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4. THE TROPICS—H. J. Diamond, Ed.
a. Overview—H. J. Diamond

The year was characterized by a strong El Niño 
at the beginning of the year, followed by a transition 
to La Niña conditions in the middle part of the year, 
and then finally to a moderate-to-strong La Niña by 
the end of the year. By November, the equatorial cold 
tongue had intensified significantly, and the Oceanic 
Niño Index (ONI) dropped to -1.4°C, as the area of 
sea surface temperature (SST) anomalies colder than 
-1.0°C expanded westward to cover the entire central 
and east-central equatorial Pacific.

Overall, global tropical cyclone (TC) activity 
during 2010 was well-below average, with the lowest 
number of named storms globally (70) in the last 33 
years. Only one basin, the North Atlantic, experi-
enced above-normal activity. This was also the most 
active season, and the only hyperactive season, on 
record in the North Atlantic to have no hurricane 
landfalls in the United States. On the other hand, 
eastern Canada experienced one of its most active 
TC seasons on record, as documented in Sidebar 4.1.

This chapter consists of seven sections: (1) El Niño-
Southern Oscillation (ENSO) and the Tropical Pacif-
ic; (2) Tropical Intraseasonal Activity; (3) seasonal TC 
activity in the seven TC basins: the North Atlantic, 
Eastern North Pacific, Western North Pacific, North 
Indian and South Indian Oceans, Southwest Pacific, 
and Australia; (4) Tropical Cyclone Heat Potential, 
which aids in summarizing the section for TCs from 
an ocean heat perspective; (5) Intertropical Conver-
gence Zone (ITCZ) behavior in the Pacific and At-
lantic basins; and (6) the Indian Ocean Dipole (IOD). 
A new section detailing the Atlantic Multidecadal 
Oscillation (AMO) has been added to complement 
some of the other work related to ENSO, the IOD, 
and the Madden-Julian Oscillation (MJO).

b. ENSO and the Tropical Pacific—G. D. Bell, M. Halpert, 
and M. L’Heureux
1) Oceanic Conditions 
El Niño and La Niña represent opposite phases of 

the El Niño-Southern Oscillation (ENSO), a coupled 
ocean-atmosphere phenomenon centered in the 
equatorial Pacific Ocean. NOAA’s Climate Prediction 
Center (CPC) classifies El Niño and La Niña episodes 
using the Niño-3.4 index, which reflects area-aver-
aged sea surface temperature (SST) anomalies in the 
east-central equatorial Pacific between 5°N–5°S and 
170°W–120°W.

For historical purposes, the CPC classifies an El 
Niño (La Niña) episode when the three-month run-

ning mean value of the Niño-3.4 index (called the 
Oceanic Niño Index, ONI) is greater (less) than or 
equal to +0.5°C (-0.5°C) for five consecutive overlap-
ping months. A time series of the Niño-3.4 index indi-
cates that both El Niño and La Niña occurred during 
2010 (Fig. 4.1), with El Niño during January–April 
and La Niña from July through the end of the year. 

A strong El Niño1 was present during December 
2009–February 2010 (DJF), as indicated by an ONI of 
+1.7°C. During this period, exceptionally warm SSTs 
(≥ 29°C) extended across the east-central equatorial 
Pacific, and the warmest SSTs in the entire Pacific 
basin were located east of the International Date Line 
(hereafter date line) instead of in their normal posi-
tion north of Papua New Guinea (Fig. 4.2a). Equato-
rial SST anomalies during this period exceeded +1°C 
across most of the Pacific Ocean east of the date line 
(Fig. 4.2b). During March–May (MAM), El Niño 
became a weak event as the region of warmest SSTs 
retracted to well west of the date line (Fig. 4.2c) and 
the SST anomalies decreased across the eastern half 
of the equatorial Pacific (Fig. 4.2d).

During June–August (JJA), the equatorial Pacific 
continued to cool east of the date line, and an anoma-
lously strong cold tongue became established (Figs. 
4.2e,f). The resulting SST anomalies ref lected the 
development of a weak La Niña2, as the ONI dropped 
to -0.6°C. During September–November (SON), 
La Niña was a moderate-strength event as the ONI 
dropped to -1.4°C and the equatorial cold tongue in-
tensified and expanded westward (Fig. 4.2g). The area 
of SST anomalies colder than -1.0°C also expanded 

1	The CPC unofficially uses an ONI ≥ +1.5°C to classify a 
strong El Niño. They classify a moderate strength El Niño by 
an ONI of +1.0°C to +1.4°C, and a weak El Niño by an ONI 
of +0.5°C to +0.9°C.

2	CPC unofficially classifies a weak La Niña by an ONI of 
-0.5°C to -0.9°C, and a moderate strength La Niña by an ONI 
of -1.0°C to -1.4°C. A strong La Niña is unofficially classified 
by an ONI ≤ -1.5°C.

Fig. 4.1. Time series of weekly sea surface tempera-
ture anomalies (°C) in the Niño-3.4 region (5°N–5°S, 
170°–120°W). Anomalies are departures from the 
1971–2000 weekly adjusted OISST climatology of 
Smith and Reynolds (1998).
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westward to cover the entire central and east-central 
equatorial Pacific (Fig. 4.2h).

The subsurface thermal structure is a critical fea-
ture of ENSO. As seen during DJF, El Niño featured a 
deep layer of anomalously warm ocean temperatures 
east of the date line (Fig. 4.3a), in association with 
a deeper-than-average thermocline in the central 
and eastern equatorial Pacific. During MAM, the 
total volume of anomalously warm water decreased 
substantially across the eastern half of the equatorial 
Pacific and the anomalously warm water became 
confined to the near surface (Fig. 4.3b). This evolution 
reflected a shoaling of the oceanic thermocline and 
signified the imminent demise of El Niño.

During JJA and SON, the subsurface thermal 
structure reflected a markedly increased east-west 
slope of the oceanic thermocline, which is consistent 
with La Niña’s formation and intensification (Figs. 
4.3c,d). This structure reflected a shallower-than-
normal thermocline and a deep layer of negative 
subsurface temperature anomalies in the east-central 

and eastern Pacific. It also reflected a deeper-than-
normal thermocline and positive subsurface tem-
perature anomalies in the western Pacific. By SON, 
the thermocline in the eastern Pacific had reached 
the surface and was approximately 120 m shallower 
than observed earlier in the year in association with 
El Niño. 

2) Atmospheric Circulation: Tropics

El Niño and La Niña both impacted the atmo-
spheric circulation and patterns of tropical convec-
tion during 2010, in a manner consistent with past 
episodes (Chelliah and Bell 2004). As seen during DJF, 
a key atmospheric component of El Niño is a reduced 
strength of the normal tropical easterly trade winds 
(i.e., westerly anomalies) east of the date line (Fig. 
4.4a). This wind pattern contributed to a reduction in 
upwelling and to an anomalous eastward transport of 
warm water from the western Pacific, both of which 
strengthened El Niño. 

Fig 4.2. Seasonal SST (Left) and anomaly (right) for (a, b) DJF 2009/10, (c, d) MAM 2010, (e, f) JJA 2010 and (g, 
h) SON 2010. Contour interval for total (anomalous) SST is 1°C (0.5°C). Anomalies are departures from the 
1971–2000 seasonal adjusted OISST climatology of Smith and Reynolds (1998).
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During this period, convection was enhanced 
(green shading) over the central and east-central 
equatorial Pacific, and suppressed (brown shading) 
over the western Pacific and Indonesia. At 200 hPa, 
these conditions resulted in anticyclonic circulation 
anomalies in the subtropics of both hemispheres 
f lanking the region of enhanced convection, and 
cyclonic circulation anomalies in both hemispheres 
f lanking the region of suppressed convection (Fig. 
4.5a). Collectively, the above conditions ref lect a 
weakening of the equatorial Walker circulation, along 
with an anomalously weak (strong) Hadley circula-
tion over the western (central) Pacific.

El Niño’s weakening during MAM was associated 
with two main changes in the low-level winds (Fig. 
4.4b). First, the trade winds became enhanced west of 

the date line, which acted to transport exceptionally 
warm water toward the western Pacific. Second, an 
anomalously strong cross-equatorial f low became 
established over the east-central equatorial Pacific, 
which resulted in increased upwelling and cooler sea 
surface and subsurface temperatures in that region. 

La Niña’s development and intensification during 
JJA and SON was associated with a further strength-
ening of the anomalous easterly trade winds across 
the western tropical Pacific and with an expansion in 
the area of anomalous cross-equatorial flow to cover 
the entire eastern half of the equatorial Pacific (Figs. 
4.4c,d). Consistent with this evolution, equatorial 
convection became suppressed across a large area 
west of the date line, and enhanced over Indonesia 
and the eastern Indian Ocean. These conditions are 
typical of La Niña and reflected an enhanced equa-
torial Walker circulation and a suppressed Hadley 
circulation over the central Pacific.

Fig 4.3. Equatorial depth-longitude section of ocean 
temperature anomalies (°C) averaged between 5°N 
and 5°S during (a) DJF 2009/10, (b) MAM 2010, (c) JJA 
2010, and (d) SON 2010. The 20°C isotherm (thick 
solid line) approximates the center of the oceanic 
thermocline. The data are derived from an analysis 
system that assimilates oceanic observations into 
an oceanic global circulation model (Behringer et al. 
1998). Anomalies are departures from the 1971–2000 
period monthly means.

Fig. 4.4. Anomalous 850-hPa wind vector and speed 
(contours, m s-1) and anomalous outgoing longwave 
radiation (shaded, W m-2) during (a) DJF 2009/10, (b) 
MAM 2010, (c) JJA 2010, and (d) SON 2010. Anoma-
lies are departures from the 1979–95 period monthly 
means.
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As a result, La Niña impacts on the upper-level 
circulation were seen across the tropical and sub-
tropical Pacific in both seasons (Figs. 4.5c,d). These 
impacts included the development and strengthening 
of cyclonic circulation anomalies in the subtropics of 
both hemispheres, in association with the region of 
suppressed convection. In both seasons, the result-
ing downstream easterly wind anomalies extended 
across the eastern North Pacific and Caribbean Sea, 
which acted to: (1) reduce the vertical wind shear and 
enhance the Atlantic hurricane season (section 4d2) 
and (2) increase the vertical wind shear and suppress 
hurricane activity in both the Central and Eastern 
North Pacific hurricane basins (section 4d3).

3) Atmospheric Circulation: Extratropics

As seen during DJF, El Niño was associated with 
an eastward extension of deep tropical convection 
and deep tropospheric heating to well east of the date 

line, resulting in an eastward extension of the sub-
tropical ridges in both hemispheres. The wintertime 
East Asian jet stream, which is intrinsically linked 
to the poleward flank of the subtropical ridge, also 
extended eastward to span the entire Pacific basin. 
Likewise, the associated jet exit region (and therefore 
the main cyclogenesis region) shifted eastward to the 
area immediately upstream of the southwestern U.S. 
(Fig. 4.6, shading). 

These observations highlight key jet-like features 
of the El Niño-related anomalous anticyclonic cir-
culation over the east-central Pacific. These features 
include: (1) an anomalous westerly jet core along its 
northern flank (near 30°N between the date line and 
the western U.S.), which coincides with the observed 
East Asian jet axis; (2) anomalous southwesterly 
winds and speed acceleration (solid contours) along 
its western flank near the date line, which represent 
the anomalous jet entrance region; and (3) anomalous 
northwesterly winds and speed deceleration (dashed 
contours) along its eastern f lank over the eastern 
Pacific, which capture the anomalous jet exit region.

Consistent with the above conditions, the Pacific 
storm track was shifted well south and east of normal 
during DJF, resulting in increased storminess and 
above-average precipitation across the southern U.S. 
Also, the 500-hPa Hudson Bay trough was weaker 
than average and the trough over the southeastern 
U.S. was stronger than average (see Fig. 8.2). As a 
result, a more zonally-uniform distribution of both 
temperature and winds, which is characteristic of El 
Niño, prevailed across the Pacific basin and much of 
North America. 

Fig. 4.5. Anomalous 200-hPa wind vector and speed 
(contours, m s-1) and anomalous outgoing longwave 
radiation (shaded, W m-2) during (a) DJF 2009/10, (b) 
MAM 2010, (c) JJA 2010, and (d) SON 2010. Anoma-
lies are departures from the 1979–95 period monthly 
means.

Fig.4.6. DJF 2009/10: Total 200-hPa wind speed (m s-1, 
shaded), anomalous wind vector, and anomalous hori-
zontal wind speed tendency (d/dt) (contours, interval is 
1 x 10-4 m s-2). Solid (dashed) contours show anomalous 
speed acceleration (deceleration), where

where V is the observed total vector wind, Z is the 
observed total geopotential height, and the subscript 
“c” denotes the climatological mean values. Anomalies 
are departures from the 1971–2000 period monthly 
means. Vector scale is shown at bottom right.

∆

dVa/dt = (-V•   Z) – (-Vc•   Zc)

∆
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Later in the year, La Niña affected the extratropical 
circulation over the South Pacific basin. For example, 
the cyclonic anomalies over the central subtropical 
South Pacific during SON reflected a strengthening 
of the normal mid-Pacific trough, and a westward 
retraction of the subtropical ridge axis to the extreme 
western Pacific (Fig. 4.5d). These conditions were as-
sociated with easterly 200-hPa wind anomalies across 
the central Pacific near 30°S, which coincided with 
the exit region of the South Pacific jet core and there-
fore reflected a weakening and westward retraction 
of that jet to west of the date line. 

4) ENSO Temperature and Precipitation Impacts

During DJF 2009/10, the precipitation patterns 
typically associated with El Niño (Ropelewski and 
Halpert 1987) were observed over parts of the world. 
These included above-average precipitation over the 
central equatorial Pacific, the southern U.S., south-
eastern South America, and equatorial eastern Africa 
(see Fig. 8.1). They also included below-average pre-
cipitation over Indonesia, parts of the Amazon Basin, 
and southeastern Africa.

Typical El Niño-related temperature impacts dur-
ing DJF included warmer-than-average conditions 
over southeastern Asia, Canada, and southeastern 
Brazil, and cooler-than-average conditions across 
the southern United States. In the U.S., the tempera-
ture and precipitation patterns were also modulated 
by a strong negative phase of the Arctic Oscillation 
(AO) and North Atlantic Oscillation (NAO), which 
favored exceptionally cool conditions across much 
of the country and contributed to a series of heavy 
snowfall events along the east coast (see section 7b2 
and Sidebar 7.1 for more details). 

