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Abstract: In this paper we perform a study of the effects of a close approach in the three-dimensional space 

between a planet and a cloud of particles, with the goal of understanding the dispersion of this cloud in terms of 

the variations of velocity, energy, angular momentum and inclination. It is assumed that the cloud is formed at 

the periapsis and the particles differ only by the magnitude of the velocity at this point. In this research we use 

the three-dimensional circular restricted three-body problem as the basic model for this close approach. A 

numerical algorithm is developed and implemented to study this problem and then it is applied to a cloud of 

particles, based in an analytical description of the close approach maneuver in the three-dimensional space. 

Analytical equations based in the patched conics approximation are used to calculate the variation in velocity, 

angular momentum, energy and inclination of the spacecraft that performs this maneuver.  
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1 Introduction 
 

The swing-by maneuver is a very popular technique 

used to decrease fuel expenditure in space missions. 

The most usual approach to study this problem is to 

divide the problem in three phases dominated by the 

“two-body” celestial mechanics. Other models used 

to study this problem are the circular restricted three-

body problem (like in [1], [2] and [3]) and the elliptic 

restricted three-body problem ([4], [5] and [6]). 

     The goal of this paper is to use analytical 

equations to obtain the variations of velocity, energy, 

angular momentum and inclination of a spacecraft 

that passes close to a celestial body. This passage, 

called swing-by, is assumed to be performed around 

the secondary body of the system. Among the several 

sets of initial conditions that can be used to identify 

uniquely one swing-by trajectory, the following five 

variables are used: Vp, the velocity of the spacecraft 

at the periapsis of the orbit around the secondary 

body; two angles ( and ), that specify the direction 

of the periapsis of the trajectory of the spacecraft 

around M2 in a three-dimensional space; rp, the 

distance from the spacecraft to the center of M2 in the 

moment of the closest approach to M2 (periapsis 

distance); g, the angle between the velocity vector at 

periapsis and the intersection between the horizontal 

plane that passes by the periapsis and the plane 

perpendicular to the periapsis that holds pV


. 

     It is assumed that the system has three bodies [7]: 

a primary (M1) and a secondary (M2) bodies with 

finite masses that are in circular orbits around their 

common center of mass and a third body with 

negligible mass that has its motion governed by the 

two other bodies. The result of this maneuver is a 

change in velocity, energy, angular momentum and 

inclination in the Keplerian orbit of the spacecraft 

around the central body.  

Then, our goal is to study the change of the relative 

inclination of the orbits of this cloud of particles after 

the close approach with the planet, as well as the 

variations in velocity, energy and angular 

momentum. It is assumed that all the particles that 

belong to the cloud have the same orbital elements, 

except by the magnitude of the velocity at the 

periapsis that will be varied in a short interval around 

a nominal value to represent a group of particles that 

have similar orbital elements. Others studies related 

to the problem considered in this paper can be found 

in references [9] to [16].  

 

2 Analytical Equations for fhe Swing-

by in Three Dimensions 
 

First, it is calculated the initial conditions with 

respect to M2 at the periapsis [8]: 

 

Position: 

 

 coscospi rx         (1) 
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 sinry pi cos                                  (2) 

 

sinrz pi                                    (3) 

 

 

Velocity:  

 

 sinVsinsinVV ppxi coscos           (4) 

 

 coscosppyi VsinsinsinVV     (5) 

 

 sincosVV pzi       (6) 

 

     During the passage, it is assumed that the two-

body celestial mechanics are valid and that the whole 

maneuver takes place in the plane defined by the 

vectors pr


  and pV


. So, the vectors 
V


 and 

V


, that 

are velocity vectors before and after the swing-by, 

respectively, with respect to M2 can be written as a 

linear combination of the versors associated with pr


 

and pV


. Using V


to represent both 
V


 and 

V


, 

since the conditions are the same for both vectors and 

a double solution will give the values for 
V


 and 


V


, we have: 

 

p

p

p

p

V

V
B

r

r
AV




        (7) 

 

     Which means that: 

 

)cos,coscos        

,coscos(        

),cos,cos(cos







sin

sinsinsinsinsinsinB

sinsinAV









      

                                                                                 (8) 

 

     With A, B constants that follows the relations: 

 

A
2
 + B

2
 = 2V , where V  can be obtained from 

p

2
p

2

r

2
VV


 , that represents the conservation of 

energy of the two-body dynamics. A second 

requirement for V


 is that it makes an angle   with 

pV


, where   is half of the total rotation angle 

described by the velocity vector during the maneuver 

(angle between 
V


 and 



V


). This condition can be 

written as: 

 

  cosVVVV pp


                               (9) 

 

where the dot represents the scalar product between 

two vectors. 

