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ABSTRACT 
In this work, a real time hardware data compression solution for 
raster scan cameras, to be onboard the next generation of Remote 
Sensing Brazilian satellites, is proposed. The options for image 
data compression methods are briefly covered to substantiate the 
choice: a low complexity implementation based on JPEG-LS, 
near-lossless compression algorithm, which can be synthesized in 
a single electronic device. JPEG-LS performance in terms of 
compression rates and loss is evaluated by processing remote 
sensing rough images through in-house developed software tool. 
Finally, the description and results of an implementation in FPGA 
are presented and compared to other works, emphasizing the 
differences related to application requirements. 

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles – 
Algorithms implemented in hardware. 

General Terms 
Algorithms, Performance, Design, Experimentation, Verification. 

Keywords 
Space applications, On board, Image, Compression. 

1. INTRODUCTION 
The upgrading performance of new generations of Remote 
Sensing Instruments for Earth observation is in the sense of higher 
spatial, radiometric and spectral resolutions. In consequence, 
additional on-board mass memory, downlink data rate and power 
consumption have to be considered for real time operation. 
Furthermore, available x-band microwave link for Earth 
Exploration-Satellite Service (EESS) ruled by 
Radiocommunication Sector of International Telecommunication 
Union (ITU-R) have stringent limitations in power and 
bandwidth, frequently shared by different instruments in satellites. 

Data compression is the usual solution to save data storage, data 
rate (or transmission time for low rate links), bandwidth and 
power resources at the cost that data compression algorithms are 
complex for onboard software or hardware implementations, and 
compressed data are more susceptible to errors. On board satellite 
compression implementation options in use [6] are based on 
software, hardware or in a both software and hardware solution. 
Complex and massive data processing can be achieved with the 
use of software based solutions like DSP or a high speed CPU, for 
example. The spreading use of hardware implementations, based 
on ASICs and more recently on FPGAs, is mainly due to its 
relatively higher throughput. By mixing software and hardware 
implementation the best of both worlds can be explored. 

Budget, technology and commercial restrictions on qualified 
components are the guide lines on which the work of searching 
for a solution among the options for compression methods and 
feasible hardware implementation possibilities were carried on, in 
detriment of more software demanding implementation options. 
JPEG-LS is a mature compression algorithm and a commercial 
intellectual property (IP) core is available in an enclosed and 
general purpose application version [10]. Related works in the 
area have been carried out with good results for throughput but 
with no resources of JPEG-LS near-lossless capabilities [4], or 
with excessive area usage [3], and without any mention to error 
propagation mitigation. Although JPEG-LS near-lossless mode 
compression results are worse than the obtained by other lossy 
compression methods [4], it offers a good trade-off between 
performance and complexity. Moreover, differences in 
application requirements, like fault-tolerant design and control 
under space application point of view, justify a customized 
solution. 

In this work a real time hardware data compression solution for 
raster scan remote sensing cameras is proposed. The compression 
method is a low complexity implementation based on JPEG-LS, 
near-lossless compression algorithm, to be synthesized in a single 
electronic device. 

In Section 2 of this paper, image compression basis and the most 
common methods for onboard satellite systems, including JPEG-
LS standard, are briefly covered. In Section 3, the performance of 
JPEG-LS for remote sensing images is evaluated by software test 
results; the proposed hardware implementation is described; and 
implementation results are presented. In Section 4, final 
conclusions are exposed. 
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2. IMAGE COMPRESSION METHODS 
Basic concepts explored in data compression methods are 
entropy, correlation and compression rate. The entropy figure of a 
memoryless or uncorrelated source is related to redundancy of its 
information contents so that the higher the entropy the lesser the 
possibilities of compression. Correlation is a characteristic of 
sources with memory where there is some kind of data 
interdependency. In the case of image data, the compression is 
evaluated also by the resulting distortion or the peak signal to 
noise ratio (PSNR) figure, obtained from the mean square error 
between original and the recovered image after 
encoding/decoding processes. 