La Niña impacted global precipitation patterns 
during JJA and SON in a manner consistent with 
past cold episodes (Ropelewski and Halpert 1989). 
These impacts included suppressed convection 
across the central equatorial Pacific, coupled with 
above-average rainfall across much of the Maritime 
Continent (Indonesia, Philippines, Malaysia, and 
Borneo). La Niña impacts during SON also included 
below-average precipitation in southeastern South 
America, and above-average rainfall across eastern 
Australia (see Fig. 8.7).

c. Tropical Intraseasonal Activity—J. Gottschalck, G. D. Bell, 
and S. Weaver 
The Madden-Julian Oscillation (MJO) (Madden 

and Julian 1971, 1972, 1994) is a leading climate 
mode of tropical convective variability that occurs 

on intraseasonal timescales. The convective anoma-
lies associated with the MJO often have the same 
spatial scale as ENSO, but differ in that they exhibit 
a distinct eastward propagation. If the MJO remains 
active, convective anomalies at a given location 
repeat approximately every 30–60 days on average. 
The MJO can strongly affect the tropical and extra-
tropical atmospheric circulation patterns, and may 
produce short-lived ENSO-like convective anomalies 
across the tropics (Mo and Kousky 1993; Kousky and 
Kayano 1994; Kayano and Kousky 1999) .The MJO is 
often quite variable in a given year, with periods of 
moderate-to-strong activity sometimes followed by 
little or no activity. Overall, the MJO tends to be most 
active during neutral and weak ENSO periods, and is 
often absent during strong El Niño events (Hendon et 
al. 1999; Zhang and Gottschalck 2002; Zhang 2005).

The MJO is seen by continuous eastward propaga-
tion of 200-hPa velocity potential anomalies around 

Fig. 4.7. Time-longitude section for 2010 of anomalous 
200-hPa velocity potential (x 106 m2 s-1) averaged 
between 5°N and 5°S. For each day, the period mean 
is removed prior to plotting. Green (brown) shading 
highlights likely areas of anomalous divergence and 
rising motion (convergence and sinking motion). Red 
lines and labels highlight the main Madden Julian Os-
cillation episodes. Anomalies are departures from the 
1971–2000 base period daily means.
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the globe. A time-longitude section of this parameter 
shows five MJO episodes during 2010 (Fig. 4.7). These 
include: (1) a strong episode that continued from late 
2009 into early February 2010 (MJO #1); (2) a mod-
erate-strength episode with higher frequency during 
April and May (MJO #2); (3) a moderate-strength but 
short-lived episode during July and also during Sep-
tember–October (MJO #3 and #4); and (4) a generally 
weak and short-lived episode during mid-November 
to mid-December (MJO #5). 

 The first MJO (MJO #1) featured strong convec-
tive anomalies that propagated eastward and became 
in phase with those associated with El Niño. The 
observations suggest that this evolution likely aided 
the development of more persistent and stationary El 
Niño-related convective anomalies during late Janu-
ary through early March, as highlighted in the red box 
in Fig. 4.7 by suppressed convection over Indonesia 
and enhanced convection near the date line. Prior to 
this, the El Niño-related enhanced convection was 
more sporadic over the central equatorial Pacific. 

Also associated with MJO #1 were strong low-level 

westerly wind anomalies (not shown) within and to 
the rear of the main area of enhanced convection. The 
resulting westerly wind burst triggered a downwelling 
oceanic Kelvin wave (Fig. 4.8, dashed line). This wave 
formed over the western equatorial Pacific in late 
January and reached the South American coast in late 
March and early April. Oceanic warming associated 
with this wave likely contributed to the apparent in-
tensification of El Niño. This was the only appreciable 
downwelling oceanic Kelvin wave of the year.

The moderate-strength MJO activity during April 
and May (MJO #2) had a shorter periodicity (approxi-
mately 30 days) than that observed earlier in the year. 
Short-lived, moderate-strength MJO activity was also 
observed during July (MJO #3). Following this event, 
the intraseasonal variability during August and much 
of September primarily reflected higher frequency at-
mospheric Kelvin wave activity (Wheeler and Kiladis 
1999; Wheeler and Weickmann 2001). 

The two remaining MJO events (MJO #4 and #5) 
were characterized by enhanced convection that was 
primarily limited to Indonesia and to the western 
Pacific across the South Pacific Convergence Zone 
(SPCZ). This off-equatorial displacement of the 
convective anomalies was primarily a result of La 
Niña, which contributed to above-average sea surface 
temperatures in the SPCZ region and to much-below-
normal sea surface temperatures across the equatorial 
Pacific Ocean.

d. Tropical Cyclones
1) Overview—H. J. Diamond and B. C. Trewin
The global tallying of total tropical cyclone (TC) 

numbers is challenging and involves more than sim-
ply adding up basin totals because some storms cross 
basin boundaries, some basins overlap, and multiple 
agencies are involved in tracking and forecasting TCs. 
Compiling the activity over all seven TC basins, the 
2010 season (2009/10 in the Southern Hemisphere) 
saw a well-below-normal (1981–2009 base) number of 
named storms [NS; wind speeds ≥ 34 kts (17.5 m s-1 )] 
and a below-average number of hurricanes/typhoons/
cyclones [HTC; ≥ 64 kts (32.9 m s-1)] and major HTCs 
[≥ 96 kts (49.4 m s-1)]. Globally, 70 named storms3 
developed during the 2010 season (global average is 
86.5), with 42 becoming HTCs (global average is 45.4 
). Of these, 22 (compared to 26 in 2006, 18 in 2007, 20 
in 2008, and 16 in 2009) attained major/intense status 

3	It should be noted that in the Western North Pacific there 
were an additional five unnamed tropical depressions re-
corded by the Japan Meteorological Agency that were not 
included in this total.

Fig 4.8. Time-longitude section for 2010 of the anoma-
lous upper ocean (0 m–300 m) heat content averaged 
between 5°N and 5°S. Blue (yellow/red) shading 
indicates below (above) average heat content. The 
downwelling phases (dashed lines) of equatorial oceanic 
Kelvin waves are indicated. Anomalies are departures 
from the 1982–2004 base period pentad means.
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(global average is 21.9). 
Therefore, while overall 
NS count was well-below 
average, the number of 
major/intense storms 
was near the global av-
erage4.

Globally, the 2009/10 
season featured the few-
est number of NSs since 
the 2006/07 season (84). 
However, while the total 
number of NSs was less 
than the 2006/07 season, 
it is interesting to note 
that the total number 
of HTCs (42) was nearly 
the same as in 2006/07 
(43). Historically, NS 
records are incomplete 
in all basins, especially 
prior to the beginning 
of reasonably compre-
hensive satellite coverage 
around 1970. Based on the International Best Tracks 
Archive for Climate Stewardship (IBTrACS) dataset 
(Knapp et al. 2010), the 2009/10 global NS total was 
the third lowest since 1970 and only slightly above 
the record low of 63 NSs observed during the 1976/77 
season. Focusing only on the January–December cal-
endar year, 2010 featured the lowest number of NSs 
(67) since 1970. The previous record-low NS activity 
in any calendar year was 68, observed in both 1976 
and 1977.

The 2009/10 seasonal total of 70 TCs thus nearly 
equals the most inactive season globally since 1976/77 
when there were 63 storms globally. No year in recent 
times has approached the 2010 seasonal low; the last 
sub-75 storm season was 1987/88 (73), and the last 
sub-80 storm season was 1994/95 (78). It was a par-
ticularly exceptional record-low season in the North 
Pacific. The northwest Pacific had its most inactive 
year since satellite records began, while the northeast 
Pacific equaled its record low. The 22 named storms 
across the two basins were less than half the usual 
number in what are normally the world’s most active 
tropical cyclone regions. Activity in the North and 
South Indian Ocean was also substantially below 
normal, while the southwest Pacific was close to 

4	Global averages are calculated from the International Best 
Tracks Archive for Climate Stewardship dataset at http://
www.ncdc.noaa.gov/oa/ibtracs/.

normal. Conversely, the Atlantic basin produced 19 
NSs, well exceeding the long-term average of 11. In 
the southwest Pacific, NS activity during 2010 was 
near normal. However, the latter part of the hur-
ricane season in this region was extremely active, 
producing three Category 4 TCs and one Category 
5 TC. These storms resulted in a total of 14 fatalities 
and produced a minimum estimated damage of $163 
million (U.S. dollars). Scaling these numbers for a 
region as sparsely populated and undeveloped as the 
southwest Pacific, these are actually very large totals.

2) Atlantic Basin—G. D. Bell, E. S. Blake, T. B. Kimberlain, 
C. W. Landsea, J. Schemm, R. J. Pasch, and S. B. Goldenberg 

(i) 2010 Seasonal Activity 
The official Atlantic hurricane season lasts from 

June through November, with August–October 
(ASO) typically being the peak months of the season. 
The 2010 Atlantic hurricane season produced 19 NSs, 
of which 12 became hurricanes and 5 became major 
hurricanes. All but two NSs formed during ASO. The 
1950–2000 seasonal averages are 11 named storms5, 

5 Landsea et al. (2010) indicate that because of improved moni-
toring and analysis of weak, short-lived tropical cyclones in 
the last decade, the climatological averages since 1950 may 
be biased low by about two tropical storms per year, giving 
a more realistic climatology value of about 13 named storms 
per year.

Fig. 4.9. NOAA’s Accumulated Cyclone Energy (ACE) Index in the Atlantic Basin 
expressed as percent of the 1950–2000 median value (87.5 x 104 kt2). The ACE is 
a wind energy index that measures the combined strength and duration of the 
named storms. ACE is calculated by summing the squares of the six-hourly maxi-
mum sustained wind speed (measured in knots) for all periods while the named 
storm has at least tropical storm strength. Pink, yellow, and blue shadings cor-
respond to NOAA’s classifications for above-, near- and below-normal seasons, 
respectively. The 175% threshold for a hyperactive season is indicated. Vertical 
brown lines separate high-activity and low-activity eras.
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six hurricanes, and two major hurricanes. The IB-
TrACS 1980–2009 seasonal averages are 12.2 NSs, 6.6 
hurricanes, and 2.7 major hurricanes.

The 2010 seasonal Accumulated Cyclone Energy 
(ACE) value (Bell et al. 2000) was 166.3 x 104 kt2, 
which corresponds to 190% of the 1950–2000 median 
value (Fig. 4.9). This places 2010 as the 10th most ac-
tive season since 1950. This year also marks the ninth 
hyperactive season (ACE ≥ 175% of the median) since 
the high activity era for Atlantic hurricanes began 
in 1995 (Goldenberg et al. 2001). By comparison, no 
hyperactive seasons occurred during the preceding 
24-year period (1971–94), which is a low activity era 
in the Atlantic Basin. 

As is typical of very active seasons, conditions for 
tropical cyclone formation and intensification during 

2010 were exceptionally conducive 
within the Main Development Re-
gion (MDR), which encompasses 
the Caribbean Sea and tropical 
Atlantic Ocean between 9.5°N and 
21.5°N (Fig. 4.10). Most (14 of 19) 
named storms formed in the MDR, 
accounting for 10 of 12 hurricanes, 
all five major hurricanes, and 93% 
of the seasonal ACE value. 

(ii) Storm Tracks and Landfalls
The Atlantic storm tracks during 

2010 were generally divided into 
two clusters. One cluster comprised 
eight storms that formed over the 
eastern tropical Atlantic. Five of 
these eventually became hurricanes 

(four became major hurricanes) and three remained 
tropical storms. The majority of these storms (six of 
eight) tracked northwestward and then recurved out 
to sea. Two (Earl and Igor) struck Nova Scotia and 
Newfoundland, respectively (see Sidebar 4.1 for more 
detailed information on the 2010 Atlantic hurricane 
season impacts on Canada). This landfall ratio (25%) 
is close to the historical probability (29%) for a North 
America landfall by storms forming over the eastern 
Atlantic (Kossin et al. 2010). 

The second cluster of storm tracks consisted of 11 
systems that formed over or near the Caribbean Sea. 
This region typically sees significantly increased hur-
ricane activity during hyperactive seasons. Many of 

Fig. 4.10. Schematic depiction of atmospheric and oceanic conditions 
over the Atlantic basin during August–October 2010. Green box denotes 
the Main Development Region (MDR).

Fig. 4.11. Seasonal frequency of Atlantic basin hur-
ricanes making landfall in the United States (during 
1950–2009) for hyperactive seasons (red bars) and for 
above-normal seasons that are not hyperactive (blue 
bars). Landfalls are based on the HURDAT data pro-
duced by the National Hurricane Center and compiled 
by Blake et al. (2007). Only one U.S. hurricane landfall 
per storm is counted.

Fig. 4.12. Map of August–October 2010 500-hPa 
heights (contours, m) and anomalies (shading), and 
layer mean vector wind (m s-1) between 600 hPa and 
300 hPa. Vector scale is located at bottom right. Thick 
solid line indicates weakness in upper-level ridge and 
blue circle indicates extensive southwesterly flow over 
the western Atlantic. August–October 2010 Atlantic 
named storm tracks are shown in yellow.
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these storms during 2010 formed near land over the 
western Caribbean/Mexico/Central America region. 
Five systems in this second cluster made landfall as 
tropical storms, three made landfall as Category 
1–2 hurricanes, and one made landfall as a major 
hurricane (Category 3–5). It is atypical for above-
normal seasons to have no NSs in the northern Gulf 
of Mexico. However, no NSs tracked over this region 
during 2010, meaning minimal adverse affects on the 
oil well capping and associated cleanup efforts associ-
ated with the Deepwater Horizon accident. 

The U.S. also did not experience any landfalling 
hurricanes during 2010. This was the most active 
season—and the only hyperactive season—on record 
with no U.S. hurricane landfalls. For the 12 hyperac-
tive seasons that occurred during 1950–2009, each 
produced at least one U.S. landfalling hurricane and 
90% produced at least two U.S. landfalling hurricanes 
(Fig. 4.11, red bars). This rate of multiple hurricane 
landfalls is more than triple that (25%) associated with 
other above-normal seasons that were not hyperac-
tive (blue bars). 

The lack of U.S. hurricane landfalls during 2010 
can be attributed to several factors. First, there was 
a pronounced weakness over the eastern U.S. in the 
extensive subtropical ridge that otherwise extended 
from Africa to the southwestern U.S. (Fig. 4.12). 
This weakness ref lected mean troughing near the 
U.S. East Coast, and was associated with midlevel 
southwesterly flow that steered all approaching hurri-

canes away from the 
United States. Sec-
ond, no hurricanes 
formed or tracked 
over the central and 
nor t hern Gu l f  of 
Mexico, which can 
be attributed in part 
to  t he  en h a nc e d 
subtropica l r idge 
over the Caribbean 
Sea. This ridge pre-
vented storms over 
t h i s  reg ion f rom 
propagating north-
ward into the central 
Gulf. Third, some 
storms formed and 
remained over the 
e x t r e m e  e a s t e r n 
t ropica l  At la nt ic 
throughout their life.

(iii) Atlantic sea surface temperatures 
Mean sea surface temperatures (SSTs) in the MDR 

Fig. 4.13. (Top) Sea surface temperature (SST) anomalies (°C) during (a) June–No-
vember 2010 and (c) August–October 2010. (Bottom) Time series of consecutive 
area-averaged SST anomalies in the Main Development Region (MDR) during (b) 
June–November, and (d) August–October. Red line shows the corresponding five-year 
running mean. Green boxes in (a) and (c) denote the MDR. Anomalies are departures 
from the ERSST-V3b (Smith et al. 2008) 1971–2000 period monthly means.

