Romero, A. G., Ferreira, M. G. V. Modeling an Attitude and Orbit Control System using SysML

MODELING AN ATTITUDE AND ORBIT CONTROL SYSTEM USING SYSML

Alessandro Gerlinger Romero
Instituto Nacional de Pesquisas Espaciais (INPE/CSE), S. J. Campos - SP, Brasil, romgerale@yahoo.com.br

Mauricio Gongalves Vieira Ferreira
Instituto Nacional de Pesquisas Espaciais (INPE/CCS), S. J. Campos - SP, Brasil, mauricio@css.inpe.br

Abstract: This paper presents an approach for development process of an Attitude and Orbit Control System
(AOCS) software for a satellite using SysML (Systems Modeling Language). The development process starts
analyzing context diagram, stakeholder and their needs. So it is derived system requirements and measure of
effectiveness (MoEs). After this a functional analysis is accomplished using use cases. Constraints and
parametric diagrams are described. Physical aspects are modeled and considered to model behavior using
sequence diagrams. Finally, model is refined to become a PSM model from software viewpoint, allowing code
generation.

Keywords: SysML, system engineering, MDA, PIM, PSM, code generation
1 Introduction

AOCS’s (Attitude and Orbit Control System) are often the most complex subsystem on board a satellite (Pasetti
and Brown, 2001). The AOCS is a typical embedded hard real-time control system, which main task is to
periodically collect measurements from a set of sensors and convert them into commands for a set of actuators.
Its nature, with control algorithms, device interaction and software intensive use, makes AOCS a very good
candidate to use SysML (Systems Modeling Language).

Previously SysML, many systems engineering processes tend to be document-intensive (a.k.a. document centric)
and employ a motley mix of diagram techniques that are frequently imprecise and inconsistent. To address this
issue, OMG (Object Management Group) and INCOSE (International Council on Systems Engineering’s) have
specified SysML. It defines a general-purpose modeling language for systems engineering applications that
supports the specification, analysis, design, verification and validation of a broad range of complex systems.
These systems may include hardware, software, information, processes, personnel and facilities (OMG, 2010).
SysML is defined as an UML 2 profile.

A SysML model can be considered a PIM (Platform Independent model), according MDA (Model-Driven
Architecture). And in the simplest form of MDA (OMG, 2003), it can be refined generating a PSM (Platform
Specific Model) from software viewpoint. Then PSM can be used to generate, at least, structure for the software,
creating classes, attributes and methods. This is the approach followed by current paper to development process
of an AOCS. The development process starts analyzing context diagram, stakeholder and their interests in the
system. So it is derived system requirements and measure of effectiveness (MoEs). After this a functional
analysis is accomplished using use cases. Constraints and parametric diagrams are described. Physical aspects
are modeled and considered to model behavior using sequence diagrams. Finally, model is refined to become a
PSM model, allowing code generation. Figure 1 shows graphically followed approach.

PIM PSM Java
(SysML) Stakeholders (UML) Code
(structure)

Constraints Manually
refined

Transformation

Parametric
Diagram
Class
Diagram

Sequence
Diagram

Figure 1. Paper approach to model AOCS.

2° Workshop em Engenharia e Tecnologia Espaciais, 03, 04 e 05 de Maio de 2011 1

Romero, A. G., Ferreira, M. G. V. Modeling an Attitude and Orbit Control System using SysML

Next sections will present scope, important diagrams used to analyze and to specify AOCS. Finally, some
generated and manually code will be showed.