Remote sensing imaging data present some characteristics that 
contribute to compression: low entropy, caused by atmospheric 
effects that reduces contrast and dynamic range and results in a 
concentration of signal at mid levels; strong correlation between 
different regions of an image and between different spectral 
bands. 

 An image compression process consists, basically, of a 
decorrelator to map image information into a lower correlation 
space, and an entropy coder to optimize output information 
entropy. Most of the onboard compression systems in use [6] are 
employing prediction or transform decorrelation techniques. In 
predictive differential methods, an estimate of the pixel to be 
encoded is obtained from previous adjacent pixels. The difference 
between the pixel and the prediction, or the error, is then encoded 
through an entropy coder. In the decompression process the pixel 
is recovered by adding the prediction to the decoded error. The 
Consultative Committee for Space Data Systems - Lossless Data 
Compression (CCSDS 121.0-B-1 Recommendation), JPEG 
lossless [7] and JPEG-LS standards are examples of predictive 
differential methods. 

In the transform based methods, the range of options for 
reversible decorrelating transforms and coders is large and still 
being explored. JPEG standard [7] is based on Discrete Cosine 
Transform (DCT). JPEG2000, Set Partitioning in Hierarchical 
Trees (SPIHT), and CCSDS Image Data Compression (CCSDS 
122.0-B-1 Recommendation) are based on Discrete Wavelet 
Transform (DWT). Lossy, good PSNR, and high compression rate 
results can be achieved with transform based methods but, on the 
other hand, the transforms are multi pass, complex operations, 
requiring storage resources for image blocks during processing. 

JPEG-LS international standard [8] defines a set of lossless or 
near-lossless compression methods for coding continuous-tone, 
gray-scale, or color digital still images.  Low Complexity Lossless 
Compression for Images (LOCO-I) algorithm [5] is the basis of 
JPEG-LS standard. A simplified block diagram of LOCO-I is 
represented in Figure 1. An important control parameter of this 
algorithm is δ, named NEAR in JPEG-LS standard, which defines 
the amount of near-lossless compression (δ = 0 for lossless 
compression). The modeling approach is based on the notion of 
"context", where for each sample x a context is determined from 
gradients calculated by using the neighborhood reconstructed 
samples a, b, c, and d (refer to Figure 1). Each context is 
represented by an integer number that indexes four variables 
referred here as context mode variables (CMV). In low entropy, 
or flat regions of the image, if the context estimates that neighbor 
samples are identical (or nearly identical, in near-lossless coding) 

then the run mode is selected, otherwise regular mode is selected. 
In regular mode, a predictor combines the reconstructed samples, 
a, b, c, and d, to form a prediction of x. The prediction error is 
computed, as the difference between the sample x and its 
predicted value, and then corrected by a context-dependent term 
to compensate for systematic biases in prediction. In the case of 
near-lossless coding, the prediction error is quantized. Finally, the 
error is then encoded using a context dependent Golomb coding. 

 

Figure 1. LOCO-I Algorithm Simplified Block Diagram. 

In run mode, the encoder seeks, starting at x, for a sequence of 
consecutive samples identical or nearly identical to the 
reconstructed sample a. The run ends when this condition is no 
more verified or by the end of the current line, whichever comes 
first. The length information, which also specifies one of the two 
run-ending alternatives, is then encoded using a procedure 
extended from Golomb coding, with improved performance and 
adaptability. 

Main drawback of predictive differential methods is the 
susceptibility to error propagation. Processing errors, like single-
event upsets (SEU) in the cumulative context variables, or 
transmission errors will be propagated until the end of a scan. 
Besides SEU mitigation and error detection and correction 
(EDAC) methods, error propagation can be contained by the 
exploiting restart intervals. In this scheme, preview in JPEG-LS 
standard, the process is restarted more frequently along a scan and 
the transmitted data is broken in small independent packets. 
Transmission error propagation containment results in a decrease 
in the compression factor. 

