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 7 
Abstract. Design of Satellite Attitude Control System (ACS) that involves plant uncertainties and large angle manoeuvres 8 
following a stringent pointing control, may require new non-linear control techniques in order to have adequate stability, good 9 
performance and robustness. In that context, experimental validation of new non-linear control techniques through prototypes is 10 
the way to increase confidence in the controller designed. The Space Mechanics and Control Division (DMC) of INPE is con-11 
structing a 3-D simulator to supply the conditions for implementing and testing satellite ACS hardware and software. The 3-D 12 
simulator can accommodate various satellites components; like sensors, actuators, computers and its respective interface and 13 
electronic. Depending on the manoeuvre the 3-D simulator plant can be highly non-linear and if the simulator inertia parameters 14 
are not well determined the plant also can present some kind of uncertainty. As a result, controller designed by linear control 15 
technique can have its performance and robustness degraded, therefore controllers designed by new non-linear approach must be 16 
considered. This paper presents the application of the State-Dependent Riccati Equation (SDRE) method in conjunction with 17 
Kalman filter technique to design a controller for the DMC 3-D satellite simulator. The SDRE can be considered as the non-linear 18 
counterpart of Linear Quadratic Regulator (LQR) control technique. Initially, a simple comparison between the LQR and SDRE 19 
controller is performed. After that, practical applications are presented to address problems like presence of noise in process and 20 
measurements and incomplete state information. Kalman filter is considered as state observer to address these issues. The effects 21 
of the plant non-linearities and noises (uncertainties) are considered in the performance and robustness of the controller designed 22 
by the SDRE and Kalman filter. The 3-D simulator simulink-based model has been developed to perform the simulations ex-23 
amples to investigate the SDRE controller performance using the states estimated by the Kalman filter. Simulations have 24 
demonstrated the validity of the proposed approach, once the SDRE controller has presented good stability margin, great per-25 
formance and robustness.  26 

 27 
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1. Introduction 29 

There are several methodologies to investigate the satellite Attitude Control System (ACS) performance and 30 

robustness, when the investigation objectives are to validate hardware in the loop equipments experimental pro-31 

cedure can be more appropriate, some applications can be found in [1−3]. The use of experimental platforms has the 32 

important advantage of allowing the satellite dynamics representation in laboratory, from which is possible to ac-33 

complish experiments and simulations to evaluate satellite ACS [4]. Experimental test has the possibility of intro-34 

ducing more realism than the simulation; however, it has the difficulty of reproducing zero gravity and torque free 35 

space condition. 36 

Examples of experimental platforms for investigating different aspects of the satellite dynamic and control sys-37 

tem can be found in [5]. A classic case of a phenomenon not investigated experimentally before launch was the 38 
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dissipation energy effect that has altered the satellite Explorer I rotation [6]. An important aspect that must be first 39 

investigated through experimental procedure is the platform inertia parameters identification [7] and [8]. When 40 

inertia parameters are not well known the system can present some source of uncertainty [9]. An algorithm based on 41 

the least square method to identify mass parameters of a space vehicle in rotation during attitude maneuvers has 42 

been developed by [10], a methods with the same objectives, but based on Kaman filter theory also has been in-43 

vestigated by [11]. The H-infinity control technique was used by [12] to design robust control laws for a satellite 44 

composed of rigid and flexible panels. A good survey of the SDRE method can be found in [13] and its application 45 

to deal with non-liner plant [14], it is considered as the non-linear counterpart of LQR control. It linearizes the plant 46 

around the instantaneous point of operation and produces a constant state-space model of the system where a similar 47 

LQR control technique can be applied to design a specific controller. The process is repeated in the next sampling 48 

periods therefore producing and controlling several state dependent linear models out of a non-linear one. The 49 

SDRE method was applied by [15−17] for controlling a non-linear system similar to the six-degree of freedom 50 

satellite model considered in this paper. Kalman filter technique, when applied as state observer in conjunction with 51 

the SDRE method, allows the incorporation of non-linearities in the filter process. The uncertainties of the sys-52 

tem [9] can be represented by process and measurements noise. In this paper the standard LQR linear controller and 53 

the SDRE controller associated with Kalman filter are applied to design a non linear controller for a non-linear plant 54 

of the DMC 3-D satellite simulator in the presence of noise. The performance and robustness of both methods are 55 

investigated by several simulations. Results have proven the reliability of SDRE method to design control algorithm 56 

to be implemented in an on board satellite computer. 57 

2. Simulator mathematical model  58 

Figure 1 shows the DMC 3-D simulator has a disk-shaped platform, supported on a plane with a spherical air 59 

bearing; details can be found in [6]. The platform can accommodate various satellites components; like sensors, 60 

actuators, computers and its respective interface and electronic. To represent the satellite model by the 3-D simu-61 