2 AOCS Scope

As sad previously, AOCS main task is to periodically collect measurements from a set of sensors and convert
them into commands for a set of actuators. Current paper simplifies control modeling defined in Moreira (2006)
considering bellow assumptions:

It uses three-axis technique, using three gyroscopes (sensor) and three reaction wheels (actuator);

It has only nominal mode;

It only sends telemetry;

It does not receive telecommands;

It has fault detection functionalities, but there are no fault isolation or recovery procedures;

It can be simulated without hardware, so there is a plant simulator. Plant simulator does not consider
external forces or space environment, only its dynamic and cinematic;

7. ltuses a PID (Proportional-plus-Integral-plus-Derivative) controller.

ook wnPE

3 Requirements elucidation

AOCS was modeled starting from a context diagram, see Figure 2., defined using block definition diagram.
Block definition diagram is available to show block definitions and follows the graphical conventions of a UML
class diagram showing block, their properties and their relationships (OMG, 2010). A Block is a modular unit of
system that encapsulates its contents, which include attributes, operations and constraints (OMG, 2010).

Figure 2. defines main relationships from AOCS and others satellite subsystem. It declares scope of current
system under development.

<<context diagramz> whlock:

bald [black] AOCS Darnain Q StructureMechanismsSubsystem

«hlocks telecommand / telemetry The scope is AQCS Software,
Q«hbtklf Z] 0BCSubsystem
Satellite
whlocks
Cl aocssoftware
1
«hlocks
Elaocs

: ucd [usecase] AOCS - StakeHolders wall Clock Time

[req [package] A0CS Requirernents
«hlocks energy _

C] powerSubsystem .]
| 1 bdd [package] MeasureOfEffectiveness [A0CS MOEs]

B ucd [usecase] AOCS - UseCasas

[beld [Hiack] AOCS Companents
Figure 2. AOCS Context Diagram.

After context diagram, stakeholders are identified and documented in a use case diagram, see Figure 3. Main
purpose here is to identify and analyze stakeholders needs and their relationships. To describe relationship
between stakeholder and blocks a trace relationship is used, defining a need. Stakeholders are the individuals or
organizations that have concerns about the system (OMG, 2010).

Stakeholders needs generate stakeholders requirements, which are refined into system requirements. A
requirement may specify a function that a system must perform or a performance condition that a system must
fulfill (OMG, 2010). These system requirements are analyzed and described using requirements diagram, see
Figure 4. Modelers can categorize requirements by modifying their predefined properties, which include id,
source, text, kind, verifyMethod and risk (OMG, 2010). Modelers can define requirements relationships using
composition or derive dependency.

2° Workshop em Engenharia e Tecnologia Espaciais, 03, 04 e 05 de Maio de 2011 2

Romero, A. G., Ferreira, M. G. V. Modeling an Attitude and Orbit Control System using SysML

wod [usecase] AOCS - Stakeholders

Mechanical Architect

atraces
wlracas
Satellite Dperator
ablocks atrates
ADCSSoftware
Facek Electrical and Software architect
Satelite User atracon THACER
Tester Certifier

Figure 3. AOCS Stakeholders.

req [package] AOCS Requirernents

arequirernents:
. E] HardRealTimeSystem
«requirements Gt
Lidl ¢ Strin
H aDCS Software wdarives LrE-'t N Stq
Cgid : String Eg text © String
[Eg text 1 String
“requirernents «reguiremnents “requirernents “requirernents
=] Appointment] FailureDetection] Telemetry =] simulable
Egid : String Cgid : String Egid : String Egid : String
[Eg text : String g text @ String [Eg text @ String [Cg text : String
wolerives wilerives
wrequirement: arequirements:
=] controller E] ExceptionDetection
Egid : 5tring Egid : String
5 text : String g text : String

Figure 4. AOCS System requirements.

Trade studies are a basic activity for many system engineers. Given a set of requirements, it is frequently
problematic to satisfy all requirements. Consequently, trade-offs must be made to arrive at a design that is
optimal in a global sense (OMG, 2010). In order to determine this “global optimum” one typically uses a set of
“Measures of Effectiveness” (MoE).

A MoE states an optimization condition that a system must satisfy. Whereas the requirements for a system define
the domain of the solution, the solution space, the Measures of Effectiveness drive the solution to a particular
region in that space. Each MoE has a weight attribute to reflect its relative importance, a score attribute to
capture its value based on the alternative under investigation and the direction of the optimization (OMG, 2010).
Figure 5. shows MoE considered in current paper.