Fig. 4.14. (a) Map of February–April 2010 1000-hPa 
anomalous wind speed (shaded, m s-1) and vector 
winds, and (b) time series of consecutive area-aver-
aged total wind speed (m s-1) at 1000 hPa in the area 
bounded by 22.5°N–27.5°N, 15°W–50°W (blue box in 
panel a). Green box in (a) denotes the Main Develop-
ment Region.
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during June–November were 0.93°C above average 
(Fig. 4.13a). This departure exceeds the previous high 
(dating back to 1854) of +0.80°C set in 2005 (Fig. 
4.13b). The SSTs in the MDR during August–October 
2010 were 0.91°C above average (Fig. 4.13c), which 
also exceeds the previous high August–October 
departure of +0.77°C set in 2005 (Fig. 4.13d). These 
record SSTs first appeared during February–April 
2010, in association with a pronounced weaken-
ing of the anti-cyclonic gyre over the central North 
Atlantic (Fig. 4.14a) and with unusually weak trade 
winds north of the MDR (Fig. 4.14b). These condi-
tions were associated with an all-time negative phase 
of the North Atlantic Oscillation (NAO) during 
December–April, as measured by the 500 hPa-based 
NAO index produced by the Climate Prediction 
Center (CPC; data available at ftp://ftp.cpc.ncep.noaa.
gov/wd52dg/data/indices/tele_index.nh). During 
December–February, this pattern was coupled with 

a record negative phase 
of the hemispheric-
scale Arctic Oscilla-
tion (data available at 
http://www.cpc.ncep.
noaa.gov/products/
precip/CWlink/dai-
ly_ao_index/monthly.
ao.index.b50.current.
ascii.table). 

T h e  u n u s u a l l y 
warm SSTs persisted 
in the MDR through 
September, as the area 
of exceptionally weak 
trade winds subse-
quently shifted into 
the deep tropics (Fig. 
4.15a). Weaker-than-
normal trade winds 
a n d  a n o m a l o u s l y 
warm SSTs have gen-
erally prevailed in the 
MDR since 1995, in 
association with the 
warm phase of the At-
lantic Multidecadal 
Osci l lat ion (AMO; 
Enfield and Mestas-
Nuñez 1999) and ac-
t ive At lantic phase 
of the tropical multi-
decadal signal (Bell 

and Chelliah 2006; Bell et al. 2009). These conditions 
have been superimposed upon a weaker long-term 
warming trend, which some studies suggest is partly 
linked to anthropogenic greenhouse warming (Santer 
et al. 2006).

(iv) Atmospheric circulation
Conditions within the MDR reflected an interre-

lated set of atmospheric anomalies (Fig. 4.10) that are 
typical of recent active hurricane seasons (Landsea 
et al. 1998; Bell et al. 1999, 2000, 2004, 2006, 2009; 
Goldenberg et al. 2001; Bell and Chelliah 2006; Kossin 
and Vimont 2007). These conditions, combined with 
La Niña and record warm Atlantic SSTs, set the stage 
for the 2010 Atlantic hurricane season. 

In the lower atmosphere, August–October condi-
tions within the MDR included weaker trade winds, 
a deep layer of anomalous cross-equatorial flow, and 
below-average heights/sea-level pressure (Fig. 4.15a, 

Fig. 4.15. Atmospheric circulation (left) August–October 2010 and (right) August–
September 2010: (a) August–October anomalous 1000-hPa height (shading) and 
vector wind (m s-1), (b) August–October anomalous 700-hPa cyclonic relative vor-
ticity (shading, x 10-6 s-1) and vector wind, with thick solid line indicating the axis of 
the African easterly jet, and (c) August–October anomalous 200-hPa wind speed 
(shading) and vector wind. Panels (d, e) show August–September conditions: (d) 
total Outgoing Longwave Radiation (OLR, W m-2) and 1000-hPa vector wind; and 
(e) August–September anomalous OLR (W m-2) and 1000-hPa anomalous vector 
wind. Green boxes denote the Main Development Region. Vector scale is at bottom 
right of each panel. Circulation (OLR) anomalies are with respect to the 1971–2000 
period monthly means.
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blue shading). Across the Atlantic basin and Sub-
Saharan Africa, the low-level westerly anomalies 
extended above 700 hPa, the approximate level of 
the African Easterly Jet (AEJ; Fig. 4.15b), and were 
associated with an anomalous 5° latitude northward 
shift of the AEJ core (black arrow). 

As a result, the bulk of the African easterly wave 
energy (Reed et al. 1977) was often centered well 
within the MDR. The AEJ also featured increased 
cyclonic shear along its equatorward flank within the 
MDR (Fig. 4.15b, red shading), which dynamically fa-
vors stronger easterly waves and an increased cyclonic 
rotation within which thunderstorms can organize.

An opposite pattern of wind anomalies was evident 
at 200 hPa, where anomalous easterly flow extended 
from subtropical central Africa to the eastern North 
Pacific (Fig. 4.15c). This pattern reflected a stronger 
and more westward extension of the tropical easterly 
jet, which occurred in association with an enhanced 
upper-level ridge that spanned the entire subtropical 
North Atlantic (Fig. 4.16a).

These conditions were accompanied by a north-
ward shift of the Atlantic Intertropical Convergence 
Zone (ITCZ), which extended into the southern MDR 

during August and September (Fig. 4.15d), and re-
sulted in enhanced convection across the region (Fig. 
4.15e, green shading). They were also associated with 
an amplified West African Monsoon system during 
August–October, as indicated by enhanced convec-
tion across the African Sahel and Sudan regions and 
by a large area of negative velocity potential anomalies 
over northern Africa (Fig. 4.16b). 

Within the MDR, the low-level westerly and 
upper-easterly anomalies resulted in weak verti-
cal wind shear (less than 8 m s-1) across the entire 
MDR (Fig. 4.17a). The most anomalously weak shear 
spanned the central tropical Atlantic and Caribbean 
Sea (Fig. 4.17b, orange shading), where the total 
shear was less than 4 m s-1. These conditions were 
part of a larger-scale pattern that included increased 
shear across the eastern equatorial Atlantic and over 
the eastern tropical North Pacific (Fig. 4.17b, blue 
shading). This pattern is typical of other very active 
Atlantic hurricane seasons (Bell and Chelliah 2006). 
At the same time, historically low hurricane activity 
prevailed across the central and eastern Pacific hur-
ricane basins (see section 4d3). 

For the Atlantic basin, the above conditions meant 
that tropical storms developed primarily within the 
MDR from amplifying easterly waves moving west-
ward from Africa. These systems quickly entered 

Fig. 4.16. Map of August–October 2010 200-hPa anom-
alies of (a) streamfunction (shading, x 106 m2 s-1) and 
vector wind (m s-1) and (b) velocity potential (shading, 
x 106 m2 s-1) and divergent vector wind (m s-1). Vector 
scale is at bottom right of each panel. Departures are 
with respect to the 1971–2000 period. In (a) anoma-
lous ridges are indicated by positive values (red) in 
the Northern Hemisphere (NH) and negative values 
(blue) in the Southern Hemisphere (SH). Anomalous 
troughs are indicated by negative values in the NH and 
positive values in the SH. Green boxes denote the Main 
Development Region.

Fig. 4.17. Maps of August–October 2010 (a) total and (b) 
anomalous vertical wind shear magnitude and vector 
(m s-1). Vector scale is at bottom right of each panel. 
Departures are with respect to the 1971–2000 period 
monthly means.
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an extensive area of below-average pressure, deep 
tropical moisture, increased low-level convergence as-
sociated with the ITCZ, and increased cyclonic shear 
south of the AEJ core. Many of these systems then 
strengthened while propagating westward within the 
extended region of very weak vertical wind shear and 
often over record-warm SSTs. These overall anomaly 
patterns have favored increased storm formation and 
intensification since 1995.

(v) Links to Global Climate Patterns
The regional atmospheric conditions during 2010 

showed strong links to a combination of three climate 
factors. The first is the active Atlantic phase of the 
tropical multidecadal signal, which reflects an inter-
related set of conditions that have been conducive to 
increased Atlantic hurricane activity since 1995 (Bell 
and Chelliah 2006). The second is La Niña, which 
contributed to the extensive area of weak vertical 
wind shear and upper-level easterlies across the 
MDR. The third is record-warm SSTs in the MDR, 
as discussed above.

(vi) The Tropical Multidecadal Signal and La Niña
Since 1995, more than two-thirds (11 of 16) of 

Atlantic hurricane seasons have been above normal 
and only two have been below normal (Fig. 4.9). This 
elevated level of activity contrasts sharply with the 
preceding low-activity era of 1971–94, during which 
one-half of the seasons were below normal and only 
three were above normal. 

The transition to the current era of high activity 
was associated with a phase change in the tropical 
multidecadal signal, which reflects the leading modes 
of tropical convective rainfall variability and Atlantic 
SSTs occurring on multidecadal time scales (Bell and 
Chelliah 2006; Bell et al. 2007). This signal directly 
links low-frequency atmospheric variability across 
the central and eastern MDR to an east-west oscilla-
tion in anomalous convection between western Africa 
(Landsea and Gray 1992; Goldenberg and Shapiro 
1996) and the Amazon Basin (Fig. 4.16).

All key features of this signal were again present 
during 2010, suggesting no weakening of the very 
conducive conditions that have prevailed throughout 
this Atlantic high-activity era. One key feature of 
the tropical multidecadal signal seen since 1995 has 
been an enhanced West African monsoon system 
(Fig. 4.16b), which is associated with several of the 
interrelated atmospheric anomalies described previ-
ously (Landsea et al. 1998; Bell et al. 1999, 2000, 2004, 
2006, 2009; Goldenberg et al. 2001; Bell and Chelliah 

2006; Kossin and Vimont 2007). These include the 
enhanced low-level southwesterly flow into the West 
African monsoon region (Fig. 4.15a) and the en-
hanced upper-level divergent flow out of that region 
(Fig. 4.16b). They also include the stronger upper-level 
ridges over the eastern MDR and across the subtropi-
cal South Atlantic (Fig. 4.16a), along with the stronger 
and westward extended tropical easterly jet.

Accompanying these conditions, the vertical wind 
shear (Fig. 4.18a) and 700-hPa zonal winds (Fig. 
4.18b) remained much weaker in critical parts of the 
MDR compared to the preceding low-activity era, 
and the 700-hPa relative vorticity remained cyclonic 
across the southern MDR rather than anticyclonic 
(Fig. 4.18c). 

Another major climate factor known to affect 
Atlantic hurricane seasons is ENSO, which produces 
a combination of vertical shear and atmospheric sta-
bility variations (Gray 1984; Tang and Neelin 2004). 
According to the CPC, La Niña developed during July 
2010 (Fig. 4.1), and was a moderate-strength event 
during August–October. 

Fig. 4.18. Time series showing consecutive August–
October values of area-averaged (a) 200 hPa –850 hPa 
vertical shear of the zonal wind (m s-1), (b) 700-hPa 
zonal wind (m s-1), and (c) 700-Pa relative vorticity 
(x 10-6 s-1). Blue curve shows unsmoothed values and 
red curve shows a five-point running mean of the time 
series. Averaging regions are shown in the insets.
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(CPHC) in Honolulu, HI, is responsible for issuing 
warnings in the Central North Pacific region between 
140°W and the date line. In this section, analysis 
summarizing the tropical cyclone (TC) activity in 
both these warning areas is presented using combined 
statistics, along with information specifically address-
ing the observed activity and impacts in the central 
North Pacific (CNP) region.

The ENP hurricane season officially spans from 
15 May to 30 November, although storms can develop 
outside of the official season, especially during El 
Niño-enhanced hurricane seasons. Hurricane and 
tropical storm activity in the eastern area of the basin 
typically peaks in September, while in the Central 
Pacific, TC activity normally reaches its seasonal peak 
in August (Blake et al. 2009). Figure 4.19 shows the 
tracks of all of observed TCs in the ENP and CNP in 
2010. For the season as a whole, the number of named 
storms (NSs), hurricanes, and major hurricanes that 
developed was less than 50% of the long-term means. 
Primarily due to the development of La Niña condi-
tions during the boreal summer and early autumn in 
the equatorial Pacific in 2010, the hurricane season 
was below average in the ENP basin, with eight NSs, 
three hurricanes, and two major hurricanes (Fig. 
4.20a). These values are far below the 1980–2009 
IBTrACS seasonal averages for the basin (21.5 NSs, 
12.4 hurricanes, and 6.5 major hurricanes).

Along with the overall below-average activity 
in 2010 in terms of storm counts, the Accumulated 

The 200-hPa velocity potential and divergent wind 
anomalies across the tropical Pacific Ocean during 
August–October were consistent with La Niña (Fig. 
4.16b), as was the overall zonal wave-1 pattern of 
200-hPa streamfunction anomalies in the subtropics 
of both hemispheres (Fig. 4.16a; Bell and Chelliah 
2006). This pattern, which included anticyclonic 
streamfunction anomalies over the North Atlantic 
basin and Africa, reinforced that associated with the 
active Atlantic phase of the tropical multidecadal 
signal and resulted in the enhanced subtropical 
ridge extending across the entire MDR. Also within 
the western MDR, typical La Niña impacts during 
August–October included the anomalous upper-level 
easterly winds and decreased vertical wind shear 
noted previously. These conditions acted to extend 
westward the anomalously low shear associated with 
the tropical multidecadal signal.

3) Eastern North Pacific Basin—M. C. Kruk, P. A. 
Hennon, E. J. Gibney, J. Hobgood, and J. Weyman

(i) Seasonal activity
The Eastern North Pacific (ENP) basin is offi-

cially split into two separate regions for the issuance 
of warnings and advisories by NOAA’s National 
Weather Service (NWS). NOAA’s National Hurricane 
Center (NHC) in Miami, FL, is responsible for issuing 
warnings in the eastern part of the basin that extends 
from the Pacific Coast of North America to 140°W, 
while NOAA’s Central Pacific Hurricane Center 

Fig. 4.19.Storm track map for the Eastern Pacific hurricane basins, including all tropical cyclones that occurred 
in the Eastern North Pacific and Central North Pacific basins [(Source: NOAA's National Hurricane Center 
(NHC) and Central Pacific Hurricane Center (CPHC)]. Tracks are color coded by intensity (wave/low, tropical 
depression, tropical storm, hurricane, and major hurricane). Also shown is the delineation of the forecast area 
of responsibility at 140°W between NOAA's NHC and CPHC.



S122 | JUne 2011

Cyclone Energy (ACE) Index was also below normal 
for the basin with a seasonal total of 48.1 × 104 kt2, 
which is well below the 1971–2005 mean (126.3 × 104 
kt2), and is the second lowest ACE season on record 
since 1975 (Fig. 4.20b).

