techniques. In
predictive differential methods, an estimate of the pixel to be
encoded is obtained from previous adjacent pixels. The difference
between the pixel and the prediction, or the error, is then encoded
through an entropy coder. In the decompression process the pixel
is recovered by adding the prediction to the decoded error. The
Consultative Committee for Space Data Systems - Lossless Data
Compression (CCSDS 121.0-B-1 Recommendation), JPEG
lossless [7] and JPEG-LS standards are examples of predictive
differential methods.

In the transform based methods, the range of options for
reversible decorrelating transforms and coders is large and still
being explored. JPEG standard [7] is based on Discrete Cosine
Transform (DCT). JPEG2000, Set Partitioning in Hierarchical
Trees (SPIHT), and CCSDS Image Data Compression (CCSDS
122.0-B-1 Recommendation) are based on Discrete Wavelet
Transform (DWT). Lossy, good PSNR, and high compression rate
results can be achieved with transform based methods but, on the
other hand, the transforms are multi pass, complex operations,
requiring storage resources for image blocks during processing.

JPEG-LS international standard [8] defines a set of lossless or
near-lossless compression methods for coding continuous-tone,
gray-scale, or color digital still images. Low Complexity Lossless
Compression for Images (LOCO-I) algorithm [5] is the basis of
JPEG-LS standard. A simplified block diagram of LOCO-I is
represented in Figure 1. An important control parameter of this
algorithm is δ, named NEAR in JPEG-LS standard, which defines
the amount of near-lossless compression (δ = 0 for lossless
compression). The modeling approach is based on the notion of
"context", where for each sample x a context is determined from
gradients calculated by using the neighborhood reconstructed
samples a, b, c, and d (refer to Figure 1). Each context is
represented by an integer number that indexes four variables
referred here as context mode variables (CMV). In low entropy,
or flat regions of the image, if the context estimates that neighbor
samples are identical (or nearly identical, in near-lossless coding)

then the run mode is selected, otherwise regular mode is selected.
In regular mode, a predictor combines the reconstructed samples,
a, b, c, and d, to form a prediction of x. The prediction error is
computed, as the difference between the sample x and its
predicted value, and then corrected by a context-dependent term
to compensate for systematic biases in prediction. In the case of
near-lossless coding, the prediction error is quantized. Finally, the
error is then encoded using a context dependent Golomb coding.

Figure 1. LOCO-I Algorithm Simplified Block Diagram.

In run mode, the encoder seeks, starting at x, for a sequence of
consecutive samples identical or nearly identical to the
reconstructed sample a. The run ends when this condition is no
more verified or by the end of the current line, whichever comes
first. The length information, which also specifies one of the two
run-ending alternatives, is then encoded using a procedure
extended from Golomb coding, with improved performance and
adaptability.

Main drawback of predictive differential methods is the
susceptibility to error propagation. Processing errors, like single-
event upsets (SEU) in the cumulative context variables, or
transmission errors will be propagated until the end of a scan.
Besides SEU mitigation and error detection and correction
(EDAC) methods, error propagation can be contained by the
exploiting restart intervals. In this scheme, preview in JPEG-LS
standard, the process is restarted more frequently along a scan and
the transmitted data is broken in small independent packets.
Transmission error propagation containment results in a decrease
in the compression factor.

JPEG-LS is a one pass method that uses integer operations so that
memory requirements are limited to a single image line. In
transform based methods the same image block is processed more
than once through floating point operations resulting in increased
storage requirements. Due to differences in end application
requirements, a direct comparison between JPEG-LS and JPEG
2000 hardware implementation examples should be made with
caution. A commercial JPEG 2000 IP core for FPGA
implementation uses 5 times more logic elements and needs 100
times more memory than a JPEG-LS one [10]. Although the first
one is for video processing and the second is for raster scan
images processing, image characteristics and rates are similar.

3. JPEG-LS ANALYSIS,
IMPLEMENTATION AND RESULTS
3.1 Performance Analysis for Remote Sensing
Images
C++ software implementations of JPEG-LS encoder and decoder
were developed to evaluate compression performance and to
explore the influence of restart intervals. Software tool resources

175

allow to select NEAR figure, from 0 to 9, and to break the image
in independent blocks, by defining the number of lines per restart
interval. In addition, the PSNR between the original and the
recovered image after encoding/decoding processes is also
evaluated. The test images were gathered by the CCD camera of
China-Brazil Environment Resources Satellite (CBERS-2B). The
four spectral bands, B1 - blue, B2 - green, B3 - red and B4 - near
infrared, are available in rough data, 5812 x 5812 pixels image
size, 8-bit pixel, TIFF files. To give an idea of the visual features,
due to the compression and decompression processes, a detail of
one of the images is shown in Figure 2.a together with its
reconstructions.