2° Workshop em Engenharia e Tecnologia Espaciais, 03, 04 e 05 de Maio de 2011 3

Romero, A. G., Ferreira, M. G. V. Modeling an Attitude and Orbit Control System using SysML

bdd [package] MeasureOfEffectiveness [A0CS MOEs]

L (=]
] AppointmentQuality

Figure 5. AOCS MOoEs.

4 Functional analysis

Now that requirements are defined and agreed, it is time to do functional analysis. What functions system must
do to satisfy requirements?

Using SysML, functions are analyzed and specified through use cases. According OMG (2010), a use case
diagram specifies actions that a system can perform by interacting with outside agents (actors) to provide service
transactions (use cases). Actors may represent users, external systems, or other environmental entities.

Figure 6. shows AOCS use case diagram. As a real time embedded software (RTES) main actor is the Wall
Clock Time, clock tick starts the most functions. Functions are divided in four packages, driving next steps on
development. There are associations between use cases and blocks that means that these use cases depends on
some information provided or required by block. There are satisfy relationship between requirements and use
cases. A satisfy relationship is dependency between a supplier requirement and a client model element that fulfils
the requirement (OMG, 2010). There are too realization relationship between use cases and collaborations.
Collaborations stores class and sequence diagrams for each use case.

«requirement»

ucd [usecase] AOCS - Use cases & appointment «reguirement:

E simulable
[sd [sequence] A0CS - ApplyControl
E5 controller - -
E3 simulation) sd [sequence] AOCS - Simulation
«black»
] Reactionwheel
Apply Control
Simulace Plant
wall Clock Time
== ApplyControl
«block» == Simulate plant
Gyro
«requirement:
E FailureDetection
B failure Eottec requirements:

! Telemetry

- Check sensors

Chack sensors
> Generate telemetry

Generate telemetry

== Check appointment quality Check appointment quality
3 sd [sequence] AOCS - TTC - Generate Telemetry

) =d [Sequence] AQCS - Faiure - Check sensar

3 sd [sequence] AOCS - Falure - Check appaintment guality

Figure 6. AOCS Use Cases.

Once use cases are defined, it is possible to analyze and specify collaborations. But first, it is important to
accomplish the architectural analysis.

5 Architectural analysis

After functional analysis, architectural analysis aims to identify physical interfaces where energy, goods or data
flow between environment and system under development. It is time that a function becomes real, considering
interfaces and physical restrictions.

2° Workshop em Engenharia e Tecnologia Espaciais, 03, 04 e 05 de Maio de 2011 4

Romero, A. G., Ferreira, M. G. V. Modeling an Attitude and Orbit Control System using SysML

Figure 7. shows each block that is involved on system. Figure 8. models how physical devices are mapped
(derived) to software blocks, through real time entities, and defines that these blocks will publish telemetry data.

bdd [block] A0CS Companents

1 Q«requirement» |€] bdd [block] 80CS Software Cormponents
ADCS Software
«hlocks wall Clock Time [bdd [block] Simulation [par [constrantBlock] simulatePlant
aocs «trace»
1
1 1
1 1 shlocks
1] «hlocks Scheduler €] bdd [block] Contraller z par [constraintBlock] applyControl
El aocssoftware
2
3 |€] bdd [block] Falure Detection
hlock> <«black» Eo software
= Gyra & ReactionWheel
[g] bdd [block] Telemetry
W URLy

E3 sensor platform: fresourcef AOCS fimages/reactionyheel PG

o actuator

iz <URL>
platform: fresourcef AOCS images/ayroscope. PG
: bdd [package] A0CS Analysis [Definitions of Dynarmic, Cinematic and Contral]

[E] bd [block] PhysicalDevices

Figure 7. AOCS Components.