Just one TC was observed in the CNP region in 
2010 (TS Omeka, Fig. 4.19). Tropical Storm Omeka 
was the latest-forming central and eastern Pacific 
tropical storm since reliable records began in 1949. 
On 18 December 2010, the CPHC began monitoring 
a subtropical cyclone near the date line for possible 
tropical cyclogenesis. Over the following two days, the 
system tracked southwestward, entering the western 
Pacific basin, and began transitioning into a tropical 
cyclone. Shortly before crossing the date line on 20 
December, the CPHC assessed the system to have 
become a tropical storm. The storm appeared to have 
reached its maximum intensity west of the date line. 

The storm was assigned the name Omeka several 
hours later as it moved into the Central Pacific basin. 
Shortly after crossing the date line into the central 
Pacific, wind shear increased, causing the system to 
weaken. By 21 December, the center of Omeka was 
devoid of convection and later transitioned into an 
extratropical cyclone.

Since 1995, the numbers of named storms in 
the ENP basin has been near average, f luctuating 
about the long-term mean (Fig. 4.20a). However, the 
numbers of hurricanes and major hurricanes have 
been generally below normal in most seasons, with 
above-normal activity having occurred in only three 
seasons. NOAA has identified 9 of the 15 seasons in 
the ENP as being below normal during 1995–2009, 
with only the El Niño–influenced seasons of 1997 
and 2006 producing above-normal activity as mea-
sured by the ACE Index (NOAA 2009). In contrast, 
enhanced activity was observed during the preceding 
1970–94 period, which had 6 of 25 (24%) below-
normal seasons and 9 of 25 (36%) above-normal 
seasons, as measured by the ACE Index. 

Fig. 4.21. The 200 hPa–850 hPa vertical wind shear 
anomalies (m s-1) averaged over (a) June–August 2010 
and (b) September–November 2010, with anomalies 
determined relative to the 1979–2004 base period 
mean. [Source: North American Regional Reanalysis 
(NARR) dataset, provided by the NOAA National 
Operational Model Archive and Distribution System.]

Fig. 4.20. Seasonal tropical cyclone statistics for the 
Eastern North Pacific (ENP) basin over the period 
1970–2010: (a) number of named storms, hurricanes, 
and major hurricanes and (b) the Accumulated Cy-
clone Energy (ACE) Index with the seasonal total 2010 
highlighted in red. All time series shown include the 
corresponding 1971–2005 base period means for each 
parameter.
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(ii) Environmental influences on the 2010 Season
The SSTs in the ENP exhibited a La Niña pattern 

that intensified as the hurricane season progressed. 
The cooler-than-normal SSTs extended over much of 
the ENP where TCs normally develop. The reduction 
of energy available in the upper ocean contributed to 
the decreased activity. There was a region of above-
normal SSTs early in the hurricane season between 
latitudes 10°N–20°N and longitudes 120°W–132°W. 
However, fewer than 9% of ENP TCs normally form 
over this region and none formed there in 2010. Whit-
ney and Hobgood (1997) suggested that changes of 
the SSTs in the ENP may be accompanied by a shift 
in the atmospheric flow pattern over the basin. This 
appears to have occurred in 2010.

At 850 hPa, the subtropical high was shifted ap-
proximately 10° of longitude west of its normal loca-
tion during the ENP season. This also resulted in 
above-average vertical wind shear in the 200 hPa–850 
hPa layer (Fig. 4.21a). In addition, a stronger-than-
normal monsoonal trough extended west and south of 
Baja California at 850 hPa. The effect of that pattern 
was to produce anomalous westerly flow over the por-
tion of the ENP where TCs typically form. By itself, 
the westerly flow might have been favorable for the 
development of TCs because it would have enhanced 
the production of low-level vorticity to the north of 
that flow. However, a stronger-than-normal subtropi-
cal ridge at 200 hPa produced faster-than-normal 
easterly flow over the ENP in the upper levels. The 
200-hPa ridge was centered near its usual position in 
July, but was stronger than normal. By August, the 
200-hPa ridge had shifted 15° of longitude east of 
its normal location. The result of the stronger ridge 
and eastward shift in its location was to increase the 
easterly flow over the ENP by 5 m s-1 – 10 m s-1 during 
August. However, from September through Novem-
ber, the 200 hPa–850 hPa vertical wind shear across 
the eastern Pacific basin was anomalously low, by 
as much as 12 m s-1 (Fig. 4.21b). The combination of 
highly variable wind shear pattern and below-normal 
SSTs was a potential cause for the quiet 2010 ENP hur-
ricane season. The Quasi-Biennial Oscillation (QBO) 
phase would have favored more activity (Whitney 
and Hobgood 1997), but it does not appear to have 
had a significant impact over the ENP in 2010, con-
sistent with Camargo and Sobel (2010). The fact that 
Hurricane Celia was able to intensify to a Category 
5 level illustrates that, even during less-than-ideal 
conditions, if a tropical cyclone moves into a favorable 
environment for a couple of days, it can intensify into 
a major hurricane.

 (iii) Tropical Cyclone Impacts 
Just two tropical cyclones made landfall along the 

Pacific Coast of Mexico during the season (TS Agatha 
and TS Georgette). In comparison with climatology, 
the 2010 season is near the 1951–2000 average of 1.34 
landfalling TCs (Jauregui 2003). 

Along the Pacific Coast of Mexico, TS Agatha (29–
30 May) made landfall near the Guatemala-Mexico 
border, causing widespread flooding. In Guatemala, 
over 360 mm of rain had fallen by evening on 29 May 
and resulted in the development of a large sinkhole. 
Preliminary damage reports suggested that Agatha 
was responsible for over 300 fatalities in Central 
America.

On 21 September, short-lived TS Georgette struck 
the Baja California Peninsula after spending less than 
a day over open waters. As the cyclone spent so little 
time over water, its intensity was weak and impacts 
were virtually negligible. An estimated 66 mm of rain 
fell in Guaymas and no damage was reported.

The strongest storm of the season in the ENP was 
Hurricane Celia, which attained Category 5 strength 
on 25 June with wind speeds of 140 kts (72 m s-1). 
Two days later, on 27 June, the storm had weakened 
to tropical storm strength over the open waters of the 
eastern Pacific. The hurricane appeared impressively 
annular and had a path from near 98°W to 125°W 
between 10°N and 15°N. As the storm was so far out 
to sea, the only impacts were high seas and dangerous 
rip currents along western Mexico.

4) Western North Pacific basin—S. J. Camargo
The 2010 season featured a total of 19 storms 

(including five tropical depressions, TDs), forming 
in the western North Pacific (WNP) basin. Of these 
19 active storms in the WNP, 14 reached NS intensity 
(one was unnamed: TS 2W), eight became typhoons 
(TYs), and one reached super-typhoon (STY) intensity 
(Megi). In Fig. 4.22a, the number of TSs, TYs, and 
STYs per year is shown for the period 1945–2010. 
The TC data presented here is from the Joint Ty-
phoon Warning Center (JTWC) best-track dataset 
for 1945–2009 and from preliminary operational data 
for 2010, for the TCs forming in the WNP basin6. 

6	It should be noted that there were differences between 
the 2010 warnings by JTWC and the Regional Special-
ized Meteorological Center at the JMA in Tokyo—the 
center responsible for naming the TCs. According to the 
Japan Meteorological Agency (JMA), 10 additional TDs 
occurred in 2010.  Furthermore, TD 01C, which formed in 
the Central North Pacific, crossed into the western North 
Pacific as a tropical cyclone according to the CPHC, be-
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Climatology is defined using the period 1971–2000; 

fore crossing the date line again into the Central Pacific. A 
tropical storm (Domeng) was reported by the Philippine 
Atmospheric, Geophysical and Astronomical Services 
Administration in August, and not by JMA or JTWC.

and in addition, this sea-
son’s activity is far below 
the 1980–2009 IBTrACS 
seasonal averages for the 
basin (26.3 NSs, 15.9 TYs, 
and 8.0 STYs). 

The 2010 WNP TC 
season started in late Jan-
uary with TD 01W. The 
f irst named storm, TS 
Omais, formed in mid-
March (see Fig. 4.22b,c). 
The WNP was then qui-
et until July, when TYs 
Conson and Chanthu 
occurred. The most active 
month in terms of num-
ber of TCs was August, 
when five NSs formed in 
the WNP, though only 
one reached TY intensity 
(Kompasu). In Septem-
ber, there were four NSs, 
three reaching TY in-
tensity (Meranti, Fanapi, 
and Malakas). Although 
on ly t wo NSs— Megi 
and Chaba—occurred in 
October, they were both 
very intense typhoons, 
with TY Chaba reaching 
Category 4. Megi was the 
only super typhoon in 
2010 and ranked among 
the top 10 strongest ty-
phoons in the historical 
record for that region. 
The season finished with 
TDs 18W and 19W, which 
formed in November and 
December, respectively. 

The total number of 
TCs (19), NSs (14), TYs 
(8), and STYs (1) were all 
equal or below the bot-
tom fifth percentile of the 
climatological distribu-

tions (median: 30.5 TCs, 27 NSs, 16 TYs, 3 STYs; fifth 
percentile: 23 TCs, 19 NSs, 11 TYs, 1 STY). Only four 
previous seasons in the historical record had fewer or 
the same number of TCs as in 2010, namely 1946 (15 
TCs), 1951 (17 TCs), 1950 (18 TCs), and 1954 (19 TCs). 

Fig. 4.22 (a) Number of tropical storms (TSs), typhoons (TYs), and super typhoons 
(STYs) per year in the Western North Pacific (WNP) for the period 1945–2010. (b) 
Cumulative number of tropical storms with TS intensity or higher (named storms) 
per month in the WNP: 2010 (black line), and climatology (1971–2000) shown as 
box plots [interquartile range: box, median: red line, mean: blue asterisk, values 
in the top or bottom quartile: blue crosses, high (low) records in the 1945–2009 
period: red diamonds (circles)]. (c) Number of named storms per month in 2010 
(red line), mean climatological number of named storms per month (blue line), 
the blue plus signs denote the maximum and minimum monthly historical values 
(1945–2010) and green error bars show the climatological interquartile range 
for each month. In the case of no error bars, the upper and/or lower percentiles 
coincide with the median. (d) Cumulative number of typhoons per month in 
the WNP: 2010 (black line), and climatology (1971–2000) shown as box plots. 
(e) Number of typhoons per month in 2010 (black line), mean climatological 
number of TYs per month (blue line), the blue "+" signs denote the maximum 
and minimum monthly historical values (1945–2010) and green error bars show 
the climatological interquartile range for each month. [Source: 1945–2009 Joint 
Typhoon Warning Center (JWTC) best-track dataset, 2010 JTWC preliminary 
operational track data.]
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Note that all these seasons are in the pre-satellite 
era; therefore, weak storms could have been easily 
missed in those years. The 2010 season experienced 
the fewest number of TCs in the WNP in the satellite 
era. The season also had the lowest number of NSs 
and TYs in the historical record; the previous records 
were 15 NSs (in 1946) and nine TYs (in 1998). As the 
Eastern North Pacific hurricane season was very 
quiet as well in 2010, the entire North Pacific had 
a very low level of tropical cyclone activity in 2010. 
The cumulative distribution of NSs (Fig. 4.22b) and 
TYs (Fig. 4.22c) shows a very slow season start, with 
activity increasing in July and August, and flatten-
ing after October, never reaching the climatological 
cumulative values in the region. The only months in 
which the NSs reach the climatological medians are 
March and August. However, only one of the August 

NSs intensified to a TY, an uncommon occurrence in 
the region (August 1946: no TYs; August 1976, 1977, 
2006, and 2008: one TY). 

 The accumulated cyclone energy (ACE) in the 
WNP (Fig. 4.23) reflects well the activity in NSs. The 
2010 season ACE was the second lowest such value in 
the historical record. Only in 1999 did a lower value 
of ACE occur in the region. The monthly ACE values 
were in the bottom quartile of the climatological 
distribution in the peak months of the season (June–
November), with the exception of October, when the 
ACE value reached the climatological median for that 
month. Super Typhoon Megi was responsible for this 
higher ACE value in October, corresponding to 71% 
of the ACE for that month and 36% of the ACE for the 
2010 season. The ACE value of STY Megi was in the 
top one percentile of the historical and climatological 
distributions of ACE per storm. 

There were only 74 days with TCs and 64 days with 
NSs in 2010 in the WNP, both record low values in 
the historical record (climatological medians: 161.5 
and 144.25 days, respectively). From these active days, 
only 52.5 days had TYs, another record of lowest 
value in the historical record (climatological median 
120.4 days). There were 8.25 days with intense TYs 
(Categories 3–5), the seventh lowest in the historical 
record (25th climatological percentile is 11 days). 
Climatologically, 74% (11%) of the TC days consist 
of days with (intense) TYs, very close to the rates 
in 2010—71% (11%). The median lifetime of NSs 
in 2010 was 5.5 days, below the climatological 25th 
percentile lifetime of 5.75 days. From the 14 NSs, 12 
had a lifetime below the climatological median (eight 
days), and seven were in the bottom quartile of the 
climatological distribution. Only STY Megi had a 
lifetime (11.5 days) in the top quartile of the distribu-
tion (above 11.25 days). 

The mean genesis location (17.1°N, 130.9°E) in 
2010 was shifted northwest of the climatological mean 
genesis positions (12.9°N, 143.5°E). The mean track 
position (22.0°N, 125.0°E) was also shifted slightly 
northwestward of the climatological mean (19.0°N, 
134.2°E). These shifts are consistent with typical La 
Niña events, which tend to have a northwestward 
genesis shift (Chan 1985; Chia and Ropelewski 2002). 
Many of the characteristics of the 2010 TY season are 
typical of La Niña events, such as: a northwestward 
track shift, few intense storms, low ACE values, and 
short-lived storms. The influence of ENSO events 
on the characteristics of the WNP tropical cyclone 
activity are well known (e.g., Wang and Chan 2002; 
Camargo and Sobel 2005; Camargo et al. 2007a,b).

Fig. 4.23 (a) Accumulated Cyclone Energy (ACE) In-
dex per year in the Western North Pacific (WNP) for 
1945–2010. The solid green line indicates the median 
for the climatology years 1971–2000, and the dashed 
green lines show the climatological 25th and 75th per-
centiles. (b) ACE Index per month in 2010 (red line) 
and the median during 1971–2000 (blue line), where 
the green error bars indicate the 25th and 75th per-
centiles. In the case of no error bars, the upper and/or 
lower percentiles coincide with the median. The blue 
"+" signs denote the maximum and minimum values 
during the period 1945–2010. [Source: 1945–2009 Joint 
Typhoon Warning Center (JWTC) best-track dataset, 
2010 JTWC preliminary operational track data.]
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La Niña conditions were present for a good portion 
of the TY season and were probably responsible for 
the low activity in the TY season of 2010. Based solely 
on ENSO SST indices, such as Niño-3.4 (Barnston et 
al. 1997), this La Niña event would be considered a 
moderate one. However, the event was quite strong 
when including the atmospheric component. The 
Southern Oscillation Index and the multivariate 
ENSO index (MEI; Wolter and Timlin 1993, 1998) 
both indicate the 2010 La Niña event as one of the 
strongest in the historical record. The MEI rank 
for this event during the TY season was either the 
strongest (August–September) or the second strongest 
(July–August and September–October periods); see 
http://www.esrl.noaa.gov/psd//people/klaus.wolter/
MEI/rank.html.