Performance was evaluated by processing 20 different test images
without restarting the compression process. The worse case
lossless and near-lossless compression and respective PSNR
results are listed in Table 1. The results for NEAR = 0 are in
accordance with the expectations [6] and the mean near-lossless
performance, for NEAR = 1, results in a compression better than
4:1 and a PSNR better than 50 dB. Eventual reductions in the
compression rate can be handled by an output buffer at the risk of
buffer overload. To overcome output buffer overload, one
solution is to switch the NEAR as a parameter to increase or
decrease compression rate along the process, as preview in JPEG-
LS standard, part 2 [9].

Table 1. JPEG-LS Worse Case Compression for Different
NEAR Values

 Compression Factor PSNR (dB)

NEAR 0 1 2 0 1 2

BAND

B1 2.3 3,7 4.7

loss
less

51.4 45.9

B2 2.3 3.7 4.7 51.4 45.9

B3 2.3 3.5 4.5 51.4 46.2

B4 2.3 3.6 4.6 51.4 46.1

Band B3 of Table 1 was chose to evaluate the effect of different
restart interval extensions in the compression performance and the
results are listed in Table 2. The small reduction in the
compression factor, below 3% for a 24 line restart interval, is an
indicative of the potential of this method to avoid error
propagation.

Table 2. JPEG-LS Performance for Different Restart Interval
Extensions (B3 of Table 1)

 Compression Factor PSNR (dB)

NEAR 0 1 2 0 1 2

Lines
per

Restart
Interval

955 2.28 3,54 4.48

loss
less

51.3 46.2

145 2.27 3.52 4.46 51.4 46.2

24 2.23 3.45 4.37 51.4 46.2

5 2.10 3.19 4.02 51.4 46.2

Part of the compression rate obtained must be spent in raising
transmission error resilience by using EDAC. The use of a Reed-
Solomon RS(255,223) EDAC would raise tolerance to burst errors
with a 7% reduction in compression.

a) Original Image

b) NEAR = 1

c) NEAR = 2

Figure 2. Original and Reconstructed Images Detail.

176

3.2 Hardware Implementation Description
The hardware implementation of the JPEG-LS encoder in FPGA
is based on a VHDL description of the algorithm. Referring to the
architecture block diagram of Figure 3, the compression and
encoding is achieved through two concurrent processes: the main
process, where the core of the algorithm is executed; and the
Golomb/Run Length (RL) encoder process. The reconstructed
samples of one line are stored in the Line Buffer, to be used by
the predictor in the next line. To save the time spent under CMV
reinitialization and allow an immediate restarting of the
compression process, two CMV arrays are employed and while
one is being used by the compressor process, the other is
reinitialized. Because of similarities between Golomb and RL
encoding, the same process can be used with minor modifications.
To adapt random throughput variations, main and encoding
processes are interfaced through a FIFO. For test purposes, the
Output Data Control process has two operation modes: one is
saving the encoded data to the memory, and the other mode is
checking encoded data against memory contents. By stopping the
compression process, encoded data memory contents can be
uploaded or downloaded.

Figure 3. JPEG-LS VHDL Description Architecture.

The main process is a 16 state machine represented in the
flowchart of Figure 4. Two compression levels are implemented:
lossless (NEAR = 0) and near-lossless (NEAR = 1), selectable at
VHDL compilation level. A resume of the distribution of the
algorithm operations along Regular Mode states (steps) are listed
in Table 3. The three Initial Context steps are executed at the
beginning of each line. New pixel samples are gathered in steps
Regular Mode 0 and Run Mode 2 and the reconstructed values are
saved to the Line Buffer in Regular Mode 2 and Run Mode 1
steps. Part of the Run-length encoding is executed inside the Run
Mode loop and Run-length < J residues are encoded in the Run
Code steps. Run-length code information, including the J variable,
is transferred to the Encoder Process through the FIFO, in place of
the mapped error (MErrval) and Golomb coding (k) variables.
Run interruption sample processing is distributed through steps
Run Mode 1 (Context determination), Run Code 0 (Prediction
evaluation), Regular Mode 2 and 3.