It is common to use internal block diagram to describe physical architecture. Internal block diagram is available
to show the internal structure of a block and follows the graphical conventions of a UML composite structure
diagram showing internal structure (parts, ports and connectors) of the subject block (OMG, 2010).

bdd [block] PhysicalDevices
«hlocks:
RTEntity

3 getCurrentState ()
48, setCurrentState ()

= «hlock: ——
BasicRTEntity wirterfaces:
[Eg currentState : RTImage Telemeterable
2, write ()
«hloclko
«hlock: | GyroRTEntity «hlncks
Gyro | «derive» [Eg OvroCharacteristics : GyroCharacteristics = Reactionwheel
#wrte () wderives

ahlocks
] ReactionwheelRTEntity

Figure 8. AOCS Physical Devices.
6 Constraint analysis

Modeling a dynamic system, such as AOCS, encompasses describing differential equations. To support this
important issue SysML defines constraints. A constraint block includes the constraint, such as {F=m*a}, and the
parameters of the constraint such as F, m, and a (OMG, 2010). The constraint can be described either formal
statements in some language, or informal statements using text. This expression can include a formal reference
to a language in braces, common languages are Modelica (Johnson et al., 2007), MathML (Espinosa et al., 2008)
or MARTE-VSL (Espinosa et al., 2008). Figure 9. shows a block definition diagram containing constraints
defined on AOCS described here. Constraints are described using s-domain and time domain (Ogata, 1997).

2° Workshop em Engenharia e Tecnologia Espaciais, 03, 04 e 05 de Maio de 2011 5

Modeling an Attitude and Orbit Control System using SysML

Romero, A. G., Ferreira, M. G. V.

8, 000k (¥ (Ie/Ba0 LoanoAU03) - (1)1, 50'0 = (30

1600

-5y L]
0+(800+5)/E00e= (59

(Bnpisay

L ‘suanyaey erued) uonendiuew s Busn pajuawedu
(500 +3) /5300 = (5)9

SLRLSUD)

ggnop : whuta

ggnop + uap

gonop : suap

agnop : s

UOIUNIajsUe | EalauoNeaY 5
QUEISICTY

uonenby
GQUBLSUODY

SUIN 2T = Aj2ecd 34035 LnjuaLiow Jejnue

ggnap : ol e
agnap | ncupews
aignap : anyup

WhW g/ = anbioy

5{ped 008 -+ Wich 0052 = AY30/4 JepnBue ¥ew

ZLBYETOD = WU BlaU S_t_hmﬁm.h_ﬁwua“é 5|
AT 03 AQT- <= BRI Ul 5Bl IdE - Jnsa
SRjaWeEd SJUBLSUO)
ggnop : s
agnop : ndupen®s uonun4iajsues| 01an =
agnap ryuaLaeneu B ILIRASUOT:
SIsHE)IB Y |3BLMUONIREY
«SIUEISLOS 7
uopenbIasiaau
QUPIEUT 1500 /[ZUS, AUS, O+ Zh, X500+ A, XUS) =2
£ 500, OM 4+ 20, LIS - A, X500 = 4
Pl o+ * ' *

PO REEUDM (Y = (00 fony (s, om + 2w, AS00, X500+ M, AUS, BB) + 0 = X

LIELLOp-BLY L]
1-2-£ sanfuy Jang

[99'a8b £6'955 TT'bSP] =it , '
SYASLO

[#5E P GBS EAG'TH] = O WAL

[2A%]

SIEjEWEEd

SIUM+ s+ 5) = (99

SUELSUDY

anap 1S
aop: pyfa
sonop: '
UOIILNIBJSUBI|MET|03U0] m

CIUELSUO
1
T
uojenb3Eayuoneay = e npa e
CQUERSLOD
= |04uo] m «JUBI5U0T
@UELSUOT»