 

     From the two-body celestial mechanics it is 

known that: 

 

2

2
pVr

1

1
sin







                   (10) 

 

     Using the equation for V


 as a function of pr


 and 

pV


, we have: 

 















  cosVVBVV

V

V
B

r

r
AVV ppp

p

p

p

p
p





   (11) 

                                    

     So,   cosVB , because pp Vr


  = 0 (at the 

periapsis pr


 and pV


 are perpendicular) and 

2
ppp VVV 


. 

 

     Then, since A
2
 + B

2
 = 

2V    A
2
 = 2V -B

2
 = 2V  

- 2V cos
2
   = 2V (1-cos

2  ) = 2V sin
2
      

A =  sinV . 

 

     From those conditions, we have: 

 

)sincos,coscossinsinsin          

,sincoscossinsin(cosV          

)sin,sincos,cos(cossinVV















   (12) 

 

)sincos,coscossinsinsin         

,sincoscossinsin(cosV         

)sin,sincos,cos(cossinVV















   (13) 

 

     For M2, its velocity with respect to an inertial 

frame ( 2V


) is assumed to be: 

 

 )0,V,0(V 22 


      (14) 

 

     By using vector addition: 
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)0,,0()cos,coscos

,coscos(cos

),cos,cos(cos

2

2

Vsin

sinsinsinsinsinsinV

sinsinsinVVVVi






















                                                                                (15) 

 

)0,V,0()sincos,coscos

sinsinsin,sincoscossinsin(cosV

)sin,sincos,cos(cossinVVVV

2

20















                                                                                (16) 

 

where iV


 and 0V


 are the velocity of the spacecraft 

with respect to the inertial frame before and after the 

swing-by, respectively. 

     From those equations, it is possible to obtain 

expressions for the variations in velocity, energy and 

angular momentum [8]. They are: 

 

)sin,sincos,cos(cossinV2VVV i0  


   

                                                                                         (17) 

 

which implies that: 

 

 sinV2VV


                  (18) 

 

    sinsincosVV2VV
2

1
E 2

2
i

2
0              (19)                                               

 

     For the angular momentum ( C


) the results are: 

 

)sinsinsincossinsincoscoscoscos
V

V

,sincoscossinsin,0(VdVRC

2

ii











 

               (20)  

 

)sinsinsincossinsincoscoscoscos
V

V

,sincoscossinsin,0(VdVRC

2

00











 

               (21) 

 

     Where )0,0,d(R 


 is the position vector of M2. 

     Then: 

 

)sincos,sin,0(sinVd2CCC i0  


        (22) 

 

and   2
1

222 sinsincossindV2C  


   (23) 

 

     Using the definition of angular velocity 
d

V2  it 

is possible to get: 

 

EsinsincosVV2C 2Z      (24) 

 

     For the inclination, the results are the following: 

 

 

 

                                 
2

2

i

iZ
i

sinsinsincossinsincoscoscoscos
V

V

sincoscossinsin
1

1

C

C
iCos




























             

                     (25) 

 

 

 

                                 
2

2

o

oZ
o

sinsinsincossinsincoscoscoscos
V

V

sincoscossinsin
1

1

C

C
iCos




























    

                    (26) 
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where iC


 and oC


 are the initial and final angular 

momentum, respectvely, ii and io are the initial and 

final inclinations,  respectevely,  and the subscript Z 

stands for the z-component of the angular 

momentum. 

 

4    Results  

 

With those equations available, the given initial 

conditions (values of rp, vp, , , ) are varied in any 

desired range and the effects of the close approach in 

the orbit of the spacecraft are studied. 