Figure 4.24 shows the environmental conditions 
responsible for the low level of activity in 2010. The 
potential intensity (Emanuel 1988, 1995; Fig. 4.24a) 
shows a large region of negative anomalies near the 
date line. Similarly, the genesis potential index (GPI; 
Camargo et al. 2007a) shows negative anomalies in 
the eastern part of the basin (Fig. 4.24b). The strength 
and size of these negative anomalies are larger than 

during most La Niña years. The 
two years (since 1950) that have 
most similar patterns for the 
potential intensity and GPI are 
1950 and 1999, which also had 
very low activity in the WNP. 
The negative anomalies of the 
midlevel relative humidity at 
600 hPa (Fig. 4.24c) contributed 
to the negative anomalies in the 
GPI in the basin. In most La 
Niña events, there is an increase 
of GPI near the Asian continent, 
which is attributed mainly to 
an increase in relative humidity 
(Camargo et al. 2007a). In 2010, 
the region of increased rela-
tive humidity was shifted more 
northward (near Japan) than 
in other La Niña events. The 
decreased GPI near the date line 
in La Niña events is attributed 
mainly to the low-level vorticity, 
with some contribution from 
the vertical shear and midlevel 
relative humidity (Camargo et 
al. 2007a). This was also the 
case in 2010 (not shown). Very 

strong easterly anomalies in the region throughout 
the typhoon season led to a monsoon trough with an 
eastern extent restricted to a small region west of the 
Philippines (also typical of La Niña years), as shown 
in Fig. 4.24d, which further contributed to the low 
activity observed in 2010. 

Eleven WNP TCs made landfall during 2010, 
which is below the 1951–2000 median of 157. Two 
systems made landfall as a TD (median is three), 
five made landfall as a TS (median is six), and three 
struck as a TY (median is four). Megi made landfall 
as a Category 5 STY. Megi was one of the most intense 
landfalling tropical cyclones in the historical record, 
not only in the WNP, but globally.

As could be expected, the largest impacts in this 
TY season were due to STY Megi. The storm made 
landfall in the mountain range of Sierra Madre, 
Luzon Island, in the Philippines. According to a 
United Nations report (OCHA 2010), almost two 
million people were affected by the typhoon, mainly 

7	  Here we consider only one landfall per TC. If a TC makes 
more than one landfall, the landfall event with the highest 
wind speed is considered.

Fig. 4.24. (a) Potential intensity anomalies for July–October (JASO) 2010 
from 1971–2000 climatology in m s-1; (b) genesis potential index anomalies 
for JASO 2010; (c) 600-hPa relative humidity anomalies for JASO 2010 (in 
%); (d) 850-hPa zonal winds for JASO 2010. Contour interval in (a), (c,) and 
(d) is 1.5, in (b) contour interval is 1; positive contours are shown in solid 
lines, negative contours in dash dotted lines and the zero contour line in a 
dotted line. [Source: atmospheric variables: NCEP Reanalysis data (Kalnay 
et al. 1996); sea surface temperature (Smith and Reynolds 2005).]
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in Isabella province. There were 19 deaths associated 
with the storm. Approximately 30 200 houses were 
destroyed, and 116 000 were partially damaged. There 
was an estimated 80% loss of crops, such as rice and 
corn in the Province of Isabella, which is the second 
largest producer of rice in the Philippines. 

Typhoon Mindulle also had a large impact. The 
storm brought heavy rainfall to Vietnam, leading to 
significant flooding and agricultural losses in that 
country, as well as the death of many fishermen. 

5) Indian Ocean Basins

(i) North Indian Ocean—M. C. Kruk and K. L. Gleason
The North Indian Ocean (NIO) TC season typi-

cally extends from April to December, with two peaks 
in activity during May–June and November when the 

monsoon trough is positioned over tropical waters 
in the basin. Tropical cyclones in the NIO basin nor-
mally develop over the Arabian Sea and Bay of Bengal 
between latitudes 8°N and 15°N. These systems are 
usually short lived and relatively weak, and often 
quickly move into the Indian subcontinent. However, 
strong and “severe cyclonic storms” (Holland 1993) 
can develop with winds exceeding 130 kts (67 m s-1; 
Neumann et al. 1993).

The 2010 TC season produced five named storms 
(NSs), four cyclones (CYC), and two major cyclones 
(MCYC; Fig. 4.25a). These values, except for NSs, are 
above the 1980–2009 IBTrACS seasonal averages of 
6.3 NSs, 1.7 CYCs, and 0.8 MCYCs. The season pro-
duced an ACE Index value of 24.7 x 104 kt2, which is 
above the 1981–2005 mean of 16 x 104 kt2 (Fig. 4.25b). 
There is generally an enhancement in TC activity, es-
pecially in the Bay of Bengal, during La Niña (Singh et 
al. 2000), which the globe was transitioning to during 
the boreal summer 2010.

The first CYC of the season developed in the Bay 
of Bengal from 17 to 21 May and became CYC Laila 
with maximum sustained winds of 65 kts (33 m s-1). 
Laila underwent rapid intensification before making 
landfall near Bapatla, Andhra Pradesh, on 20 May. 
Damage was extensive in Andhra Pradesh and more 
than a dozen persons were killed by the storm. Parts 
of the region experienced 24-hour rainfall totals 
between 320 mm and 510 mm.

The two MCYCs of the season occurred 31 May–6 
June (Phet) and 21–22 October (Giri). Major Cyclone 
Phet developed in the Arabian Sea and eventually 
made landfall in Oman [125 kts (64 m s-1)] where 
first estimates of damages exceeded $780 million 
(U.S. dollars; http://in.reuters.com/article/2010/06/07/
idINIndia-49106920100607). Phet was the second 
strongest storm on record to develop in the Arabian 
Sea (behind only MCYC Gonu in 2007). Major Cy-
clone Giri developed in the Bay of Bengal and made 
landfall near Kyaukpyu, Myanmar, with maximum 
sustained winds of 135 kts (69 m s-1). The cyclone 
intensified into a Category 5 storm in just over a 
24-hour period. Tens of thousands of citizens were 
displaced by the approximate 3.7-m storm surge and 
heavy rains that accompanied MCYC Giri. Over 150 
people were believed to be killed by the storm.

The 2010 season ended with CYC Jal, which had 
maximum sustained winds of 70 kts (36 m s-1). The 
track of CYC Jal was nearly identical to that of CYC 
Laila. Jal occurred 4–7 November and began as a 
weak disturbance in the South China Sea. The storm 

Fig. 4.25. Annual tropical cyclone statistics for the 
North Indian Ocean (NIO) over the period 1970–2010: 
(a) number of tropical storms, cyclones and major cy-
clones and (b) the estimated annual Accumulated Cy-
clone Energy (ACE) Index (in kt2 x 104) for all tropical 
cyclones during which they were at least tropical storm 
strength or greater (Bell et al. 2000). The 1981–2005 
base period means are included in both (a) and (b). 
Note that the ACE Index is estimated due to a lack of 
consistent six-hour sustained winds for every storm.
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intensified to Category 1 strength before weakening 
as it headed toward the Indian coast. Jal produced 
widespread flooding and mudslides, and devastated 
the local rice crop. The storm was blamed for 54 
fatalities in Andhra Pradesh.

(ii) South Indian Ocean—K. L. Gleason and M. C. Kruk
The South Indian Ocean (SIO) basin extends south 

of the Equator from 105°E to the African coastline8, 
with most CYCs developing south of 10°S. The SIO 
TC season extends from July to June encompassing 
equal portions of two calendar years (i.e., the 2010 
season is comprised of storms from July to December 
2009 and January to June 2010). The peak activity 
typically occurs from December to April when the 

8	  In order to generate consistent basin statistics, the SIO basin 
boundary overlaps with the Australian Bureau of Meteorol-
ogy’s operational warning area from 90°E to 105°E.

ITCZ is located in the Southern Hemisphere. Histori-
cally, the vast majority of landfalling CYCs in the SIO 
impact Madagascar, Mozambique, and the Mascarene 
Islands, including Mauritius and Réunion. 

The historical SIO TC data is probably the least 
reliable of all the TC basins (Atkinson 1971; Neumann 
et al. 1993), primarily due to a lack of historical record 
keeping by individual countries and no centralized 
monitoring agency; however, the historical dataset for 
the region has been updated (Knapp et al. 2010). The 
historical data are noticeably deficient before reliable 
satellite data were operationally implemented in the 
region beginning about 1983. 

The 2009/10 SIO season storm numbers were be-
low average with 12 NSs, 5 CYCs, and 4 MCYCs (Fig. 
4.26a). The 1980–2009 IBTrACS seasonal averages 
are 17.5 NSs, 8.9 CYCs, and 4.6 MCYCs. In addition, 
the 2009/10 ACE Index (~68 x 104 kt2) was below the 
1981–2005 average (Fig. 4.26b). With the exception 
of the 2001/02 season, each season since the mid-
1990s has produced a near-average or below-average 
seasonal ACE in the SIO basin. 

The strongest storm during the season was MCYC 
Edzani, which developed in the central Indian Ocean, 
north of the Cocos Islands during the first few days of 
January 2010. The disturbance initially showed two 
low-level circulation centers before they merged. As 
it became more organized, the system was upgraded 
to a tropical depression and continued to intensify 
over the next several days. Edzani became a strong 
Category 4 MCYC on 8 January with maximum 
sustained winds of 135 kts (69 m s-1). At peak in-
tensity, Edzani was located approximately 590 n mi 
east-southeast of Diego Garcia and continued on a 
west-southwestward track into cooler waters and an 
environment with stronger wind shear. By 14 January, 
Edzani had substantially weakened and was classified 
as extratropical by the Joint Typhoon Warning Cen-
ter. Edzani remained over open ocean waters during 
its lifecycle and had little to no impact on land.

Only two TCs made landfall in the basin during 
the season. Tropical Storm Fami developed on 2 Feb-
ruary in the Mozambique Channel and came ashore 
on the west side of Madagascar near Belo sur Mer with 
maximum sustained winds of 40 kts (21 m s-1). While 
over land, Fami developed an eye-like feature in the 
mid-to-upper levels of the cyclone, which indicated it 
was maintaining strength. Friction from the land and 
wind shear caused Fami to dissipate prior to reemerg-
ing over open waters. Tropical Storm Hubert formed 
in the ocean waters east of Madagascar on 10 March 

Fig. 4.26.Annual tropical cylone statistics for the 
Southern Indian Ocean (SIO) over the period of 
1980–2010: (a) number of tropical storms, cyclones 
and major cyclones and (b) the estimated annual Ac-
cumulated Cyclone Energy (ACE) Index (in kt2 x 104) 
for all tropical cyclones during which they were at least 
tropical storm strength or greater (Bell et al. 2000). 
The 1981–2005 base period means are included in both 
(a) and (b). Note that the ACE Index is estimated due 
to a lack of consistent six-hour sustained winds for 
every storm.
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and made landfall near Mahaela with sustained winds 
of 35 kts (18 m s-1). Bringing heavy winds and rain 
to the already saturated soil in southeast and south-
central Madagascar, TS Hubert began to dissipate 
and became a heavy rain event once on land. Most of 
the strongest winds and heaviest rains stayed south 
and east of the capital city of Antananarivo, although 
landslides and f looding stranded people in many 
towns and villages, disrupted communications and 
electricity, and caused at least 70 deaths.

6) Southwest Pacific Basin—A. M. Lorrey, S. McGree, J. 
Renwick, and S. Hugony 

During the 2009/10 TC season, New Zealand’s 
National Institute of Water and Atmosphere (NIWA) 
forecast normal activity for most island nations and 
territories in the southwest Pacific region (between 
135°E and 120°W). The overall TC activity was ex-
pected to be near normal, with 8–11 storms forecast 
for the 2009/10 season. Two or three storms were fore-
cast to reach at least Category 39, and one storm was 
expected to reach at least Category 4, with mean wind 
speeds of at least 64 kts (33 m s-1). Documentation of 
the TC activity during the season was collated from 
reports issued by the Regional Specialized Meteoro-
logical Center in Nadi, Fiji, the Australia Bureau of 
Meteorology, the Tropical Cyclone Warning Centre 
based at the New Zealand Meteorological Service in 
Wellington, and the Joint Typhoon Warning Center 
(JTWC). 

In the Southwest Pacific sector, a total of ten TCs 
were documented for the season. The onset of the 
season did not occur until early December 2009. The 
storms that occurred during the first two months of 
the season (Mick, Neville, Olga, and Nisha) achieved 
only a Category 1 or 2 status. In contrast, the second 
half of the season from February to April saw the 
development of five systems that reached or exceeded 
Category 3 status (Oli, Pat, Rene, Tomas, and Ului). 
Three Category 4 storms had winds in excess of 86 kts 
(44 m s-1; Oli, Rene, and Tomas), and one event had 
10-minute sustained winds in excess of 108 kts (56 m 
s-1; Ului). Tropical Cyclone Sarah, which formed on 
26 February, 270 n mi northwest of Rarotonga in the 
Cook Islands, only attained Category 1 status.

The existence of El Niño saw the tropical and 
subtropical limbs of the South Pacific Convergence 
Zone (SPCZ) located to the northeast of their clima-

9	Storm categorizations in this basin are based on the 
Australian TC scale and not Saffir-Simpson See http://
www.bom.gov.au/weather/cyclone/faq/index.shtml for a 
definition of Australian TC categories. 

tological positions during the season. This helped 
guide a number of tracks to the east of the date line, 
with ex-tropical transitions oriented to the southeast 
for some storms. The regional ENSO conditions and 
inf luence of the SPCZ’s geometry were especially 
obvious for the second half of the TC season, which 
saw elevated TC activity in French Polynesia and the 
Southern Cook Islands (SCI). Of note, a traditional 
environmental knowledge climate indicator used in 
the SCI and elsewhere in the southwest Pacific (tim-
ing of mango flowering) was highlighted prior to the 
onset of the season by the director of the Cook Islands 
Meteorological Service. Based on the early f lower-
ing of the mangoes, it was suggested the TC season 
would see increased risk to the east of the date line. 
This piece of indigenous climate guidance compared 
favorably with the TC guidance issued by NIWA in 
October 2009, and the forecasted conditions came to 
fruition beginning in January 201010. It should also 
be noted that the analog climate guidance11 generated 
from looking at past seasonal activity was provided in 
the February 2010 update and suggested an increased 
risk in the Solomon Islands/north Coral Sea region. 
While this was apparently an odd component of the 
projection for an El Niño year, the new guidance was 
timely, and provided a three-week lead time prior to 
the onset of TC Ului (Category 5) that passed south 
of the Solomon Islands.