Frame
Sychronization

Initialization

Stop

Initial
Context 1

Initial
Context 2

Mode Selection

Regular
Mode 0

Regular
Mode 1

Regular
Mode 2

x+1

Regular
Mode 3

y+1

Initial
Context 0

Run Mode 0 Run Mode 1 Run Code 0 Run Code 1

x+1

Run Mode 2

Run
Mode

Regular
Mode

x < width

x >= width

y <
length

y = length

J <= 8 J = 0

J > 8

x < width+1 x = width+1

Reinitialization
CMV Array

Commutation

stop start

x, y: pixel and line counters
width, length: image dimensions
J: Run-length coding variable

Figure 4. Main Process Flow Chart.

Table 3. Regular Mode Operation Distribution along Main
Process Steps

Main Process Step Algorithm Operation

Regular Mode 0

Gradient calculation

Context determination

Mode selection

Prediction evaluation
Regular Mode 1 Prediction correction

Golomb cod. variable computation (k)

Regular Mode 2

Error calculation

Error quantization and reconstructed
value evaluation (NEAR=1)

Error mapping (MErrval)

CMV update

FIFO ← k, MErrval
Regular Mode 3 Bias computation

Context update

177

3.3 Hardware Implementation Results
Memory requirements for 8-bit pixel and 6000 pixel width, two
CMV arrays, and a 128 "word" FIFO are listed in Table 4. In
general, memory blocks in FPGA are accessed through binary
ports and the final requirement is about 50% higher than the total
in Table 4. The Run loop is composed of three steps and, in
general, run mode is faster than regular mode, in consequence, the
throughput is limited by regular mode mean period, which is just
above 4 steps. As one step corresponds to one state of the main
state machine which in turn corresponds to one clock cycle, then a
12 Mpix/s rate is achievable with a 50 MHz clock.

To evaluate hardware implementation performance a Cyclone III
EP3C25 FPGA, with 24,624 logic elements and 608,256 RAM
bits, was employed. Real time operation is tested by using a high
speed multi I/O board to feed image data to the FPGA board. The
resulting encoded data is verified continuously in reference to
previous loaded memory contents. The FPGA synthesized
compressor is able to process one spectral band in blocks of 5812
x 90 pixels, 8-bit pixel, NEAR = 1, at a rate of 12 Mpix/s, with a
50 MHz clock frequency and using about 10% of device logic
elements and 20% of device RAM bits.

Table 4. Memory Requirements

Function Data Extension Total (kbits)

Line Buffer 8-bit pixel 6000 48

CMV Array

6-bit N
9-bit B and C

11-bit A
6-bit Nn

366
364
366
2

2 x 12.8

FIFO
4-bit k

8-bit MErrval
5-bit J

128
128
128

2.2

 Total 75.8

Referring to Table 5, a comparison with similar works has to be
made with caution, due to the lack of a standard area
measurement, different manufacturer's technology and incomplete
implementation details. Both references [3, 4] have as main target
the throughput, which is achieved by parallelizing process blocks,
in detriment of area usage. The solution of reference [4], without
near-lossless resources, uses about two times the proposed area
(logic cells), and the solution of reference [3], with near-lossless
resources, uses about 17 times the area (equivalent gates) of the
ASIC implementation of reference [4]. Based on the Remote
Sensing cameras MUX [11] and AWFI [12] under development
by Brazilian National Institute for Space Research (INPE), which
delivers image data at 5 and 3.8Mpix/s per spectral band,
respectively, the proposed implementation fulfills preliminary
throughput expectations and includes resources of restarting the
process, to limit error propagation.

Table 5. Comparison against Other Results

Technology
Logic
Area

Memory
Usage
(bits)

Operating
Frequency

(MHz)

Throughput
(Mpixels/s)

Cyclone III
EP3C25

(present work)

2,375
(10%)

log. cells

13 x 9k
(20%)

50 12

Virtex-E
XCV 1600E

[4]*

4,929
(15%)

log. cells

8 x 4k
(6%)

66.9 66.9

ASIC
0.18 um
 [4]**

27,681
eq. gates

23,887 183 183

Virtex-II Pro
XC2VP30

[3]***

473,862
eq. gates

50,655 90 90

 * Lossless only implementation, 640 or 1024 pixels per image line (not
clearly specified).
 ** Lossless only implementation, 1024 pixels per image line.
*** Lossless and near-lossless implementation, 1024 pixels per image line.

The successful implementation results, combined with the
algorithm analysis, indicate the potential offered by the proposed
solution for onboard data compression and establishes the basis
on which the next steps of exploration, in the sense of a functional
and reliable end item hardware, will be carried on.

4. CONCLUSION
JPEG-LS relative efficiency in terms of compression rate, loss,
complexity and memory requirements, is very attractive to
hardware implementation purposes. Depending on application
needs, compressions better than 2:1, in lossless mode, or average
compressions exceeding 4:1 with a PSNR better than 50 dB, can
be achieved. Comparing to other methods [6] JPEG-LS is an
excellent choice for lossless applications. Under lossy
applications approach, the performance of modern DWT
transform based methods is superior but, under hardware
requirements point of view, their complexity is certainly a major
drawback.