     Figures 1 to 16 show the results. It was assumed 

that a satellite explodes when passing by the 

periapsis in a given position. In those examples, this 

position is given by  = 30,  = 45. Then, a 

reference value was used for the direction of the 

velocity:  = 60. Two different values were used for 

the velocity at periapsis (vp = 4.0 and vp = 4.5) and 

two different values were used for the periapsis 

distance (rp = 1.5 r
J
, rp = = 5.0 r

J
), all of them 

expressed in canonical units. The vertical axis shows 

the difference between the value (inclination, 

velocity, energy and angular momentum) of every 

single particle and a reference value, that is the value 

that would exist if no explosion occurred, assumed to 

be the value of the particle that remains with the 

nominal values of . The horizontal axis shows the 

value of , in radians. 
 

 

1.45 1.5 1.55

-0.001

0.001

0.002

0.003

0.004

 
 

Fig. 1 – Variation in Inclination (rad) for  

rp = 1.5 r
J
 and vp = 4.0. 
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Fig. 2 – Variation in Velocity for rp = 1.5 r
J
 and 

vp = 4.0. 

 

1.45 1.5 1.55

-0.1

-0.05

0.05

0.1

 
 

Fig. 3 – Variation in Angular momentum for  

rp = 1.5 r
J
 and vp = 4.0. 
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Fig. 4 – Variation in Energy for rp = 1.5 r
J
 and  

vp = 4.0. 
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Fig. 5 – Variation in Inclination (rad) for  

rp = 1.5 r
J
 and vp = 4.5. 
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Fig. 6 – Variation in Velocity for rp = 1.5 r
J
 and 

vp = 4.5. 
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Fig. 7 – Variation in Angular momentum for  

rp = 1.5 r
J
 and vp = 4.5. 
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Fig. 8 – Variation in Energy for rp = 1.5 r
J
  

and vp = 4.5. 
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Fig. 9 – Variation in Inclination (rad) for  

rp = 5.0 r
J
 and vp = 4.0. 
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Fig. 10 – Variation in Velocity for rp = 5.0 r
J
  

and vp = 4.0. 
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Fig. 11 – Variation in Angular momentum for 

 rp = 5.0 r
J
 and vp = 4.0. 
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Fig. 12 – Variation in Energy for rp = 5.0 r
J
  

and vp = 4.0. 
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Fig. 13 – Variation in Inclination (rad) for  

rp = 5.0 r
J
 and vp = 4.5. 
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Fig. 14 – Variation in Velocity for rp = 5.0 r
J
  

and vp = 4.5. 
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Fig. 15 – Variation in Angular momentum for  

rp = 5.0 r
J
 and vp = 4.5. 
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Fig. 16 – Variation in Energy for rp = 5.0 r
J
  

and vp = 4.5. 

 

 

 

 

 

WSEAS TRANSACTIONS on MATHEMATICS Vivian Martins Gomes, Antonio F. B. A. Prado

ISSN: 1109-2769 816 Issue 10, Volume 9, October 2010



5 The Three-dimensional Circular 

Restricted Problem 
  

For the numerical simulations, the equations of 

motion for the spacecraft are assumed to be the ones 

given by the three-dimensional restricted circular 

three-body problem. The standard dimensionless 

canonical system of units is used, which implies 

that: the unit of distance is the distance between M1 

and M2; the mean angular velocity () of the motion 

of M1 and M2 is assumed to be one; the mass of the 

smaller primary (M2) is given by  = 

 m m m2 1 2  (where m1 and m2 are the real 

masses of M1 and M2, respectively) and the mass of 

M2 is (1-); the unit of time is defined such that the 

period of the motion of the two primaries is 2 and 

the gravitational constant is one. 

There are several systems of reference that can be 

used to describe the three-dimensional restricted 

three-body problem [8]. In this paper the rotating 

system is used. 

In the rotating system of reference, the origin is the 

center of mass of the two massive primaries. The 

horizontal axis (x) is the line that connects the two 

primaries at any time. It rotates with a variable 

angular velocity in a such way that the two massive 

primaries are always on this axis. The vertical axis 

(y) is perpendicular to the (x) axis. In this system, 

the positions of the primaries are: x1   , 

x2 1 , y y1 2 0  . 