The onset of significant TC activity to the east of 
the date line was first observed for TC Oli, which im-
pacted French Polynesia. This storm produced strong 
swells and made a direct impact on the island of 
Tubuai (Austral Islands). Oli crossed more than 2700 
n mi from 1 to 6 February while in transit through 
the Southwest Pacific Ocean. It reached Category 
2 status while passing by Mopelia Island, and the 
track then veered to the southwest of the Windward 
Islands before closing on Tahiti and Moorea late on 
3 February. There were 39 kt (20 m s-1) maximal 
10-minute sustained winds, with gusts of 57 kts (29 
m s-1) recorded at Bora-Bora, and very high seas were 
noted with waves estimated at 6.1 m across the Society 
Island group.

10 The scientific community is beginning to pay more atten-
tion to the value of traditional environmental knowledge 
and this information is included here in that light. See 
King et al. (2008) and Lefale (2010) as examples of the 
work being done in this area of research in the Pacific.

11 See <http://www.niwa.co.nz/our-science/pacific-rim/
news/featured/tropical-cyclone-outlook-normal2/
background-information-for-meteorological-services> 
regarding the analog methodology employed here.
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Several houses as well as some hotels were de-
stroyed or partly damaged by strong winds and waves 
from TC Oli, but fortunately on Tahiti and Moorea 
there was only minimal damage, with some roofs 
torn off and coastal detritus washed up on the shore 
due to the significant wave activity. Oli intensified 
after passing Tahiti, reaching Category 4 status, and 
inflicted damage on Rurutu and Raivavae from wind 
and waves with estimated heights of 8 m. Only a few 
hours after the arrival of TC Oli on Tubuai, there was 
significant wave damage up to 100 m inland. The eye 
of TC Oli passed over Tubuai on 5 February, with a 
minimum sea level pressure of 955.8 hPa recorded 
and sustained winds of 55 kts (28 m s-1), with gusts 
up to 92 kts (47 m s-1). The northern and northeastern 
coasts of Tubuai were devastated, in contrast with 
southern, sheltered coastal areas.

The breadth of latitude covered by the Cook Is-
lands meant that this island nation was battered by 
several tropical cyclones during the 2009/10 season. 
After feeling the effects of TC Oli, TC Pat (Category 
3) directly impacted Aitutaki, Southern Cook Islands. 
Strong winds blowing consistently at 100 kts (51 m 
s-1), with gusts up to 130 kts (67 m s-1), for up to four 
hours overnight ripped off roofing, uprooted coconut 
palms and trees, damaged water tanks, and destroyed 
the local electricity distribution network by taking 
down power poles and lines. Many people took shelter 
on high ground in a local church, and the damage was 
significant enough for the Prime Minister to declare 
a state of disaster. It was suggested by eyewitnesses 
who are elders in the Aitutaki community that this 
was the worst storm to affect the island in living 
memory. These observations are very much in-line 
with emerging research related to traditional envi-
ronmental knowledge that contributes to increased 
awareness of weather and climate risks in the region 
(King et al. 2008; Lefale 2010). For example, the abil-
ity and knowledge of the Samoans to forecast the 
onset of extreme weather and climate events, relying 
predominantly on local environmental changes, are 
vital tools that can be incorporated in the formulation 
of climate change adaptation strategies and contem-
porary weather forecasts (Lefale 2010). 

Severe TC Rene (Category 4) affected American 
Samoa and Tonga in mid-February, with significant 
damage to roads and agricultural infrastructure 
from heavy rainfall in Samoa. Damage to buildings, 
electricity infrastructure, and roads were reported 
for Tonga, which experienced a direct impact from 

the storm eye. Subsequently, TC Sarah (Category 1) 
affected the Northern Cook Islands, but with no re-
ports of major damage or fatalities. The brief respite 
from intense TC activity was curtailed with the joint 
onset of TCs Ului (Category 5) and Tomas (Cat-
egory 4). The combination of these systems wreaked 
havoc across the central and northwest corners of the 
southwest Pacific during the second week in March. 
Ului caused significant flooding and damage in the 
Solomon Islands, while Tomas affected the island of 
Vanua Levu, Fiji, ripping off corrugated roofing iron 
and forcing thousands to take shelter in evacuation 
centers. “Overwhelming” damage was reported in 
the northern and eastern parts of the country by the 
Prime Minister of Fiji. Sea surges of up to 7 m were 
reported in the Lau Group in the eastern part of the 
country.

Overall, the TC activity in the region was in the 
normal range for the season, as forecast; however, the 
strength of many systems that developed during the 
latter part of the season, including three Category 4 
storms and one Category 5 storm, were highlighted 
on the global stage (Terry and Etienne 2010) as the 
minimum estimated damage for the 2009/10 season 
was estimated at $163 million (U.S. dollars), and 14 
fatalities were reported for the region as a result of 
seasonal TC activity.

7) Australian Region Basin—B. C. Trewin 
(i) Seasonal Activity
The 2009/10 TC season was slightly below nor-

mal in the broader Australian basin (areas south of 
the Equator and between 90°E and 160°E12, which 
includes Australian, Papua New Guinea, and Indo-
nesian areas of responsibility). The season produced 
eight TCs, below the long-term average of 10. There 
were three TCs in the eastern sector13 of the Aus-
tralian region during 2009/10 (one of these entering 
from the Southwest Pacific region), four TCs in the 
western sector (one of which formed in the northern 
sector), and one in the northern sector. There were 
five landfalls during the season.

12 The Australian Bureau of Meteorology’s warning area 
overlaps both the southern Indian Ocean  and Southwest 
Pacific. 

13 The western sector covers areas between 90°E and 
125°E. The eastern sector covers areas east of the eastern 
Australian coast to 160°E, as well as the eastern half 
of the Gulf of Carpentaria. The northern sector covers 
areas from 125°E east to the western half of the Gulf of 
Carpentaria.
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(ii) Landfalling and Other Significant Tropical Cyclones
The most intense TC of the season was Laurence, 

which affected Western Australia in mid-December. 
Laurence reached TC intensity on 14 December 2009 
in the Joseph Bonaparte Gulf near 13°S, 128°E (ap-
proximately 135 n mi north of Wyndham, Western 
Australia). By the time it approached the north coast 
of Western Australia near Troughton Island, it had 
intensified to Category 3 intensity14, then further 
intensified to Category 5 intensity as it moved 
southwest, parallel to the coast. Its initial intensity 
peak occurred on 16 December at 15.3°S, 124.2°E 
(offshore from Kuri Bay), with estimated maximum 
gusts of 155 kts (79 m s-1), maximum sustained winds 
of 110 kts (56 m s-1), and a minimum central pressure 
of 932 hPa. Laurence made landfall as a Category 3 
system late on 16 December on a remote section of 
the coast northeast of Derby. After weakening to a 
tropical depression as it moved over land, it reintensi-
fied to a TC as it moved over water north of Broome 
on 19 December, and continued to intensify as it 
moved southwest, ultimately regaining Category 5 
intensity on 21 December [maximum gusts 155 kts 
(79 m s-1), maximum sustained winds 110 kts (56 m 
s-1), minimum central pressure 929 hPa]. It made 
landfall shortly thereafter near Wallal, about 135 n 
mi east of Port Hedland. Both landfalls took place in 
sparsely populated areas and there was only limited 
wind damage, but heavy rain caused flooding and 
stock losses in the region east of Port Hedland. While 
weakening below TC intensity as it moved southeast, 
Laurence maintained its identity as a system well into 
the central continent, ultimately causing f looding 
as far east as northern New South Wales. Laurence 
was the first Category 5 landfall on the Australian 
mainland since George in March 2007; over the last 
25 years, Category 5 landfalls have occurred once 
every three to four years on average. 

Ului moved into the Australian region from 
the Southwest Pacific region on 15 March. Having 
reached Category 5 intensity [maximum gusts 155 
kts (79 m s-1), maximum sustained winds 115 kts (59 
m s-1), minimum central pressure 930 hPa] near 13°S, 
161°E, just before entering the Australian region, it 
moved southwest across the Coral Sea while in a 
slowly weakening phase. It reintensified slightly be-
fore crossing the Queensland coast near Airlie Beach 
as a Category 3 system early on 21 March. Significant 

14 Storm categorizations in this basin are based on the 
Australian TC scale and not Saffir-Simpson. See http://
www.bom.gov.au/weather/cyclone/faq/index.shtml for a 
definition of Australian TC categories. 

wind damage occurred between Airlie Beach and 
Mackay, with widespread crop and tree damage and 
power outages, and many boats in coastal harbors 
were damaged or destroyed by large seas and swell. 

The other severe TC of the season was Magda, 
which made landfall as a Category 3 system near 
Kuri Bay (a very similar location to the first landfall 
of Laurence) on 22 January. The landfall region is 
very sparsely populated and only minor damage was 
reported. The other two landfalling systems of the 
season, both of which peaked at Category 2 and made 
landfall as Category 1 systems, were Olga, which 
made landfall on the Gulf of Carpentaria coast west 
of Karumba, Queensland, on 30 January (having 
earlier reached TC intensity in the Coral Sea and 
crossed the southern Cape York Peninsula as a tropi-
cal depression), and Paul, which made landfall on the 
Arnhem Land coast of the western Gulf of Carpen-
taria northwest of Groote Eylandt on 29 March. Both 
TCs brought heavy rain and subsequent f looding, 
particularly Paul, which produced 443 mm at Bul-
man, Northern Territory, on 31 March, the highest 
daily rainfall total in Australia in 2010. 

Fig. 4.27. Global anomalies of Tropical Cyclone Heat 
Potential (TCHP) corresponding to 2010 computed 
as described in the text. The boxes indicate the seven 
regions where tropical cyclones occur: from left to 
right, Southwest Indian, North Indian, West Pacific, 
Southeast Indian, South Pacific, East Pacific, and 
North Atlantic (shown as Gulf of Mexico and tropi-
cal Atlantic separately). The green lines indicate the 
trajectories of all tropical cyclones reaching at least 
Category 1 [one-minute average wind ≥ 64 kts (33 m 
s-1)] and above during November 2009–April 2010 in 
the Southern Hemisphere and June–November 2010 
in the Northern Hemisphere. The numbers above 
each box correspond to the number of Category 1 and 
above cyclones that travel within each box. The Gulf 
of Mexico conditions during June–November 2010 are 
shown in detail in the insert shown in the lower right 
corner.
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Three other TCs failed to make landfall: Neville 
(Category 1) in the Coral Sea in January, and Robyn 
and Sean (both Category 2) in the Indian Ocean in 
April. None had any impact on land areas. 

e. Tropical Cyclone Heat Potential—G. J. Goni, J. A. Knaff, 
and I-I Lin
Variations in the Tropical Cyclone Heat Potential 

(TCHP) in each of the seven tropical cyclone basins 
are discussed in this section. The TCHP is defined 
as the ocean heat content contained between the sea 
surface and the depth of the 26°C isotherm. It has 
been shown that high TCHP values are more closely 
linked to intensity changes than SST (Shay et al. 2000; 
Goni and Trinanes 2003; Lin et al. 2008, 2009), pro-
vided that atmospheric conditions are also favorable.

Although SST data provide a measure of the 
surface ocean conditions, the data give no informa-
tion about the subsurface (first tens of meters) ocean 
thermal structure. It is known that the ocean skin 
temperature erodes when the sea surface is affected 
by strong winds, creating a well-mixed layer that 
can reach depths of several tens of meters. As the TC 
progresses, it travels above waters with mixed layer 
temperatures similar to their skin temperatures. This 
provides the motivation to investigate and monitor 
the upper ocean thermal structure, which has be-
come a key element in the study of tropical cyclone 
intensifications focused on predictions of sudden TC 
intensification. In addition, the inclusion of TCHP in 
statistical models has been shown to reduce inten-
sity prediction errors for the most intense cyclones. 
Research has shown how the upper ocean thermal 
structure is a good indicator for predicting TC in-
tensity (Mainelli et al. 2008).

Fields of TCHP show high spatial and temporal 

variability associated with oceanic mesoscale features 
that can be detected globally using satellite altimetry 
(Lin et al. 2008; Goni et al. 2009). It has been shown 
that areas with high values of TCHP can be an impor-
tant factor for TC intensification (e.g., Shay et al. 2000;  
Mainelli et al. 2008). To examine the interannual 
variability of TCHP with respect to tropical cyclones, 
TCHP anomalies are computed during the months 
of TC activity in each hemisphere: June–November 
in the Northern Hemisphere and November–April in 
the Southern Hemisphere. Anomalies are defined as 
departures from the mean TCHP calculated during 
the same months for the period 1993–2010. These 
anomalies show large variability within and among 
the tropical cyclone basins (Fig. 4.27).

The west Pacific basin generally exhibits the 
anomalies related to ENSO events, with 2010 being 
characterized by the onset of La Niña conditions, 
which have been in place in the equatorial Pacific 
Ocean since approximately June 2010. Similar to the 
conditions during 2008 and 2009, the South Pacific 
basin showed mostly positive anomalies. The north 
Indian basin exhibited positive values in the Bay of 
Bengal and in the Arabian Sea. The Gulf of Mexico 
(Fig. 4.27 insert, lower right) showed mostly nega-
tive values except for a region of positive values in 
the northern region. Similar to 2009, the tropical 
Atlantic exhibited mostly positive values, which is 
also observed in sea height and SST fields (http://
www.aoml.noaa.gov/phod/regsatprod/atln/index.
php). The most evident changes in TCHP between 
2010 and 2009 are the decrease in values in the Gulf 
of Mexico and the southwestern Pacific Ocean and 
the increase in values in the western Pacific Ocean, 
Arabian Sea, and Bay of Bengal (Fig. 4.28).

During 2010, a number of major TCs were posi-
tively identified to have gained strength 
when traveling into regions of high values 
of TCHP, three TCs exhibited a weak link, 
and three did not show any link between 
ocean heat content and intensification. 
Some examples of these intensification 
events are shown in Fig. 4.29. The results 
presented here correspond to four major 
TCs, where the location of their inten-
sification coincided with an increase of 
the values of TCHP along their tracks. 
These TCs were Igor (tropical Atlantic), 
Celia (Eastern North Pacific, ENP), Megi 
(Western North Pacific, WNP), and Phet 
(Arabian Sea). The cooling associated with 
the wake of intense TCs, which reached 

Fig. 4.28. Differences between the Tropical Cyclone Heat Potential 
(TCHP) fields in 2010 and 2009.
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values of up to 50 kJ cm-2 in TCHP and above 3°C 
in SST, is important since these factors influence 
the upper ocean thermal structure on regional 
scales within weeks to months after the passage 
of the storms (Emanuel 2001; Hart et al. 2007). 

