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Abstract: This work presents the simulation of an angular 
velocity estimation system composed by four tetrahedrally 
arranged MEMS gyrometers. The timewise angular velocity 
of the sensor’s readings are transformed to tri-orthogonal 
measurement sets by a pseudo-inverse matrix. A Kalman 
Filter utilizes periodically received attitude data to estimate 
the sensor’s bias and also a new attitude. Also, the angular 
velocity readings are used to propagate the system’s state 
until arrival of the next attitude information. The Kalman 
Filter estimation and propagation equations used in this 
process are presented in the paper. Also, a Monte Carlo 
simulation results are shown demonstrating the filter’s 
convergence. This procedure will be implemented in an 
attitude determination device that will be integrated as an 
experiment aboard ITASAT-1 university satellite. 
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1. INTRODUCTION 

MEMS (Micro-Electro-Mechanical-Systems) are finding 
their way into inertial applications where typically big, 
heavy and expensive sensors had been used. Automobiles, 
airplanes, ships, missiles and artificial satellites are good 
examples of applications, but the last one is the most critical 
because mass, volume and power consumption are very 
restrictive topics for space applications. Nowadays, 
mechanical or optic fiber gyros are irreplaceable items of 
high accuracy inertial systems, because MEMS technology 
hasn’t reached the necessary performance. This technology 
has been driven by applications in low cost consumer 
electronics in the last decade and inertial sensors, such as 
accelerometer and gyrometers, are commonly found, for 
example, in cell phones, cars, gaming human interfaces and 
others. Due to a growing demand on consumer products, 
especially on car applications, MEMS inertial sensors had 
evolved into another performance class. It is now able to 
drive, also, entry level inertial grade systems with 
applications on military, aeronautical and space markets, 
such as pico, nano and micro satellites. In the application of 
MEMS sensors the processing done on its data is almost 
mandatory [1]. One simple procedure that can greatly 
enhance the quality of the measurement is to perform a 
previous calibration on the sensor and then a re-calibration 
on the run [2]. The objective of this pre-calibration is to find 
the constant parameters of the measurement model. The 

basic components of a sensor model, considering it linear, 
are the scale factor and bias. When dealing with an array of 
sensors the model also depends on the alignment errors of 
the sensors. Some models consider that these parameters are 
constant or even temperature dependant and this is not 
accurate for MEMS sensors. A MEMS gyro has a bias 
which model could be approximated to a constant value 
added to a signal variation or noise which resembles a 
random walk, ie, it will never be completely determined [3]. 
To mitigate this problem, the utilization of gyros to read 
angular velocities reinforces the use of a bias estimator, 
which is only possible to be implemented with external 
attitude inferences (information of attitude given by 
reference sensors). With this complementary information it 
is possible to estimate the system’s angular velocity and 
compare it with that one provided by the gyros. The 
difference between these measurements is considered the 
bias. This work describes a Kalman Filter that utilizes the 
readings of a set of four tetrahedrally arranged MEMS 
gyrometers together with external attitude information 
(provided by reference sensors, for example) to 
continuously estimate the angular velocity information bias 
and improve the attitude determination and its propagation. 
This system is simulated using a Monte Carlo technique and 
its results are discussed showing the convergence of the 
estimated bias and attitude. The purpose of this paper is to 
describe a preliminary study of an algorithm to determine 
the attitude of a satellite. This is part of an experiment 
carried by the ITASAT-1 university micro-satellite [4]. The 
experiment is composed by a set of MEMS gyrometers and 
has digital processing capability. It combines the external 
attitude data from the satellite with the gyrometers’ data to 
calculate and provide improved attitude data. The external 
attitude information and its statistics will be provided by the 
satellite’s attitude control system (ACS), which will be 
calculated, for instance, from magnetometers and sun 
sensors. 

