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Introduction 

The employment of evolutionary (or Darwinian) premises for automated problem 
solving is not new and dates back from the 1950s. Nearly a decade afterwards, three 
different interpretations of this approach started to be developed in parallel by three 
distinct researchers. Lawrence J. Fogel [1] in the US was the first one to introduce 
the concept of evolutionary programming. John Henry Holland [2], on his turn, 
called his method a genetic algorithm. In Germany, the domain of evolution 
strategies arose with Ingo Rechenberg and Hans-Paul Schwefel [3]. It was only in 
the beginning of the 1990s that these three areas were merged under one major field 
called evolutionary computing. Also at this time an alike fourth stream had emerged 
– genetic programming. In this way, evolutionary computing turned out to embrace 
the sub-areas of evolutionary programming, evolution strategies, genetic algorithms, 
and genetic programming.  
The field of evolutionary computing has presented linkages with Artificial Life, 
especially since the 1990s, with the swarm-based computation and nature-inspired 
algorithms. Genetic algorithms in particular gained popularity with the work of John 
Holland [2]. According to [4], the increasing academic interest in this field led to 
meaningful advances in the computers processing capacity for practical applications, 
including the automatic evolution of computer programs. Evolutionary algorithms, 
as stated in [5], “are now used to solve multi-dimensional problems more efficiently 
than software produced by human designers, and also to optimise the design of 
systems”. 
As [6] reported, the use of genetic algorithms in cellular automata (CA) models 
started at the end of the 1990s with the work of [7]. Other works in the same line 
were produced, as in [8] and [9], which used GA for parameter estimation of 
complex urban dynamic models, as well as in [10], [11], [12], and [13], in which 
transition rules of CA models have been optimized by genetic algorithms (GA). 
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More recently, there has been a profusion of articles dealing with GA for calibration 
and optimization of urban CA models [14], [15], [16], [17]. 
In all above-mentioned cases, a binary approach (urban x non-urban) has been 
adopted. In a diverse way from the previously reported works, the purpose of this 
paper is to deal with the simulation of multiple urban land uses (e.g. residential, 
commercial, industrial, etc.) by means of a GA tool employed to optimize a 
Bayesian calibration of a CA urban land use change model.  

GA fundamentals 

As stated by [18], evolutionary algorithms form a subset of evolutionary 
computation in that they generally only involve techniques implementing 
mechanisms inspired by biological evolution such as reproduction, mutation, 
recombination, natural selection and survival of the fittest. In this process, there are 
two main forces that form the basis of evolutionary systems: Recombination and 
mutation create the necessary diversity and thereby facilitate novelty, while selection 
acts as a force increasing quality [18]. 
Genetic algorithms, in brief, are methods that simulate the processes of natural and 
genetic evolution through computational routines, aiming to solve optimization 
problems in situations where the search space is huge and conventional methods 
have demonstrated to be inefficient. GA are basically structured in an analogous way 
to the biological chromosomes, as initially exposed. The first step consists in the 
generation of a population of individuals, which are characterized by their 
chromosomes, corresponding to numerical values representing a possible solution to 
a given problem. During the evolutionary process, this population is evaluated, and 
each chromosome is awarded a grade that reflects its adaptation capacity to a certain 
environment. The fittest chromosomes are selected, and the least fit ones are 
discarded, in accordance with Darwinian laws. The selected individuals are subject 
to cross-over (recombination) and mutation, generating offspring to the next 
generation, which corresponds to a complete iteration of the genetic algorithm. This 
process is repeated until a satisfactory solution is found [19]. 
Cross-over basically consists in combining the genetic material of two individuals, 
generating two new descendents, which inherit the parents´ characteristics. In order 
to avoid the anticipated convergence of the genetic algorithm, it is necessary to 
conduct a mutation operation, introducing new regions in the solutions search space. 
Many aspects of such an evolutionary process are stochastic. Changed pieces of 
information due to recombination and mutation are randomly chosen. On the other 
hand, selection operators can be either deterministic, or stochastic. In the latter case, 
individuals with a higher fitness have a higher chance to be selected than individuals 
with a lower fitness, but typically even the weak individuals have a chance to 
become a parent or to survive [18]. 
In order to assess the quality of a candidate solution, an objective function is used. It 
provides to the genetic algorithm a measure of fitness of each individual belonging 
to the population [19]. The choice of an appropriate objective function is crucial for 
the success of the GA performance. A detailed explanation on the objective function 
(or fitness function) employed in this work is presented in the next section.  
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Application 