D[Lonent3EaLmMLUONdeal saGeL S0 fa0nosal o ed

T

IH 0T = hauanbay syiues

(5/RJ) 5304 [dE + {12 0 1d2-) <= AU Inding

SIgjaLERd

‘U W 510448 19880 0} SAINSBEL P JUeodu 531

<ABRUDEL> > O Lo enbI LA/ safeUn S0y Aunosal gy e
«TH» Sy
(Bd0ds payjduus) 0uaz 0y Enba stede - anbuny jeLuaa - d)
LunuBLIaw [aaLy Jenfue - |
K0 JenbLe - i
BB -]
siajaliRed
Ep'/5E=1
T (0] #h- Tl U=y e] = i
' ' E0E0G=A
AL+ Y=y M= (M, M+] 6560 =X

SJUBLIOI [EEUT LB

SJUERSL)
SIa]BLERY
A0N0p | LNJUBLOpE U T

sansHaYIe Ry JaNR1eS =
LR 5L

uoienbIzeWwauy m uorenbpnueusq m
€QURISLOD €QURISLODS

CQUERSLODN

AY03 NGO - O

ayEes 5
GJUIESLIOT sigjaleRd

15 [joNu0] pUe J0BWELEY ILIEUA] 40 suoyaq] SsARUY S0w [abeped] ppg B

[{puuory pue JeUIBLE “JUEUA] Jo suaiuyaq)] sisieuy S0y [=0esmed] ppg

Figure 9. AOCS Constraints.

2° Workshop em Engenharia e Tecnologia Espaciais, 03, 04 e 05 de Maio de 2011

Romero, A. G., Ferreira, M. G. V. Modeling an Attitude and Orbit Control System using SysML

But to define constraints it is not enough, it is mandatory to establish relationships between these constraints. To
address this SysML defines parametric diagrams. A parametric diagram is defined as a restricted form of internal
block diagram. A parametric diagram may contain constraint properties and their parameters (OMG, 2010).
Figure 10. shows a parametric diagram, defining relationships between constraints used by controller.

5] controllerimpl

controllable : Contrallable par [constraintBlock] doControl

%trollahleGyroRTEntity
U : RTImage

% TIm . FglyrroTransferFunction : GyroTransferFunction
gyroR TEntity | GyroRTEntity | [HWagesRTimage

¥ RTImage

U RTImage
cinematicEquation : CinematicEquation

¥ 1 ETImage
wioR TEntity BasicRTEnt% compute difference = reference - %
current plantR TENtity © BasicR TENtEy

U RTImage

referenceR TENtity & BasicRTEnt%
controlLaw TransferFunction @ ControlLaw TransferFunction

¥ 1 RTImage
U RTImage

Used to saturation,

reactionheelCharacteristics ReactiDnWheelCharacterist%s reactionheeRTENtity ReactionWheeIRTEnt%

Figure 10. AOCS Parametric Diagram for Controller Constraints.

Parametric diagrams can be used to support trade-off analysis. A constraint block can define an objective

function to compare alternative solutions. The objective function can constrain measures of effectiveness used to
evaluate the alternatives (OMG, 2010).

7 Software analysis

On software-intensive systems, such as AOCS, it is possible to use SysML to model software aspects on a
software viewpoint. Figures 11. and 12. shows software blocks structure defined using block definition diagram.
Figure 13. shows a behaviour modelled using sequence diagram. The sequence diagram describes the flow of
control between actors and systems (blocks) or between parts of a system (OMG, 2010).

bdd [block] Controller

«interfaces «hlocks
[Z controllable E pasicRTThread

43 doContral ()

«block, tasks
= controllerImpl

=21 gyroTransferFunction : GyroTransferFunction «hlock:

- reactionWheeIRTEtﬁ 5 -
I3 CinematicEguation : CinematicEquation BactionwheelRTEntity
«hlocks . 3 1 | CgwoRTEntity : BasicRTEntity 3
=] GyroRTEntity [Eg referenceR TErtity : BasicRTEntity 1
=gyroRTEntity

[Eg contralLaw TransferFunction : CantrolLaw TransferFunction
g plantRTENtity : BasicRTENtity
g reactionvyheelCharacteristics © ReactionWheslCharacteristics

it ()

Figure 11. AOCS software blocks for Controller.