In the Atlantic, preliminary best track esti-
mates show Igor intensifying from 65 kts (33 m 
s-1) to 130 kts (67 m s-1) in 24 hours while the 
TC slowed down and the environmental verti-
cal wind shear conditions improved. Values of 
TCHP under the track of this TC during this 
time also increased to values greater than 70 kJ 
cm-2, well above the 50 kJ cm-2 usually found in 
cases of Atlantic rapid intensification (Mainelli et 
al. 2008). The post-storm surface cooling associ-
ated with the wake of this hurricane reached very 
high values, of approximately 5°C and 50 kJ cm-2.

In the ENP, both Ma-
jor Hurricanes Celia and 
Darby occurred in late June 
and showed peak intensity 
nearly coincident with posi-
tive TCHP anomalies. Celia 
formed on 18 June, southeast 
of Acapulco, Mexico, and on 
24 June, with appropriately 
favorable atmospheric condi-
tions given by the weakening 
of the shear, this cyclone rap-
idly intensified and gained 
its peak strength with winds 
of 140 kts (72 m s-1). This in-
tensification occurred when 
Celia traveled over a warm 
eddy containing waters with 
increased TCHP va lues 
which were close to 65 kJ 
cm-2. The cooling under the 
track of this TC was weaker 
than Igor in the Atlantic 
Ocean, with observed SST 
values near 3°C and TCHP 
of 30 kJ cm-2. This weaker 
oceanic response may be a 
response to the generally 
stronger vertical stratifica-
tion found in the eastern 
Pacific that makes the ocean 
more difficult to mix. De-
spite the higher anomaly 
values of TCHP in the WNP, 
the season was a record-low 

year of TC occurrence. Despite the small number of 
observed storms, the TCHP conditions in September 
and October 2010 were extraordinarily favorable in 
the WNP, especially to the west of 150°E and to the 
south of 20°N, with values ranging from 120 kJ cm-2 

to 170 kJ cm-2, which are values well above the TCHP 
values commonly observed for super typhoons in this 
region (Lin et al. 2008, 2009).

As compared to the conditions in 2009, 2010 
TCHP values were significantly greater by approxi-
mately 20 kJ cm-2 to 50 kJ cm-2 (Fig. 4.28). These 
unusually high TCHP values provided very favor-
able ocean conditions for the intensification of Super 
Typhoon Megi, the most intense TC globally in 2010. 
Megi formed to the west of Guam on 12 October 2010, 
and strengthened to a Category 5 super typhoon by 17 
October. According to the preliminary Joint Typhoon 

Fig. 4.29. (left) Tropical Cyclone Heat Potential (TCHP) and surface cooling 
given by the difference between post and pre storm values of (center) tropical 
cyclone heat potential and (right) sea surface temperature, for (from top to 
bottom) Hurricane Igor, Hurricane Celia, Typhoon Megi, and Cyclone Phet.
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of high TCHP of 
~75 kJ cm-2. Af-
ter its departure 
from this high 
patch of TCHP, 
Phet weakened 
to approximate-
ly 105 kts (54 m 
s-1) before mak-
ing landfall in 
Oman, where it 
caused substan-
tial damage es-
timated at ~$780 
m i l l ion (U. S . 
d o l l a r s)  a n d 
accounted for 
44 deaths. The 
storm later re-
curved over the 
northern Ara-
bian Sea making 
a second landfall 
near the India-
Pakistan border.

f. Intertropical Convergence Zones 
1) Pacific—A. B. Mullan
This discussion for the Pacific sector covers the 

two prominent convergence zones: the Intertropical 
Convergence Zone (ITCZ) in the Northern Hemi-
sphere, which lies approximately parallel to the 
Equator with a slight poleward tilt on its eastern end, 
and varying in position from around 5°N–7°N in 
February–May to 7°N–10°N in August–November; 
and the South Pacific Convergence Zone (SPCZ), 
which extends diagonally from around the Solomon 
Islands (10°S, 160°E) to near 30°S, 140°W, and is most 
active during November–April. 

The behavior of the Pacific convergence zones in 
2010 is readily characterized in two parts, with the 
first half of the year dominated by El Niño and the 
second half by La Niña. Thus, in the first half of 2010, 
both the ITCZ and SPCZ tended to be further equa-
torward than usual, with well-above-normal rainfall 
east of the date line near the Equator. In the second 
half of 2010, both the ITCZ and SPCZ tended to be 
poleward of their normal positions, with a much en-
hanced dry zone along the Equator. Figure 4.30 shows 
quarterly rainfall in the Pacific along transects from 
20°N to 30°S, as derived from the 0.25°-resolution 

Warning Center (JTWC) report, Megi’s intensity 
reached 160 kts (82 m s-1), and an aircraft estimated 
its central pressure at 885 hPa, which is among the 
lowest TC pressures ever observed. Megi developed in 
this very favorable warm pool (Fig. 4.29) of extremely 
high TCHP values (typically ~100 kJ cm-2–130 kJ cm-

2) throughout its genesis and intensification period. 
From 14 to 17 October, Megi intensified from a named 
storm to a Category 5 TC with maximum sustained 
winds of 160 kts (82 m s-1). Megi subsequently made 
landfall in the Philippines.

Cyclone Phet was the most intense TC in the 
Arabian Sea in 2010 (Fig 4.29). The disturbance that 
eventually became Phet was identified early on 30 
May and upgraded to a named storm on 31 May after 
a short genesis period. Early on 1 June, the moderate 
vertical wind shear relaxed and Phet intensified to a 
Category 1 cyclone with maximum sustained winds 
estimated at 65 kts (33 m s-1) by JTWC. In the next 18 
hours, it rapidly intensified from 65 kts (33 m s-1) to 
125 kts (64 m s-1) to its peak at Category 4, an aston-
ishing intensification rate well above the criteria for 
rapid intensification of 30 kts (15 m s-1) in 24 hours 
(Kaplan and DeMaria 2003). The period of rapid in-
tensification took place as Phet entered into a region 

Fig. 4.30. Rainfall rate (mm day-1) from TRMM 0.25° analysis for January–March, April–
June, July–September, and October–December 2010. The separate panels for each 
three-month period show the 2010 rainfall cross-section between 20°N and 30°S (solid 
line) and the 1999–2008 climatology (dotted line), separately for four 30° sectors from 
150°E–180° to 120°W–90°W.
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NASA TRMM rainfall data (3B-43 product; Huffman 
et al. 2007). The transects are broken up into four 
longitude sectors, depicting how the peak rainfall 
shifts poleward in each hemisphere as one progresses 
eastward across the Pacific. The 2010 positions of the 
convergence zones are compared with the 10-year 
climatology from 1999 to 2008.

 The year began with a significant El Niño pres-
ent in the Pacific. Although sea surface temperature 
anomalies decreased progressively from their peak in 
November–December 2009, temperatures remained 
at least 0.5°C above average through April 2010 and 
were sufficient to support enhanced deep tropical 
convection. Figure 4.30 shows substantially higher-
than-normal rainfall in the first quarter of 2010 be-
tween 5°N–7°N and 10°S. Island groups within this 
band experienced wet conditions, with the month 
of February being particularly extreme; Christmas 
Island in eastern Kiribati (approximately 2°N, 157°W) 
recorded a new record rainfall for February with 
818 mm, and Penrhyn in the Northern Cooks (10°S, 
158°W) recorded a new February record of 1033 mm 
(ICU 2010). 

Conversely, with the ITCZ contracting towards the 
Equator, islands north of about 7°N experienced dry 
conditions in the first half of the year. The Marshall 
Islands and Micronesia (around 7°N–10°N in the 
150°E–180° sector, Fig. 4.30) were affected, as was 
Hawaii (near 20°N in the 180°–150°W sector); ac-
cording to PEAC (2010), the Hawaiian wet season of 
October 2009 to April 2010 was the driest in the past 
30 years. One convergence zone feature not present 

during 2010 was a double ITCZ, 
whereby a southern branch of 
the ITCZ appears in austral fall 
in the eastern tropical Pacific. 
Circulation and surface f lux 
anomalies prevent this occur-
ring in El Niño years (Masunaga 
and L’Ecuyer 2010), so it was not 
surprising to find the double 
ITCZ absent in 2010 (Fig. 4.31, 
top panels).

By July 2010, La Niña condi-
tions were established across the 
Pacific and the climatic and cir-
culation anomalies intensified 
further during the last quarter 
of the year. The peak rainfalls 
in the centers of the convergence 
zones were not markedly differ-

ent from average, even on a monthly basis. However, 
both the ITCZ and SPCZ were shifted polewards and 
this had consequences for some island groups; the Fiji 
Islands (near the date line at 20°S) experienced wet 

Fig. 4.31. Average rainfall rate (mm day-1) from TRMM 0.25-degree analysis 
for January–June 2010 and July–December 2010, left-hand panels; and per-
centage anomaly from the 1999–2008 average, right-hand panels.

Fig. 4.32. TRMM (a) mean and (b) anomalous pre-
cipitation rate (mm hr-1) for 2010. The anomaly was 
calculated based on the climatology for the period 
1998–2009.
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conditions in the last quarter, as for the most part 
did New Caledonia on the eastern edge of the Coral 
Sea. More remarkable was the intensity of the dry 
zone along the Equator, which extended westwards 
of 150°E (Fig 4.31). The second panel in the Octo-
ber–December TRMM rainfall transects (Fig. 4.30) 
indicates almost no rainfall between about 5°N and 
7°S east of the date line; in a major turnabout from 
February, Christmas Island (eastern Kiribati) received 
less than 10 mm in November, while in the same 
month Penrhyn (Northern Cooks) had only about 
25% of its normal November rainfall. 

2) Atlantic—A. B. Pezza and C. A. S. Coelho
(i) Description
The Atlantic ITCZ is a well organized convective 

band that oscillates approximately between 5°N–
12°N during July–November and 5°N–5°S during 
January–May (Waliser and Gautier 1993; Nobre and 
Shukla 1996). Equatorial Kelvin waves can modulate 
the ITCZ interannual variability and ENSO is also 
known to influence the ITCZ on the seasonal time 
scale (Münnich and Neelin 2005). In 2010, the Atlan-
tic ITCZ presented an anomalous displacement to the 
north of its normal position, indirectly contributing 
to a severe drought in the Amazon and northeastern 
Brazil (Fig. 4.32 and Fig. 4.33a). As a result, adverse 
impacts were felt on cargo and human transportation 
that rely on local rivers in the Amazon. Conversely, 
the ITCZ was also directly associated with above-
average precipitation on the western tropical coast of 
Africa between 5°N and 20°N (Fig. 4.32b).

Although the year was highlighted by the onset 
of a moderate-to-strong La Niña beginning in July, 
with global climate anomalies typical of a positive 
Southern Oscillation Index (SOI) regime arising in 
many areas of the globe, it was the Atlantic SST gradi-
ent between the Northern and the Southern Hemi-
spheres that played a fundamental role in explaining 
the anomalous behavior of the Atlantic ITCZ in 2010 
(Fig. 4.33a). Since January, the Atlantic remained 
anomalously warm to the north of the Equator, reach-
ing satellite-era record warming conditions of 26.1°C 
towards April (Fig. 4.33b). This record warming is 

Fig. 4.34. Northeastern Brazil precipitation anomalies 
(mm) during (a) February and (b) March 2010 with 
respect to 1961–90 climatology based on high resolu-
tion station data. [Data source: several federal and 
regional networks based in Brazil (e.g., CMCD/INPE, 
INMET, SUDENE, ANEEL, FUNCEME/CE, LMRS/PB, 
EMPARN/RN, LAMEPE/ITEP/PE, CMRH/SE, SEAAB/
PI, SRH/BA, CEMIG/SIMGE/MG, SEAG/ES)].

Fig. 4.33. (a) Atlantic Intertropical Convergence Zone 
(ITCZ) position inferred from outgoing longwave 
radiation during April 2010. The colored thin lines 
indicate the approximate position for the six pentads 
of April 2010. The black thick line indicates the At-
lantic ITCZ climatological position. The sea surface 
temperature (SST) anomalies (Reynolds et al. 2002) 
for April 2010 based on the 1982–2009 climatology are 
shaded; and (b) April SST time series averaged over 
the tropical coast of northern Africa (20°E–50°E, 5°N–
25°N) for the period 1982–2010. The solid horizontal 
central line indicates the long-term mean (climatol-
ogy) of 24.6°C. The other two solid horizontal lines 
represent the upper and lower terciles of 24.9°C and 
24.4°C, respectively. The dashed horizontal line puts 
the record value of 26.1°C measured in April 2010 in 
climate perspective.
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remarkable as it encompassed a very large area of the 
North Atlantic, and is more than 0.6°C above the sec-
ond largest value of 25.5° C recorded in April 2005 in 
this region. The warming persisted throughout most 
of the year, losing intensity only in November, while 
La Niña conditions remained moderate-to-strong. 

As a result, the ITCZ did not exert a significant 
contribution towards the rain in northeastern Brazil 
in 2010, with a large portion of the region experienc-
ing much drier conditions than average, especially in 
February and March when the climatological influ-
ence of the ITCZ towards the Southern Hemisphere 
should have been important (Fig. 4.34). 

g. Atlantic Multidecadal Oscillation—C. Wang
The Atlantic Multidecadal Oscillation (AMO) is 

an oscillatory mode defined by the detrended North 

Atlantic SST anomalies over the region of 0°–60°N 
and from the east coast of the Americas to 0° longi-
tude (Figs. 4.35a,b; Delworth and Mann 2000; Enfield 
et al. 2001; Wang et al. 2008a; see also Sidebar 1.1). 
A driving mechanism for the AMO is the Atlantic 
meridional overturning circulation (Delworth and 
Mann 2000; Knight et al. 2005; Dijkstra et al. 2006; 
Zhang et al. 2007; see also section 3h for detailed in-
formation on the meridional overturning circulation). 
The AMO demonstrates an interannual variation via 
its connection to the tropical Atlantic Warm Pool 
(AWP; a large body of warm water comprising the 
Gulf of Mexico, Caribbean Sea, and the western tropi-
cal North Atlantic), and as such has exhibited a sea-
sonal influence on the behavior of tropical cyclones 
(TCs) in the Atlantic and Eastern North Pacific (ENP) 
basins. The extended reconstructed SST (ERSST) data 
from 1950 to 2010 shows that the AMO was in the cold 
phase from the late 1960s to the early 1990s and in 
the warm phase before the late 1960s and again, after 
the early 1990s. The AMO is related to SST anomalies 
over the global oceans as shown in Fig. 4.35c.