Study Area and the GIS Database 

The GA-optimized CA simulation model was applied to a medium-sized city, 
Bauru, located in the Midwest of São Paulo State, southeast of Brazil.  The city 
comprised a total of 236,740 inhabitants in the initial time of simulation (1988), 
which increased to 309,531 inhabitants in 2000. In this period, the annual population 
growth rate was around 1.34%, and it was marked by the expansion of the existing 
residential areas together with the mushrooming of peripheral residential 
settlements, which have been mostly incorporated to the main urban tissue (Figure 1).  
 
 

  
 
 

Figure 1: Land use map in Bauru in 1988 (left) and 2000 (right)  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Cross-tabulation map between Bauru land use maps of 1988 and 2000, indicating 
permanence and changes in land use 

Besides experiencing a considerable development concerning the residential use, 
Bauru also witnessed intra-urban land use changes like the increase in industrial and 
services areas (Figure 2).  
The assessment of the total amount of land use change from 1988 to 2000, 
commonly known as global transition rates, was directly derived from a cross-
tabulation operation between the initial and final land use maps, which provided the 
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figures presented in Table 1, associated with the five types of observed land use 
change. 
 

Land Use  Non-
Urban 

 
Resid. 

 
Comm. 

 
Ind. 

 
Inst. 

 
Services 

 
Mixed 

Leis./  
Recr. 

Non-urban 0.9615 0.0333 0 0.0043 0 0.0009 0 0 

Resid. 0 0.9997 0 0 0 0.0003 0 0 

Comm. 0 0 1 0 0 0 0 0 

Industr. 0 0.0438 0 1 0 0 0 0 

Instit. 0 0 0 0 1 0 0 0 

Services 0 0 0 0 0 1 0 0 

Mixed  0 0 0 0 0 0 1 0 

Leis./Recr.  0 0 0 0 0 0 0 1 

Table 1: Global transition rates for Bauru: 1988–2000 

 

After the identification of land use transitions and their respective rates, the next step 
concerned the determination of the different sets of infrastructure variables 
governing each of the five types of change, based on heuristic procedures. These 
procedures basically regard the visualization of distinct maps of variables (distances 
in grey scale) superposed on maps of land use transition, so as to identify those more 
meaningful to explain the different types of land-use change. The variables selected 
for modeling are listed in Table 2, and the sets of variables assigned to explain each 
of the five transitions are indicated in Table 3. 

 

Notation Physical or Socioeconomic Land Use Change 
Variable 

dist_ind Distances to industrial zones 

dist_res Distances to residential zones 

dist_com Distances to the central commercial zone 

main_res Distances to residential areas 
belonging to the main urban agglomeration 

dist_serv Distances to services corridors 

serv_axes Distances to the services and commercial axes 

exist_rds Distances to main existent roads 

Table 2: Independent variables defining land use change in Bauru: 1988–2000 
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Notation Nu_Res Nu_Ind Nu_Serv Res_Serv Ind_Res 

dist_ind  ♦    
dist_res ♦     

dist_com ♦ ♦ ♦  ♦ 
main_res  ♦ ♦   
dist_serv    ♦  
serv_axes  ♦ ♦ ♦ ♦ 
exist_rds ♦     

Table 3: Selection of variables determining land use change in Bauru: 1988–2000 

All data used in this application had a resolution of 100 x 100 m and composed grids 
containing 487 lines and 649 columns, there being a total of 316,063 cells defining 
the region for simulation. 
 
The GA-optimized Bayesian model of land use change 
 
The GA-optimized Bayesian model of land use change was implemented in 
Dinamica EGO, a modeling environment that embodies neighborhood-based 
transition algorithms and spatial feedback approaches in a stochastic multi-step 
simulation framework. The parameterization method available at EGO is based on 
the theorem of conditional probabilities. For estimating the land use transition 
probabilities in each cell, represented by its coordinates x and y, an equation 
converting the logit formula into a conventional conditional probability was used. 
The logit corresponds to the natural logarithm of odds, which consists in the ratio of 
the probability of occurring a given land use transition to its complementary 
probability, i.e. the probability of not occurring the transition. This concept derives 
from the Bayesian weights of evidence method, from which the land use transition 
probability can be obtained through algebraic manipulations of the logit formula, as 
follows [20]: 
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where P corresponds to the probability of transition in a cell; i corresponds to a 
notation of cells positioning in the study area, defined in terms of x,y coordinates; α 
represents a type of land use transition, e.g. from a class c to a class k, within a total 
of η transitions; Vi