2° Workshop em Engenharia e Tecnologia Espaciais, 03, 04 e 05 de Maio de 2011

Romero, A. G., Ferreira, M. G. V. Modeling an Attitude and Orbit Control System using SysML

bdd [block] Telermnetry

«hlock:
=] TelemetryManager

2 setStreamMame (streamMame @ String) @ waid

2 getStreamMame () 1 String

3 setTelemeterable (telemeterable : Telemeterable [*]) ¢ void
{3 getTelemeterable () Telemeterable [*]

«hlock:
] BasicR T Tiwead

winterfaces
Telemeterable
«hlock, tasks @
Q Telemetry™anagerImpl
[Eg streamMName ; String 1
g3init () void
463 destroy) void

3, write { bufferedvyriter ; Bufferediyriter) © void

B

Figure 12. AOCS software blocks for TelemetryManager.

| Generate Telemetry

=d [sequence] A0CS - TTC - Generate Telemetry =l
,% wall Clock Time:wall Clock Tirne] telemetryManagerImpl:«block, task»TelemetrytManagerImpl telemeterable: Telermeterable
1! run
[0,*] 1. write
21 wirite
2irun

Figure 13. AOCS Sequence Diagram for TelemetryManager.

Figure 14. shows a refined block definition diagram that has reference to a Java Interface. This kind of reference
transforms PIM model on a PSM model, because now it is platform specific. In current paper original model is
maintained platform independent, and a copy is refined to become a PSM.

2° Workshop em Engenharia e Tecnologia Espaciais, 03, 04 e 05 de Maio de 2011

Romero, A. G., Ferreira, M. G. V.

hdd [block] AOCS Software Components

Modeling an Attitude and Orbit Control System using SysML

= Timer
whlocks winterface» —
= RTEntity] Telemeterable (o elirent Time ;long
2 getCurrentState () 2 write) FkJava Interfaces
3 setCurrentState () & Runnable
«hlocks:
RTThread
hlocks:
«hlocke 2] Scheduler - rTThread

E] BasicRTEntity)

[Eg currentState © RTImage
whlock: 1
«hlocks £ schedulerImpl «hiocks
H RTImage g realTime : int H BasicRTThread
Eghame : 5tring 1 Egperiod : long
Eg time : long 5 warstCasaTimeExecution : lang
g value ; double
5 RTImage ()
toString ()
L athaces «hlock:
wtraces Face TelemetryManager
wreguirements wrequiremeants
= ExceptionDetection £ HardRealTimeSystem

Figure 14. AOCS Software components (PSM, reference to Java Interface).

8 Code and code generation

Using basic transformation UML2Java from Rational Software Architect (IBM, 2010) PSM is used to code
generation. Only structure is generated, i.e., classes, blank methods and attributes. After code generation, a
developer must refine behaviors models on java code (in the current paper). Figure 15. shows code implemented
to materialize parametric diagram presented in Figure 10.

Modeling - aocssimplifiedrealtime,/src/main/java/org/inpe/aocs/blocks/software/controller/Controllerimpl.java =10l x|
File Edit Source Refactor Mavigate Search Froject Run Modeling Window Help
Iti-Hla | % E-@ [kl - |8 | & |35-0-8-5-q- |5~ %| 4 7% | 53 modeing
(R L= B
[9] contrallerImpl.java &3 =8|
=
public veid doControl() { ;I —
/¢ hegin-user-code IJ_:
]
/¢ getting walus from gyroRTEntity and applying transfer function E
readFromiyro = gyroTransferFunction.cale (gyroRTEnticy[0] D]
JgecCurrent3tate () . getValue (), gyroRTEntity[1]
.getCurrentitate () .getValue(), gyroRTEntitw([Z]

.getCurrentitate () .getValue())

A/ calling cinematic egquation
caleCinematic = cinematicEgquation.cale (readFromGyrol0],
readFromGyro[1], readFromGyro[2], woRTEntity.getlurrentItatel)
.getValue (), getPeriod() / 1000d4):