In this system, the equations of motion for the 

massless particle are [8]: 

 

 
3

2

3

1 r

1x

r

x
1xy2x





              (27) 

 

  y x y
y

r

y

r
    2 1

1

3

2

3
                 (28) 

 

 
3

2

3

1 r

z

r

z
1z                  (29) 

 

where r1 and r2 are the distances from M1 and M2. 
 

 

6   Algorithm to Solve the Problem 
  

A numerical algorithm to solve the problem has 

the following steps: 

 

1. Arbitrary values for the three parameters rp, 

Vp, ,  and  are given; 

 

2.  With these values the initial conditions in the 

rotating system are computed. The initial position is 

the point (Xi, Yi, Zi) and the initial velocity is (VXi, 

VYi, VZi), given by equations (1) to (6). 

 

2. With these initial conditions, the equations 

of motion are integrated forward in time until the 

distance between M2 and the spacecraft is larger 

than a specified limit d. At this point the numerical 

integration is stopped and the energy (E+) and the 

angular momentum (C+) after the encounter are 

calculated; 

 

4.    Then, the particle goes back to its initial 

conditions at the point P, and the equations of 

motion are integrated backward in time, until the 

distance d is reached again. Then the energy (E-) 

and the angular momentum (C-) before the 

encounter are calculated. The criteria to stop 

numerical integration is the distance between the 

spacecraft and M2. When this distance reaches the 

value d = 0.5 (half of the semimajor axis of the two 

primaries) the numerical integration is stopped.   

 

With this algorithm available, the given initial 

conditions (values of rp, vp, , , ) are varied in 

any desired range and the effects of the close 

approach in the orbit of the spacecraft are studied. 

 

      Figures 17 to 22 show the results. It was assumed 

that a satellite explodes when passing by the 

periapsis in a given position. In those examples, this 

position is given by  = 20,  = 30. Then, a 

reference value was used for the direction of the 

velocity:  = 45. Two different values were used for 

the velocity at periapsis (vp = 2.5 and vp = 3.5) and 

three different values were used for the periapsis 

distance (rp = 0.005, rp = 0.007, rp = 0.009), all of 

them expressed in canonical units. Then, a numerical 

integration is used to obtain the inclination of every 

particle. The vertical axis shows the difference 

between the inclination of every single particle and 

the inclination of the satellite before the explosion in 

radians, assumed to be the inclination of the particle 

that remains with the nominal values of . The 

horizontal axis shows the value of , also in radians. 
 

 

 

WSEAS TRANSACTIONS on MATHEMATICS Vivian Martins Gomes, Antonio F. B. A. Prado

ISSN: 1109-2769 817 Issue 10, Volume 9, October 2010



             i (rad) 

0.7853 0.7854 0.7855 0.7856

-0.000015

-0.00001

-5 10
-6

5 10
-6

0.00001

0.000015

 
 

Fig. 17: Variation in inclination for rp = 0.005, 

vp = 2.5,  = 20,  = 30,  = 45. 
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Fig. 18: Variation in inclination for rp = 0.007, 

vp = 2.5,  = 20,  = 30,  = 45. 
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Fig. 19: Variation in inclination for rp = 0.009, 

vp = 2.5,  = 20,  = 30,  = 45. 
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Fig. 20: Variation in inclination for rp = 0.005, 

vp = 3.5,  = 20,  = 30,  = 45. 
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Fig. 21: Variation in inclination for rp = 0.007, 

vp = 3.5,  = 20,  = 30,  = 45. 
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Fig. 22: Variation in inclination for rp = 0.009, 

vp = 3.5,  = 20,  = 30,  = 45. 
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From those plots it is clear that the relation is near 

linear in all the situation studied. Those results can 

quantify the dispersion of the inclinations of the 

individual particles due to the close approach.  

 

 

5   Conclusion 
In this paper, analytical equations based in the patched 

conics approximation were used to calculate the 

variation in velocity, angular momentum, energy and 

inclination of a cloud of particles that performs a 

swing-by maneuver. The results show the distribution 

of those quantities for each particle of the cloud. After 

that a numerical algorithm is developed to calculate 

the same variations. As an example, the variation in 

inclination is calculated. The results are very similar, 

so different initial conditions are used to get new 

results. Those results can be used to estimate the 

position of each individual particle in the future. 
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