1 corresponds to the first variable observed in cell i, used to 
explain transition α;          corresponds to the m-th variable observed in cell i, used to 
explain transition α; O (Ti

α) represents the odds of transition Tα in the i-th cell, 
expressed by the ratio of the probability of occurrence of Ti

α over its complementary 

m
iV α
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probability, i.e., P (Ti
α)/ P (Ti

α); and W+
i,v corresponds to the positive weight of 

evidence for the i-th cell regarding the v-th variable range, defined as: 
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where P (     / Ti

α) is the probability of occurrence of the m-th variable range 
observed in cell i, used to explain transition α, in face of the previous presence of 
transition Ti

α, given by the number of cells where both        and Ti
α are found divided 

by the total number of cells where Ti
α is found; and P (       / Ti

α) is the probability of 
occurrence of the m-th variable range observed in cell i, used to explain transition α, 
in face of the previous absence of transition Ti

α, given by the number of cells where 
both        and Ti

α are found, divided by the total number of cells where Ti
α  is not 

found. 
The W+ values represent the attraction between a determined land use transition and 
a certain variable range. The higher the W+ value is, the greater is the probability of 
a certain transition to take place. On the other hand, negative W+ values indicate 
lower probability of a determined transition in the presence of the respective 
variable range. Using the W+ values concerning the several distances ranges of the 
static variables employed in the analysis, the Dinamica EGO model calculates the 
cells transition probabilities according to equation 1. The grid cells are assigned a 
value of probability and a probability map is then generated. In order to evaluate if 
the model is well calibrated, i.e. if the employed explaining variables are appropriate 
and if the categorization of the numerical grids is optimal, this map must present the 
area with the highest transition probability values as close as possible to the areas 
that actually underwent land use change. 
The GA tool in Dinamica EGO retrieves the W+ values and assembles them into 
tables. Each model parameter (W+) represents an allele and will be a record in a 
table that corresponds to a gene. This group of tables is an input to the GA tool. GA 
tool spawns a population based on the genotype passed within a group of tables. 
Inside GA tool, a routine (or functor) called Get current individual is placed to get 
the genes from the individuals of a generation. Other functors are sequenced to get 
the parameters and pass them on to the model. An evaluation (fitness) function is 
coupled with the model output and its result is passed to a functor called Set fitness, 
which returns the fitness value to the GA tool for the selection process [21]. The 
internal sequence of functors will iterate a number of times as specified by the user. 
When the GA tool terminates, it outputs the fitness of the overall best individual as 
well as the group of tables that comprises its genes. Additional parameters of the GA 
tool are: number of generations; population size; convergence stopping criteria, 
which forces the GA tool to terminate if evolution becomes asymptotical, as defined 
by the convergence limit, which must be achieved within the span of generations set 
by the number of generations; default lower and upper bounds, which set default 
values within which all allele values may vary; customized lower and upper bounds, 
defined by the user; amongst others [21]. 

m
iV α

m
iV α

m
iV α

m
iV α
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The GA tool engine is based on the EO computation library and selects parental 
individuals for the next generation using one-to-one deterministic tournament. 
Individuals that take part in it are randomly drawn from the current population 
without depleting it. Cross-over creates 70% of the new generation individuals. Any 
allele in a gene of an individual chosen for mutation can be altered upon 1% 
probability. A new generation is completed by passing it the remaining 29% of 
parental individuals that were submitted to neither crossing-over nor mutation. 
Figure 3 illustrates the graphical user interface of the Dinamica EGO GA tool. 
 