2. MEASUREMENTS MODELS 

2.1. The Gyros 

The sensors are grouped in a way that their measurement 
axes are perpendicular to the faces of a regular tetrahedron. 
This configuration, besides reducing the sensor readings 
errors, also allows the detection and tolerance of a failure in 
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one of the sensors. Fig. 1 illustrates the measurement axes 
(Si) of this sensor arrangement. 

 
 

 
Fig. 1: Tetrahedrally displaced four sensor arrangement. 

The relation between the sensor measurement axes and 
the body frame, which is orthogonal, is given by: 
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The pseudo-inverse of matrix W allows an estimate of 

the read velocities u = (WT W)WTs. Due to the fact that 
sensors data in s have bias and noise, the vector u also 
presents this type of error. The true angular velocity can be 
defined as the measurement u subtracted from the bias b and 
noise η, described by ω = u – b – η.  

2.2. The Attitude Information  

The ACS provides attitude information formatted as 
unitary quaternion at a rate not superior to 1 Hz. Besides the 
attitude information, for the Kalman Filter correct operation, 
it also requires the attitude covariance data. 

3. DATA HANDLING 

3.1. Dynamic’s Equations 

The Kalman Filter design requires a model for the states 
dynamics. The state is defined as the attitude quaternion and 
the bias vector transformed to the orthogonal base: 
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The dynamic equations for the quaternion and bias are 

given by [5-6]: 
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In the first equation, the quaternion derivative is written 

initially as the quaternionic product between the pure 
quaternion (without the scalar part) describing the angular 
velocity and the attitude quaternion. In terms of matrices it 
is possible to write the same expression using the skew-
symmetric operator 4, which has dimension four, 
multiplied by the quaternion vector. In the second equation, 

the first term can be suppressed if τ is too big. The noises ηi 
are considered uncorrelated and Gaussian with zero mean. 

Now, based on these dynamic equations and on the 
measurement models, it is possible to define the Kalman  
Filter’s propagation and estimation stages. 

3.2. Description of the Kalman Filter 

Fig. 2 shows the mechanism to implement the Kalman 
Filter. The filter is partitioned in two steps: propagation and 
estimation. Note that input data are the data from gyros 
converted to the orthogonal form, the attitude from the 
satellite and their respective covariances. 
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Fig. 2: Kalman Filter used to fuse ACS attitude and gyros data. 

3.2.1 State and Covariance Propagation 

In the propagation step, the previous estimated bias 
vector is subtracted from the gyros’ data, resulting in an 
estimate of angular velocity: 

 
( )GYR GYR ˆˆ k k k
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Integrating this velocity results in a small angular 

increment. If the time interval between samples is small 
enough, this increment can be computed as the product of 
angular velocity and this time interval: 
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This angular increment can be expressed as a small 

incremental rotation which updates the quaternion through a 
quaternion product. Otherwise the incremental quaternion 
can be written in matrix form as: 
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Matrix I4 is an identity matrix and matrix 4 is a 

dimension 4 skew-symmetric matrix with zeros in its 
diagonal. From the quaternion propagation matrix, defined 
in Eq. 6, it is possible to propagate the filter state using the 
relationship:  

 
( ) ( )

4 31

( ) ( )
3 3 3 31

ˆ ˆq q( )

ˆ ˆ
k k

k k

 


 
 

   



    
      

M θ 0

0 Ib b

( (


 (7) 

 
In this case, the gyros’ biases are considered constant on 

average, and its variation is considered as noise, hence it can 
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be propagated directly. In terms of the state vector and 
propagation matrix, the Eq. 7 can be rewritten as: 
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Data quality after propagation depends essentially on the 

gyros’ readout after removing their respective biases. 
 Before defining the propagation it is important to quote 

that the covariance matrix with dimension 7 is not 
numerically stable because its rank is 6. To avoid numerical 
problems it is better to work with the reduced covariance, 
gain and measurement matrices. There is a reduction matrix 
to change from one form to another. 