To improve fault-tolerance, mitigation techniques shall be
designed, implemented and evaluated [2]. In consequence, more
FPGA resources will be necessary, and that is why basic project
area savings are important. Additional work shall be carried on
packetization process in which spectral band data are mixed in
formatted frames with addition of header, EDAC and stuffing data
to maintain a constant output data rate [1].

The main problem in the development of space qualified
hardware for remote sensing image data compression is not the
compression method itself but the hardware in which the data will
be processed. The use of low complexity solution is a range
spreading factor in terms of device options, as space qualified
ASICs or FPGAs, or even commercial off-the-shelf (COTS)
FPGAs, which can be strategically decisive in the near future.

5. ACKNOWLEDGMENTS
Our thanks to INPE's DPI fellows, in special to Jeferson Arcanjo,
for the test image files.

178

6. REFERENCES
[1] Almeida, G.M., Bezerra, E.A., Cargnini, L.V., Fagundes,

R.D.R., and Mesquita, D.G. 2007. A Reed-Solomon
algorithm for FPGA area optimization in space applications.
Proceedings of the 2nd NASA/ESA Conference on Adaptive
Hardware and Systems (Edinburgh, Scotland, Aug. 2007),
243-249. DOI=
http://doi.ieeecomputersociety.org/10.1109/AHS.2007.17.

[2] Kastensmidt, F.L., Neuberger, G., Carro, L., and Reis, R.
2004. Designing and Testing Fault-Tolerant Techniques for
SRAM-based FPGAs. In Proceedings of the 1st Conference
on Computing Frontiers (Ischia, Italy, Apr. 2004), 419-432.
DOI= http://doi.acm.org/10.1145/977091.977150.

[3] Lei, J., Li, Y., Kong, F., and Wu, C. 2008. A New Pipelined
VLSI Architecture for JPEG-LS Compression Algoritm. In
Proceedings of SPIE 7084 (2008). DOI=
http://dx.doi.org/10.1117/12.794543.

[4] Papadonikolakis, M.E., Kakarountas, A.P., Goutis, C.E.
2008. Efficient high-performance implementation of JPEG-
LS encoder. J. Real-Time Image Proc. 3 (Dec. 2008), 303-
310:
http://www.springerlink.com/content/e25538m6m8kv7472/

[5] Weinberger, M.J., Seroussi, G., and Sapiro, G. 2000. The
LOCO-I Lossless Image Compression Algorithm: Principles
and Standardization into JPEG-LS. IEEE Trans. Image
Processing 9 (Aug. 2000), 1309-1324. DOI=
http://dx.doi.org/10.1109/83.855427

[6] Yu, G., Vladimirova, T., and Sweeting, M.N. 2009. Image
compression systems on board satellites. Acta Astronautica.
64 (May-Jun. 2009), 988-1005. DOI=
http://dx.doi.org/10.1016/j.actaastro.2008.12.006.

[7] ITU T.81. 1992. Digital Compression and Coding of
Continuous-Tone Images - Requirements and Guidelines.
ITU CCITT recommendation (Sep. 1992):
http://www.itu.int/rec/T-REC-T.81-199209-I/en.

[8] ISO/IEC 14495-1:1999. Information technology -- Lossless
and near-lossless coding of continuous tone still images:
Baseline. JPEG-LS standard part-1 (Dec. 1999):
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue
_detail.htm?csnumber=22397.

[9] ISO/IEC 14495-2:2003. Information technology -- Lossless
and near-lossless coding of continuous tone still images:
Extensions. JPEG-LS standard part-2 (Apr. 2003):
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue
_detail.htm?csnumber=37700.

[10] CAST. JPEG 2000 and Lossless JPEG IP Core
Specifications. Retrieved June 4, 2010, from IP Provider
CAST, Inc.: http://www.cast-inc.com/ip-cores/index.html.

[11] RBN-HDS-0014/03. 2006. CBERS 3&4 Multispectral
Camera (MUX) Subsystem Specification. Instituto Nacional
de Pesquisas Espaciais (INPE) (S.J. dos Campos, Apr. 2006).

[12] A823100-SPC-01 Rev 01. 2008. Advanced Wide Field
Imaging Camera (AWFI) Subsystem Specification. Instituto
Nacional de Pesquisas Espaciais (INPE) (S.J. dos Campos,
Aug. 2008).

179