lator one does not take into account the ground gravity gradient effects and that the air bearing creates torque free 62 

condition. As a result, basically, one follows the same step of modeling a rigid satellite with rotation in three axes 63 

free in space. The inertial reference system Fi (I1, I2, I3) is located in the centre of the spherical bearing. The orien-64 

tation of the platform is given by the body reference system Fb with respect to inertial system considering the 65 

principal axes of inertia. To describe the orientation of Fb, one uses Euler angles (1, 2, 3) in the sequence 3-2-1, to 66 

guarantee that there is no singularity in the simulator attitude rotation.  67 

 68 

 69 

Fig. 1. The DMC satellite attitude control system simulator. 70 

The equations of motions are obtained using Euler’s angular moment theorem given by 71 

h g  (1) 72 
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where g  and h are the total torque and total angular moment of the system, which is given by 73 

 wh I I     (2) 74 

where I = diag (I11, I22, I33) is the system matrix inertia moment,   is the angular velocity of ,bF  75 

wI
 
= diag (Iw1, Iw2, Iw3) is the reaction wheel matrix inertia moment and  = (1, 2, 3) are the reaction wheel 76 

angular velocity. Since I and wI  are constants in bF , it is convenient to express (1) in this system.  77 

Differentiating (1) and considering the external torque equal to zero, one has 78 

0xh h    (3) 79 

where (.)x represents skew-symmetric matrix operator.  80 

Substituting (2) into (3), the vector angular velocity of the platform is 81 

   
1 x x

w w w wI I I I I I   
        
 

 (4) 82 

The simulator attitude as function of the angular velocity is 83 
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3. Sdre and kalman filter methodologies 85 

Similar to the LQR technique, the SDRE method also has a performance criteria J to be minimized given by  86 
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and the SDRE non-linear state space model is given by 88 
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where  0x  is the initial condition, nxmBR  and mxnCR  are the input and output matrices, which define the 90 

position and the type of actuator and sensor, ,nx  mu  e  ssR  are the states, the control and the output of 91 

the system, respectively. The stability condition requires that the weighting matrix ( ) nxnQ x   be positive 92 

semi-definite and ( ) mxmR x   be positive definite. These matrices are associated to penalizing the states and the 93 

control, respectively, and they work like tuning parameters in the control law performance.  94 

The state variable feedback control law is given by  95 

( )u K x x   (8) 96 

with the state-dependent gain given by 97 

   1 TK x R B P x   (9) 98 
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and  P x  is solution of the Riccati equation given by 99 

           1 0T TA x P x P x A x P x BR B P x Q     (10) 100 

Using the direct parameterization to transform the SDRE non nonlinear state model Eq. (7) into state dependent 101 

coefficient matrices of the state (SDC), one obtains system equations given by 102 

    x A x x B x u   (11) 103 

where  ( )f x A x x, nxnA  is the state matrix, which in general is only unique if x is scalar. Depending of the 104 

non linear dynamics of the system, matrices A(x), B(x) and C(x) can be functions of the states or not. 105 

Comparing with traditional non-linear control methods [18,19], the SDRE method has the advantage of avoiding 106 

intensive calculation, resulting in simpler control algorithms more appropriate to be implemented in satellite 107 

on-board computer. The SDRE linearizes the plant around the current operating point and creates constant state 108 

space matrices so that the LQR method can be used. This process is repeated in all steps, resulting in a point wise 109 

linear model from a non-linear model, so that the Riccati equation is solved and a control law is calculated also in 110 

each step.  111 

Here the SDRE method is applied to design a satellite ACS simulator, where A(x) is the only non-linear state 112 

dependent matrix and the simulator model state vector x consists of the angle θ and angular velocity ω given by 113 

 1 2 3 1 2 3
T

x        (12) 114 

After some manipulations, the non-linear state matrix A(x) and B given by Eqs (4) and (5) can be written in the 115 

state dependent coefficient (SDC) form by  116 
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One assumes that the C = diag(1,1,1,1,1,1) and that the simulator uses torques actuators like reactions wheel and 119 

sensors of angle and angular velocities.  120 

The SDRE theory presented up to here allows designing the control law without estimating the states; but for the 121 

case when some states are not available, one uses the Kalman filter, which also is adequate for on-board imple-122 

mentations because the estimation of the next state depends only on the previous and actual state, without keeping in 123 

the memory the history of all the states calculated. Besides, the Kalman filter takes into account the process noise w 124 

and the measures noise z, which can be due to no modeled dynamics and/or external perturbation and due to sensor 125 

non linearities and/or noise, respectively. As a result, the system becomes 126 

 
 x A x x Bu w

y Cx z
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

  
 (15) 127 

The Kalman filter algorithm consists basically of two steps; the time update and the measurement update, which 128 

is given by the following two sets of equations 129 
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The matrix Pk represents the covariance of the estimated state x̂ , and Kk is the Kalman gain. One observes now 132 

that the matrix A(x) is calculated in every step of estimating the states x̂ , Pk and Kk.  133 