The Eq. 9 shows how the reduced covariance matrix is 
propagated. Note that the first term is a propagation of the 
covariance applying the reduced propagation matrix. This 
propagation does not propagate errors. Besides, the second 
term is a trapezoidal integral where the Q matrix is 
associated with the gyros noise and bias drift. 
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The matrices  e  are: kΛ kJ
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Matrix AT is a rotation matrix equivalent to the 

quaternion, whose relationship is given by: 
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Term q0 refers to the scalar component of the quaternion, 

and q refers to its vector component. Function Ω3 is the 
dimension 3 skew-symmetric operator. 
 

3.2.3 State and Covariance update 

State updating is done as shown: 
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The greatest computational cost is that of computing the 

gain K. This gain could be computed through simulation 
and used as a constant. Updating of the reduced covariance 
matrix is done according to: 
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The reduced Kalman gain can be calculated as: 
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Where the matrix  is given by: kH%
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The reduction matrix ( )(q )k k
S

(
 is a function of the 

current quaternion. Eq. 18 shows this function: 
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Where (q)Ξ

(
 is the following distribution of the 

quaternion components in a matrix: 
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The Kalman gain can be obtained from the reduced form 

gain by following relationship: 
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4. SIMULATION 

4.1. Simulation Description 

MatLab simulations were performed to establish the 
filter convergence. Typical Gaussian noise was added to all 
sensors, and biases were added to the gyros. The gyros RMS 
noises were provided by the manufacturer [7]. 

The sampling rates for the gyros were set to 10 Hz and 
the attitude data readout rate was set to 1 Hz, as expected in 
the actual implementation. 

The attitude data and covariance was simulated 
generating data of two reference sensors (Sun and 
geomagnetic sensors) with their characteristics noises. The 
attitude was calculated using the TRIAD algorithm [8]. 

The simulation was performed considering two 
situations: (a) the body is static, with zero angular velocities; 
(b) the body has an angular velocity of 40 rpm around z 
axis. 
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4.2. Simulation Results 

In the first case the body is stopped. The Fig. 3 shows 
the convergence of errors in the gyros’ biases and Fig. 4 
shows the convergence of errors in the attitude quaternion’s 
components. 
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Fig. 3:  Convergence of errors in the gyros’ biases. 

0 50 100
-0.05

0

0.05

q
1 e

rr
or

Time (s)
0 50 100

-0.05

0

0.05

q
2 e

rr
or

Time (s)

0 50 100
-0.05

0

0.05

q 3 e
rr

o
r

Time (s)
0 50 100

-0.05

0

0.05

q 4 e
rr

o
r

Time (s)  
Fig. 4: Convergence of the attitude quaternion’s components. 

In the second case the body is turning around its Z axis. 
Fig. 5 shows the convergence of errors in the gyros’ biases 
and Fig. 6 shows the convergence of errors in the attitude 
quaternion’s components. 

Statistically, there is a small advantage when redundant 
information such as the attitude propagated by the gyros and 
the attitude provided by the ACS are fused. The RMS noise 
is slightly smaller after filtering, but in this case the gyros’ 
and the attitude sensors’ noise were considered identical and 
equal to 0.01 RMS of each sensors’ full scale. 

5. CONCLUSIONS 

This work performed an initial investigation about 
applying four tetrahedrally arranged gyrometers to 
propagate externally provided attitude information. The four 
angular velocities readings are converted into three 
orthogonal angular velocities on body axes and a Kalman 
Filter algorithm does the bias estimation on all axes and also 
estimates new attitude information considering the 
propagated attitude data. The Monte Carlo simulation results 
showed the filter convergence in a few seconds and also 
showed that bias variance is lower when attitude is constant, 
ie, the system is at rest. In general, the results are 
satisfactory and therefore the next step will be to implement 

the Kalman Filter algorithm on some embedded system 
using real sensor data. 
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Fig. 5:  Convergence of errors in the gyros’ biases. 
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