JPEG-LS is a one pass method that uses integer operations so that 
memory requirements are limited to a single image line. In 
transform based methods the same image block is processed more 
than once through floating point operations resulting in increased 
storage requirements. Due to differences in end application 
requirements, a direct comparison between JPEG-LS and JPEG 
2000 hardware implementation examples should be made with 
caution. A commercial JPEG 2000 IP core for FPGA 
implementation uses 5 times more logic elements and needs 100 
times more memory than a JPEG-LS one [10]. Although the first 
one is for video processing and the second is for raster scan 
images processing, image characteristics and rates are similar. 

3. JPEG-LS ANALYSIS, 
IMPLEMENTATION AND RESULTS 
3.1 Performance Analysis for Remote Sensing 
Images 
C++ software implementations of JPEG-LS encoder and decoder 
were developed to evaluate compression performance and to 
explore the influence of restart intervals. Software tool resources 
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allow to select NEAR figure, from 0 to 9, and to break the image 
in independent blocks, by defining the number of lines per restart 
interval. In addition, the PSNR between the original and the 
recovered image after encoding/decoding processes is also 
evaluated. The test images were gathered by the CCD camera of 
China-Brazil Environment Resources Satellite (CBERS-2B). The 
four spectral bands, B1 - blue, B2 - green, B3 - red and B4 - near 
infrared, are available in rough data, 5812 x 5812 pixels image 
size, 8-bit pixel, TIFF files. To give an idea of the visual features, 
due to the compression and decompression processes, a detail of 
one of the images is shown in Figure 2.a together with its 
reconstructions. 

Performance was evaluated by processing 20 different test images 
without restarting the compression process. The worse case 
lossless and near-lossless compression and respective PSNR 
results are listed in Table 1. The results for NEAR = 0 are in 
accordance with the expectations [6] and the mean near-lossless 
performance, for NEAR = 1, results in a compression better than 
4:1 and a PSNR better than 50 dB. Eventual reductions in the 
compression rate can be handled by an output buffer at the risk of 
buffer overload. To overcome output buffer overload, one 
solution is to switch the NEAR as a parameter to increase or 
decrease compression rate along the process, as preview in JPEG-
LS standard, part 2 [9]. 

Table 1. JPEG-LS Worse Case Compression for Different 
NEAR Values 

 Compression Factor PSNR (dB) 

NEAR 0 1 2 0 1 2 

BAND 

B1 2.3 3,7 4.7 

loss 
less 

51.4 45.9 

B2 2.3 3.7 4.7 51.4 45.9 

B3 2.3 3.5 4.5 51.4 46.2 

B4 2.3 3.6 4.6 51.4 46.1 

 
Band B3 of Table 1 was chose to evaluate the effect of different 
restart interval extensions in the compression performance and the 
results are listed in Table 2. The small reduction in the 
compression factor, below 3% for a 24 line restart interval, is an 
indicative of the potential of this method to avoid error 
propagation. 

Table 2. JPEG-LS Performance for Different Restart Interval 
Extensions (B3 of Table 1) 

 Compression Factor PSNR (dB) 

NEAR 0 1 2 0 1 2 

Lines 
per 

Restart 
Interval 

955 2.28 3,54 4.48 

loss 
less 

51.3 46.2 

145 2.27 3.52 4.46 51.4 46.2 

24 2.23 3.45 4.37 51.4 46.2 

5 2.10 3.19 4.02 51.4 46.2 

 
Part of the compression rate obtained must be spent in raising 
transmission error resilience by using EDAC. The use of a Reed-
Solomon RS(255,223) EDAC would raise tolerance to burst errors 
with a 7% reduction in compression. 

 
a) Original Image 

 
b) NEAR = 1 

 
c) NEAR = 2 

Figure 2. Original and Reconstructed Images Detail. 