4. Simulations results 134 

One has used the matlab/simulink software to demonstrate the ability of the SDRE technique to control a 135 

non-linear plant in comparison with the LQR technique. The efficiency of the Kalman filter as a state estimator in 136 

the presence of noise is also shown. The controller performance and robustness requirements are: small overshoot 137 

and time of response and its ability to perform the control apart from the nonlinear terns of the plant, since one 138 

simulates big maneuvers in order to stress the non-linear terns of the plant. Considering that the simulator inertia 139 

parameters depend on the equipments distribution over it, one uses the following typical values I11 = I22 = 140 

1.17 Kg·m2 and I33 = 1.13 Kg·m2; and for the wheel inertia Ix = Iy = Iz = 0.0018 Kg·m2. One assumes typical mean 141 

values for the process noise w = 0.0001 Nm with covariance given by Sw = 10−8 and tipical mean values for sensor 142 

noise z in the angle = 0.2 deg and in the angular velocity = 0.1 deg/s with covariance given by Sz = diag[0.04, 0.01]. 143 

Figure 2 shows the LQR and SDRE controllers without noise when the simulator initial attitude is zero and the final 144 

attitude is (50, 20, −30) deg which emphasizes the non-linear terms in the plant. One knows that the choice of weight 145 

matrix Q and R in the LQR problem is by tray and error. Therefore, after some simulations one gets R = 146 

diag(0.001,0.001,0.001) and Q = diag(1,1,1, 100,100,100) to the SDRE controller manager to have better 147 

performance than LQR controller using the same matrix R and Q . It is important to stress that this performance is a 148 

function of the weighting matrices of the LQR and SDRE controllers. 149 

Figure 3 shows SDRE controllers without noise for the previous maneuver; however, only the angles are fed back. 150 

Without angular velocity sensor, the SDRE controller performance is degraded showing the need for Kalman filter 151 

to estimates the states that are not available.  152 

Figure 4 shows the SDRE controllers in the presence of noise for the same large attitude maneuvers as before. It 153 

is observed that the SDRE controller performance is quite similar when there is no noise. This results show that the 154 

SDRE controller has the same robust properties of the LQR controller when all the states are available for feedback. 155 
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 156 

 157 

Fig. 2. The LQR and SDRE controllers for large maneuvers. 158 

 159 

Fig. 3. The SDRE controllers with only angle to feedback 160 

One should keep in mind that noise effect is very important when the controllers pointing precision is very de-161 

manding. 162 

Figure 5 shows the SDRE controllers in the presence of noise for the same large attitude maneuvers, having only 163 

the angular measurements for feedback. It is possible to observe that the SDRE controller performance has been 164 

degraded due to the noise presence and the unavailability of all the states. In this case the introduction of the Kalman 165 

filter in the control system to estimates all the states is fundamental. 166 

Figure 6 shows the angles maneuver of the SDRE controllers in the presence of noise for the same large attitude 167 

maneuvers as before. However, now a Kalman filter is used to estimate angle and angular velocities, using a sam-168 

pling time of 0.1 s. One observes that the SDRE controller performance has been improved showing that better 169 

measurements for feedback are very important when large maneuvers end in stringent pointing accuracy. 170 
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 171 

Fig. 4. The SDRE controllers with system noise. 172 

 173 

Fig. 5. The SDRE controllers with noise and only angle to feedback. 174 

 175 

Fig. 6. The SDRE controllers with noise and Kalman filter. 176 

5. Summary 177 

This paper presents the DMC 3-D satellite simulator mathematical model and the design of its ACS based on the 178 

SDRE method associated with Kalman filter technique. The satellite simulator model is generic since its equation of 179 

motion depends only on its inertia parameters. Simulation has shown that the SDRE controller has superior per-180 

formance than the LQR controller for large angle maneuvers when the plant non-linear terns are relevant. The LQR 181 

controller performance reaches instability where the final attitude angle is far from the origin. On the other hand, the 182 
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SDRE controller is able to maintain the same level of performance in any region, demonstrating its ability to control 183 

non-linear plants. Regarding the presence of noise and Kalman filter implementation together with SDRE technique, 184 

one observes that the noise levels affect the SDRE controller performance when the pointing accuracy is stringent, 185 

being less relevant when the simulator performs large angle maneuvers. In general, one observes that the SDRE 186 

method keeps the same robust properties of the LQR; however, losing performance when there is no availability of 187 

all states for feedback. Finally, the simulations results have proven the reliability of SDRE method to design control 188 

algorithm to be implemented in an on board satellite computer, since its gains are constant similar to the LQR. 189 
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