/¢ caleulating difference

for (i = 0; i < 3; i+4) {
differenceCurrent[i] = referenceRTEntity([i] .getCurrent3tate!)
.getValue ()

- ecalocCinematic[i];
}

// applying control law
caleControllaw = controllawTransferFunction
.cale{differenceCurrent[0], differenceCurrent[1],
differenceCurrent[2], getPeriod() / 1000d):

for (i =0; i < 3; i++) {
/¢ checking saturation
if (calcControllaw[i] < reactionWheslCharacteristics.getMinInputi)) {
caleControllaw[i] = reactionWheslCharacteristics.gecMinInpuc(); J
i
if (calcControllaw[i] > reactionWheslCharacteristics.getMaxInpuci)) {
calecControllaw[i] = reactionWheslCharacteristics.getMaxInput():

=
4 | C

= [t comected | 0* I |Wr|table |Smart Insert |359:1 |

I'= &%

|

<No Current Work>

Figure 15. AOCS code.

2° Workshop em Engenharia e Tecnologia Espaciais, 03, 04 e 05 de Maio de 2011 9

Romero, A. G., Ferreira, M. G. V. Modeling an Attitude and Orbit Control System using SysML

9 Future works

Important features, from SysML, such as allocation, allocation tables, test cases, viewpoints formalisms, activity
diagrams and flow ports must be evaluated on next works. Another relevant research field is how to describe
constraints, and how allow code generation using a MDA approach. Other interesting field is how to use SysML
and UML in a cohesive way.

9 Conclusions

Development of complex systems needs robust approaches and languages. SysML is a good candidate to become
a de facto standard for system engineering aiding designers on modeling and understanding system behavior and
its effects on other system aspects. Current paper shows a possible, but not complete, approach to starting from
context diagram and finish on software code using SysML.

References

Espinosa, H., Cancila, D., Gérard, S., Challenges in Combining SysML and MARTE for Model-Based Design of
Embedded Systems. France: CEA, 2008. 18 p. Available in: <http://www.omg.org/cgi-bin/doc?syseng/09-
06-08.pdf >.

IBM, Rational Software Architect Site. Available in: <http://www.ibm.com>

Johnson, T.a., Jobe, J.M., Paredis, C.J.J., Burkhart, R., Modeling continuous system dynamics in sysml, 2007
ASME International Mechanical Engineering Congress and Exposition, 11-15 November, Seattle,
Washington, USA, 2007. Available in: <http://www.srl.gatech.edu/publications/2007/JohnsonParedis-
IMECE2007_DRAFT .pdf>

Moreira M. L. B., Projeto e simulagdo de um controle discreto para a plataforma multi-misséo e sua migracao
para um sistema operacional de tempo real. 2006. 181 p. (INPE-14202-TDI/1103). Dissertacdo (Mestrado
em Mecénica Espacial e Controle) - Instituto Nacional de Pesquisas Espaciais, Sdo José dos Campos, Brasil.
2006. Available in: <http://urlib.net/rep/sid.inpe.br/MTC-m13@80/2006/07.10.13.42?languagebutton=pt-
BR>.

Ogata, K., Modern Control Engineering. Third Edition. USA: Prentice Hall, 1997. 987 p. ISBN 0-13-227307-1.

OMG., Model-Driven Architecture. USA: OMG, 2003. 62 p. Available in: <http://www.omg.org/mda>

OMG., Systems Modeling Language. USA: OMG, 2010. 260 p. Available in:
<http://www.sysml.org/docs/specs/OMGSysML-v1.2-10-06-02.pdf>

Pasetti, A., Brown, T., Software Frameworks and embedded control systems. UK: Springer, 2002. 293 p. ISBN:
978-3-540-43189-3.

2° Workshop em Engenharia e Tecnologia Espaciais, 03, 04 e 05 de Maio de 2011 10

http://www.omg.org/mda
http://www.sysml.org/docs/specs/OMGSysML-v1.2-10-06-02.pdf