176



3.2 Hardware Implementation Description 
The hardware implementation of the JPEG-LS encoder in FPGA 
is based on a VHDL description of the algorithm. Referring to the 
architecture block diagram of Figure 3, the compression and 
encoding is achieved through two concurrent processes: the main 
process, where the core of the algorithm is executed; and the 
Golomb/Run Length (RL) encoder process. The reconstructed 
samples of one line are stored in the Line Buffer, to be used by 
the predictor in the next line. To save the time spent under CMV 
reinitialization and allow an immediate restarting of the 
compression process, two CMV arrays are employed and while 
one is being used by the compressor process, the other is 
reinitialized. Because of similarities between Golomb and RL 
encoding, the same process can be used with minor modifications. 
To adapt random throughput variations, main and encoding 
processes are interfaced through a FIFO. For test purposes, the 
Output Data Control process has two operation modes: one is 
saving the encoded data to the memory, and the other mode is 
checking encoded data against memory contents. By stopping the 
compression process, encoded data memory contents can be 
uploaded or downloaded. 

 

Figure 3. JPEG-LS VHDL Description Architecture. 

The main process is a 16 state machine represented in the 
flowchart of Figure 4. Two compression levels are implemented: 
lossless (NEAR = 0) and near-lossless (NEAR = 1), selectable at 
VHDL compilation level. A resume of the distribution of the 
algorithm operations along Regular Mode states (steps) are listed 
in Table 3. The three Initial Context steps are executed at the 
beginning of each line. New pixel samples are gathered in steps 
Regular Mode 0 and Run Mode 2 and the reconstructed values are 
saved to the Line Buffer in Regular Mode 2 and Run Mode 1 
steps. Part of the Run-length encoding is executed inside the Run 
Mode loop and Run-length < J residues are encoded in the Run 
Code steps. Run-length code information, including the J variable, 
is transferred to the Encoder Process through the FIFO, in place of 
the mapped error (MErrval) and Golomb coding (k) variables. 
Run interruption sample processing is distributed through steps 
Run Mode 1 (Context determination), Run Code 0 (Prediction 
evaluation), Regular Mode 2 and 3. 

 

 

 

 

 

Frame
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Initialization
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Initial
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Regular
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Figure 4. Main Process Flow Chart. 

 

 

 

Table 3. Regular Mode Operation Distribution along Main 
Process Steps 

Main Process Step Algorithm Operation 

 
 

Regular Mode 0 

Gradient calculation 

Context determination 

Mode selection 

Prediction evaluation  
Regular Mode 1 Prediction correction 

Golomb cod. variable computation (k) 
 
 
 

Regular Mode 2 

Error calculation 

Error quantization and reconstructed 
value evaluation (NEAR=1) 

Error mapping (MErrval) 

CMV update 

FIFO ← k, MErrval 
Regular Mode 3 Bias computation 

Context update 
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3.3 Hardware Implementation Results 
Memory requirements for 8-bit pixel and 6000 pixel width, two 
CMV arrays, and a 128 "word" FIFO are listed in Table 4. In 
general, memory blocks in FPGA are accessed through binary 
ports and the final requirement is about 50% higher than the total 
in Table 4. The Run loop is composed of three steps and, in 
general, run mode is faster than regular mode, in consequence, the 
throughput is limited by regular mode mean period, which is just 
above 4 steps. As one step corresponds to one state of the main 
state machine which in turn corresponds to one clock cycle, then a 
12 Mpix/s rate is achievable with a 50 MHz clock. 

To evaluate hardware implementation performance a Cyclone III 
EP3C25 FPGA, with 24,624 logic elements and 608,256 RAM 
bits, was employed. Real time operation is tested by using a high 
speed multi I/O board to feed image data to the FPGA board. The 
resulting encoded data is verified continuously in reference to 
previous loaded memory contents. The FPGA synthesized 
compressor is able to process one spectral band in blocks of 5812 
x 90 pixels, 8-bit pixel, NEAR = 1, at a rate of 12 Mpix/s, with a 
50 MHz clock frequency and using about 10% of device logic 
elements and 20% of device RAM bits. 