 
 

Figure 3: Graphical user interface of the GA model embedded in the Dinamica EGO 

       

Objective Function and Validation 

For assessing the fitness of the GA tool outputs as well as the accuracy of the CA 
simulation model performance, fuzzy similarity measures applied within a 
neighborhood context were used. The fuzzy similarity method employed in this 
work is a variation of the fuzzy similarity metrics developed by [21], and has been 
implemented in the Dinamica EGO platform. 
Hagen´s method is based on the concept of fuzziness of location, in which the 
representation of a cell is influenced by the cell itself and, to a lesser extent, by the 
cells in its neighborhood. Not considering fuzziness of category, the fuzzy 
neighborhood vector can represent the fuzziness of location. In the fuzzy similarity 
validation method, a crisp vector is associated to each cell in the map. This vector 
has as many positions as map categories (land uses), assuming 1 for a category = i, 
and 0 for categories other than i. Thus, the fuzzy neighborhood vector (Vnbhood) for 
each cell is given as: 
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 (3) 
 
 
 
 
 
 

(4) 
 
where � nbhood i represents the membership for category i within a neighborhood of 
N cells (usually N=n2); � crisp i,j is the membership of category i for neighboring cell 
j, assuming, as in a crisp vector, 1 for i and 0 for categories other than i (i ⊂ C); mj is 
the distance-based membership of neighboring cell j, where m accounts for a 
distance decay function, for instance, an exponential decay (m = 2-d/2). The selection 
of the most appropriate decay function and the size of the window depend on the 
vagueness of the data and the spatial error tolerance threshold [21]. As it is intended 
to assess the model spatial fit at different resolutions, besides the exponential decay, 
a constant function equal to 1 inside the neighborhood window and to 0 outside can 
also be applied. Equation 5 sets the category membership for the central cell, 
assuming the highest contribution is found within a neighborhood window n x n. 
Next, a similarity measure for a pair of maps can be obtained through a cell-by-cell 
fuzzy set intersection between their fuzzy and crisp vectors: 
 
 

        
        (5) 

 
 
 
where VA and VB refer to the fuzzy neighborhood vectors for maps A and B, and �A,i 
and �B,i are their neighborhood memberships for categories i ⊂ C in maps A and B, 
as in equation 4. According to [22], since the similarity measure S (VA,VB) tends to 
overestimate the spatial fit, the two-way similarity is instead applied: 
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The overall similarity of a pair of maps can be calculated by averaging the two-way 
similarity values for all map cells. However, when comparing a simulated map to 
the reference map (real land use in the final time of simulation), this calculation 
carries out an inertial similarity between them due to their areas that did not suffer 
any change. To avoid this problem, the Dinamica EGO team introduced a 
modification into the overall two-way similarity method of DINAMICA, using two 
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maps of differences, which present value 1 for the cells that underwent change, and 
0 for those that did not change. In this way, each type of change is analyzed 
separately using pair-wise comparisons involving maps of differences: (i) between 
the initial land use map and a simulated one, and (ii) between the same initial land 
use map and the reference one. This modification is able to tackle two matters. First, 
as it deals with only one type of change at a time, the overall two-way similarity 
measure can be applied to the entire map, regardless of the different number of cells 
per category. Second, the inherited similitude between the initial and simulated 
maps can be eliminated from this comparison by simply ignoring the null cells from 
the overall count. However, there are two ways of performing this function. One 
consists of counting only two-way similarity values for non-null cells in the first 
map of difference, and the other consists in doing the opposite. As a result, three 
measures of overall similarity are obtained, with the third representing the average 
of the two ways of counting. As random pattern maps tend to score higher due to 
chance depending on the manner in which the nulls are counted, it is advisable to 
pay close attention to the minimum overall similarity value. This method has proven 
to be the most comprehensive when compared to the aforementioned methods, as it 
yields fitness measures with the highest contrast for a series of synthetic patterns 
that depart from a perfect fit to a totally random pattern. 
 

Simulations and Discussion 

The GA-optimized simulation and the land use change probabilities maps are 
respectively presented in Figures 4 and 5, demonstrating a good performance of the 
model. 
 

 
 

Figure 4: The GA-optimized simulation compared to the actual land use in 2000 
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Figure 5: Estimated transition probability surfaces and land use change: 1988-2000 
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Figure 5 (Cont.): Estimated transition probability surfaces and land use change: 1988-2000 
 

Final Remarks  

Although there is a criticism towards genetic algorithms in the sense that they 
require manifold parameters, the GA tool of Dinamica EGO already provides the 
modeler with default input parameters, which have been previously tested and 
shown to be optimal. Genetic algorithms must be regarded as a heuristic to find an 
ideal solution for a problem, conducted by parallel research and not by an exhaustive 
and troublesome process of trial and error. 
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