The AMO variability is associated with changes 
of climate and extreme events, such as drought and 
flood in North America and Europe, and Atlantic 
hurricane activity (Enfield et al. 2001; McCabe et al. 
2004; Goldenberg et al. 2001; Bell and Chelliah 2006; 
Wang et al. 2008a). Recent studies show that the im-
portance of the AMO is due to its tropical component 
since the climate response to the North Atlantic SST 
anomalies is primarily forced at the low latitudes (Sut-
ton and Hodson 2007; Wang et al. 2008b). Since the 
AWP is at the center of the main development region 
(MDR) for Atlantic tropical cyclones, the influence 
of the AMO on climate and Atlantic TC activity op-
erates through the mechanism of the AWP-induced 
atmospheric changes by having an effect on vertical 
wind shear in the MDR. A large AWP reduces such 
shear, while a small AWP enhances it. A large AWP 
also weakens the southerly Great Plains low-level jet, 
thus reducing the northward moisture transport from 
the Gulf of Mexico to the eastern U.S. and decreasing 
the boreal summer rainfall over the central U.S., while 
a small AWP has the opposite effect (Wang et al. 2006; 
Wang et al. 2008b). It has also been shown that AWP 
variability can produce the observed out-of-phase 
relationship between TC activity in the tropical North 
Atlantic and ENP (Wang and Lee 2009).

The AMO in 2010 remained in its warm phase 
and showed extremely positive SST anomalies in the 
North Atlantic (Fig. 4.36a). The warm phase of the 
AMO was strongest in August (+0.90°C) and weakest 

Fig. 4.35. The index of the Atlantic Multidecadal Oscil-
lation (AMO) and its spatial pattern. Shown are: (a) the 
sea surface temperature (SST) anomalies (°C) in the 
North Atlantic for 0°–60°N and from the east coast of 
the Americas to 0° longitude; (b) the AMO index (°C) 
defined by the detrended (removing the linear trend) 
North Atlantic SST anomalies; and (c) regression (°C 
per °C) of global SST anomalies onto the AMO index 
of (b). The monthly SST anomalies are calculated as 
departures from the 1971–2000 climatology.
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in January (+0.38°C). Spatially, the North Atlantic 
SST anomalies during the boreal winter and spring 
seasons showed a tripole pattern with the positive 
SST anomalies in the subpolar North Atlantic and 
the tropical North Atlantic and the negative SST 
anomalies in the subtropical North Atlantic (Figs. 
4.36b,c). The SST anomaly pattern divided the AWP 
into two parts: a colder Gulf of Mexico and a warmer 
Caribbean Sea/western tropical North Atlantic. The 
opposite SST anomaly pattern was consistent with a 
previous study (Muñoz et al. 2010), which showed that 
the air-sea fluxes associated with ENSO events in the 
tropical Pacific and local processes were responsible 
for the SST anomaly distribution.

During the boreal summer and fall of 2010, the 
cold SST anomalies in the subtropical North Atlantic 
almost disappeared and the North Atlantic was con-

sistently warm (Figs. 4.36d,e). During the 2010 Atlan-
tic TC season, the AWP was also consistently large 
and the entire tropical North Atlantic was warm. A 
large AWP also tends to shrink the North Atlantic 
subtropical high eastward (C. Wang et al. 2007) and 
hurricanes are therefore steered away from the east-
ern coast of the United States. The extremely large 
AWP in 2010 was also associated with the out-of-
phase relationship between TCs in the North Atlantic 
and the ENP as documented in sections 4d2 and 4d3.

h. Indian Ocean Dipole—J. J. Luo
Year-to-year climate variability in the tropical 

Indian Ocean (IO) is largely driven by local ocean-
atmosphere interactions and ENSO. The Indian 
Ocean Dipole (IOD), as one major internal climate 
mode in the IO, may sometimes be originated from 
complex interactions between the IO and Pacific (J.-J. 
Luo et al. 2010). Owing to the warm mean state in the 
IO, the IOD often causes large climate anomalies in 
many countries surrounding the IO despite the fact 
that SST anomalies related to IOD are usually weak 
and more localized compared to the ENSO signal. 
During late boreal summer to fall in 2010, a negative 
IOD (nIOD) occurred, five years after the last nIOD 
event in 2005 (Luo et al. 2007). Compared to previous 
events, the 2010 nIOD was strong, with a peak warm-
ing of about 1°C above normal in the eastern IO (Fig. 
4.37b) during 2010 fall season; this event may have 

Fig. 4.37. Monthly anomalies of (a) sea surface tem-
peratures (SST) in the western Indian Ocean (IODW, 
50°E–70°E, 10°S–10°N); (b) SST in the eastern IO 
(IODE, 90°E–110°E, 10°S–0°); (c) the IOD index 
(measured by the SST difference between IODW and 
IODE) during the seven negative IOD events; and (d), 
as in (c), but for the surface zonal wind anomaly in the 
central equatorial IO (70°E–90°E, 5°S–5°N).

Fig. 4.36. The Atlantic Multidecadal Oscillation (AMO) 
in 2010. Shown are: (a) the monthly North Atlantic 
sea surface temperatures (SST) anomalies (°C) in 
2010; (b) the DJF (December 2009–February 2010) 
SST anomalies (°C); (c) the MAM (March–May 2010) 
SST anomalies; (d) the JJA (June–August 2010) SST 
anomalies; and (e) the SON (September–November 
2010) SST anomalies. The monthly SST anomalies 
are calculated as departures from the 1971–2000 
climatology.
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contributed to the floods in Indonesia and Australia.
Sea surface temperatures in major parts of the 

tropical IO during early 2010 were warmer than 
normal in association with influence of the strong 
El Niño, which peaked in December 2009 (Fig. 
4.38a). This El Niño caused basin-wide drought in 
the IO; as a result, more surface solar radiation and 
less latent heat loss contributed to the IO basin-wide 
warming. Large warming appeared in the western IO 

mainly due to the surface heat flux 
forcing, whereas local subsurface 
temperature was below normal. 
The warming contrast between 
the western and eastern IO led to 
a weak positive IOD index during 
January–April 2010 (black line in 
Fig. 4.37c). In March–May 2010, 
the IO basin-wide warming per-
sisted (Fig. 4.38b) despite the rapid 
weakening of the El Niño signal; this 
represents the well-known delayed 
impact of ENSO on the IO climate. 
Large warming appeared in the 
North IO and Indonesia-Australia 
area. The latter warming induced 
surface convergence and hence 
more rainfall along the south coast 
of Java. Correspondingly, a local 
northwesterly anomaly occurred 
along the west coast of Sumatra and 
persisted until July 2010 (Figs. 4.37d, 
and 4.38b,c). It is interesting to note 
that the IOD index in May 2010 
reached about -0.5°C because of the 
sudden decrease (increase) of the 
western (eastern) IO SST anomalies 
(black lines in Figs. 4.37a–c). This 
monthly fluctuation, however, was 
not coupled with the surface wind 
anomaly in the central IO (Fig. 
4.37d); it appears to have been in-
duced by intraseasonal oscillations 
in the IO. 

Massive westerly anomalies in 
the equatorial IO appeared in Au-
gust 2010; this is related to the 
impact of a moderate-to-strong 
La Niña, which had developed 
quickly in mid-2010. The westerly 
anomalies in the central IO drove a 
downwelling oceanic Kelvin wave, 
which subsequently propagated 

eastward and deepened the thermocline along the 
west coast of Sumatra (Fig. 4.39a). As a result, the 
original warming near the Java coast intensified 
and expanded northward, and strong northwesterly 
anomalies occurred along the west coast of Sumatra 
during late summer to fall in 2010 (Figs. 4.38c,d). 
Meanwhile, SSTs in the western IO decreased due 
to both La Nina’s influence and nIOD development. 
The warming (cooling) of SST in the east (west) and 

Fig.4.38. Sea surface temperature (°C, colored scale), precipitation 
(green contour: ±1, ±2, …,±5 mm day-1), and surface wind anomalies 
during (a) December–February 2009/10; (b) March–May 2010; (c) 
June–August 2010; and (d) September–November 2010. Anomalies 
were calculated relative to the climatology over the period 1982–2009. 
These are based on the NCEP optimum interpolation SST (Reynolds 
and Chelton 2010), monthly GPCP precipitation analysis (http://precip.
gsfc.nasa.gov/), and JRA-25 atmospheric reanalysis (Onogi et al. 2007).
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strengthening of the central IO westerly winds clearly 
represents the air-sea coupled process related to the 
nIOD growth. During November–December 2010, 
the nIOD signal weakened rapidly despite the strong 
westerly anomaly in the central IO (black lines in Fig. 
4.37); this is due to the demise of warm SST anomalies 
in the eastern IO owing to the reversal of monsoonal 
winds. The stronger-than-normal winds and greater 
cloud coverage in the east weakened the SST warming 
in that region quickly. 

The evolution of the nIOD in 2010 is similar to that 
of previous events (Fig. 4.37). Although significant 
variability among the seven nIOD events over the 
past two to three decades can be seen, the IOD index 
in most cases shows a positive value in early year, the 
onset in late spring to summer, the peak in fall, and 
the rapid demise in November–December (Fig. 4.37c). 
This is consistent with the strengthening of westerly 
winds in the central IO. While the western IO SST 
anomalies show a consistent decrease associated with 
the nIOD development, evolutions of SST anomalies 
in the eastern IO appear to be largely influenced by 
ENSO (Figs. 4.37a,b). In the four cases following El 
Niño events (1992, 1998, 2005, and 2010), warmer-

than-normal SSTs in the eastern IO start to occur 
early in the year, persisting in spring and summer, 
and strengthening in fall. Contrasting this, in the 
three cases following La Niña events (1990, 1996, and 
2001), SST anomalies early in the year were colder 
than normal or neutral. El Niño or La Niña events 
may also drive downwelling or upwelling oceanic 
Rossby waves propagating westward at about 10°S 
(Figs. 4.39b,d), which enhance or hamper the nIOD 
development in the following year. Therefore, it is 
possible that the nIOD event in 2010 may have been 
driven by both the previous El Niño and concurrent 
La Niña, but further research will be required to 
determine that more definitively.

Fig.4.39. 20°C isotherm depth (D20, meter) anomalies 
in (a) the equatorial Indian Ocean (2°S–2°N) and (b) 
off-equatorial South Indian Ocean (12°S–8°S) associ-
ated with the negative Indian Ocean Dipole (nIOD) 
development in 2010. (c) and (d), as in (a) and (b), 
respectively, but for the D20 anomalies related to the 
nIOD event in 2001. Data are derived from the NCEP 
ocean reanalysis (http:/www.cpc.ncep.noaa.gov/prod-
ucts/GODAS/).
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Fig. 4.40. Enhanced infrared satellite image of Hurricane Earl just 
before landfall in Nova Scotia at 1225 UTC 04 September 2010. Image 
courtesy of the NOAA/NESDIS tropical cyclone website at http://
www.ssd.noaa.gov/PS/TROP/.

Fig. 4.41. Sea level pressure analysis of Hurricane Igor 
and large-scale pressure pattern with fronts at 12 UTC 
21 September 2010. Image adopted from the NOAA 
Ocean Prediction Center. Area of extreme rainfall is 
shown by the green ellipse.

The 2010 Atlantic Hurricane Season was an active one, with 
19 named storms and 12 hurricanes—five of which reached 
major hurricane status. The large-scale pressure patterns over 
the western North Atlantic Ocean and eastern North America 
permitted many of this year’s tropical storms and hurricanes 
to track northward toward eastern Canada, leaving the United 
States relatively unscathed. Two storms directly affected 
Canada in 2010. On 4 September, the very large Hurricane 
Earl made landfall in Nova Scotia, followed on 21 September 
by Hurricane Igor walloping Newfoundland. Canada was also 
impacted by indirect effects from Tropical Storm Nicole and 
Hurricane Tomas in the form of flooding rains courtesy of a 
high-amplitude flow pattern over eastern North America.

Hurricane Earl arrived in Nova Scotia as one of the most 
well-defined hurricanes that forecasters here have seen in 
many years (Fig. 4.40). Earl made landfall as a 65 kt (33 m s-1) 
Category 1 hurricane, resulting in a drowning fatality. Winds 
uprooted many trees, generated widespread power outages, 
and caused exterior damage to buildings. Significant wave 
heights of 10 meters to 13 meters were recorded with peak 
waves up to 23 meters, and storm surge in Bedford Basin (at 
the head of Halifax Harbor) reached 1.2 meters; however, the 
coastal surge and wave impacts were minimal since the hur-
ricane arrived at low tide. 

Hurricane Igor was by far the most damaging tropical 
cyclone to strike Newfoundland in the modern era with total 
damage estimates near $185 million (Canadian dollars). The 
combination of the hurricane and a front to its north (Fig. 4.41) 
caused severe river flooding over the entire eastern portion of 

the island of Newfoundland. Many bridges were washed 
away, leaving giant chasms in most major roads, resulting in 
a fatality and causing major disruptions for several weeks 
after the event. High winds blew roofs off homes on the 
Avalon Peninsula and toppled many trees in the capital 
city of St. John’s. The proposal by the Meteorological 

Service of Canada to have the name Igor 
retired from the list of hurricane names 
was approved in May 2011. This is only 
the second Canadian hurricane whose 
name was retired from the list. Juan was 
removed from the list after striking Nova 
Scotia as a Category 2 hurricane in 2003, 
inflicting an estimated $200 million (Can-
adian dollars) worth of damage.

The moisture remnants of Tropical 
Storm Nicole (near Florida) swamped 
portions of southern Quebec, New Bruns-
wick, and many U.S. states south of the 
Canadian border as a long front extended 
all the way from the province of Quebec 
to the remnant low associated with Nicole 
over the Bahamas. Two fatalities were re-
ported in Canada from the heavy rainfall, 
which totaled almost 100 mm. 

The tropical season’s final assault on 
Canada was from the combined effects of 

SIDEBAR 4.1: Eastern Canada’s Tropical Tap—A Record 
Year for Tropical Cyclone Impacts in Canada—C. T. Fogarty 
and H. J. Diamond



S142 | JUne 2011

Fig. 4.42. Total column precipitable water at 00 UTC 
07 November 2010 derived from the Special Sensor 
Microwave Imager (SSM/I) and Advanced Microwave 
Scanning Radiometer-Earth Observing System (AM-
SR-E) at the Cooperative Institute for Meteorological 
Satellite Studies (CIMSS).

a dissipating Hurricane Tomas north of the Bahamas and 
a stationary belt of moisture streaming northward for 
several days (see Fig. 4.42). Similar to Nicole a little over 
a month earlier, a blocking pattern in the midlatitude flow 
was the culprit. A five-day deluge amounting to almost 
300 mm caused major flooding over western Nova Scotia 
and southern New Brunswick. Some bridges were washed 
out and a number of homes were severely flooded. The 
example of Hurricane Tomas is very similar to a predeces-
sor rain event as described by Galarneau et al. (2010). 

The large-scale blocked weather pattern continued 
into December with four major marine storms pummeling 
eastern Canada in succession. Flood-weary New Bruns-
wick was hit particularly hard with both ocean surge and 
freshwater flooding, marking the end of one of the stormi-
est spells of weather in recent memory for the region.

cont. SIDEBAR 4.1:  Eastern Canada’s Tropical Tap—A Record 
Year for Tropical Cyclone Impacts in Canada—C. T. Fogarty 
and H. J. Diamond