Table 4. Memory Requirements 

Function Data Extension Total (kbits) 

Line Buffer 8-bit pixel 6000 48 

CMV Array 

6-bit N 
9-bit B and C 

11-bit A 
6-bit Nn 

366 
364 
366 
2 

2 x 12.8 

FIFO 
4-bit k 

8-bit MErrval 
5-bit J 

128 
128 
128 

2.2 

    

  Total 75.8 

 
Referring to Table 5, a comparison with similar works has to be 
made with caution, due to the lack of a standard area 
measurement, different manufacturer's technology and incomplete 
implementation details. Both references [3, 4] have as main target 
the throughput, which is achieved by parallelizing process blocks, 
in detriment of area usage. The solution of reference [4], without 
near-lossless resources, uses about two times the proposed area 
(logic cells), and the solution of reference [3], with near-lossless 
resources, uses about 17 times the area (equivalent gates) of the 
ASIC implementation of reference [4]. Based on the Remote 
Sensing cameras MUX [11] and AWFI [12] under development 
by Brazilian National Institute for Space Research (INPE), which 
delivers image data at 5 and 3.8Mpix/s per spectral band, 
respectively, the proposed implementation fulfills preliminary 
throughput expectations and includes resources of restarting the 
process, to limit error propagation. 

 

 

 

 

Table 5. Comparison against Other Results 

Technology 
Logic 
Area 

Memory 
Usage 
(bits) 

Operating 
Frequency 

(MHz) 

Throughput
(Mpixels/s) 

Cyclone III 
EP3C25 

(present work) 

2,375  
(10%) 

log. cells 

13 x 9k 
(20%) 

50 12 

Virtex-E 
XCV 1600E 

[4]* 

4,929 
(15%) 

log. cells 

8 x 4k 
(6%) 

66.9 66.9 

ASIC 
0.18 um 
 [4]** 

27,681 
eq. gates 

23,887 183 183 

Virtex-II Pro 
XC2VP30 

[3]*** 

473,862 
eq. gates 

50,655 90 90 

    * Lossless only implementation, 640 or 1024 pixels per image line (not 
clearly specified). 
  ** Lossless only implementation, 1024 pixels per image line. 
*** Lossless and near-lossless implementation, 1024 pixels per image line. 
 
The successful implementation results, combined with the 
algorithm analysis, indicate the potential offered by the proposed 
solution for onboard data compression and establishes the basis 
on which the next steps of exploration, in the sense of a functional 
and reliable end item hardware, will be carried on. 

4. CONCLUSION 
JPEG-LS relative efficiency in terms of compression rate, loss, 
complexity and memory requirements, is very attractive to 
hardware implementation purposes. Depending on application 
needs, compressions better than 2:1, in lossless mode, or average 
compressions exceeding 4:1 with a PSNR better than 50 dB, can 
be achieved. Comparing to other methods [6] JPEG-LS is an 
excellent choice for lossless applications. Under lossy 
applications approach, the performance of modern DWT 
transform based methods is superior but, under hardware 
requirements point of view, their complexity is certainly a major 
drawback. 

To improve fault-tolerance, mitigation techniques shall be 
designed, implemented and evaluated [2].  In consequence, more 
FPGA resources will be necessary, and that is why basic project 
area savings are important. Additional work shall be carried on 
packetization process in which spectral band data are mixed in 
formatted frames with addition of header, EDAC and stuffing data 
to maintain a constant output data rate [1]. 

The main problem in the development of space qualified 
hardware for remote sensing image data compression is not the 
compression method itself but the hardware in which the data will 
be processed. The use of low complexity solution is a range 
spreading factor in terms of device options, as space qualified 
ASICs or FPGAs, or even commercial off-the-shelf (COTS) 
FPGAs, which can be strategically decisive in the near future. 
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