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Abstract. The automatic early detection, isolation, and localization of faults is of high interest in industrial systems, for
improving reliability and safety. This process is characterized as fault diagnosis (FDI) and some problems related with
robustness to external disturbances, sensitivity to incipient faults and processing time are still considered as limitations
for many of the current FDI methods. This work is focused on the formulation of the fault diagnosis by an inverse problem
methodology. The FDI problem is formulated as an optimization problem and takes results from the diagnosis area
for acquiring prior information. The optimization problem is solved by the stochastic algorithm Ant Colony Optimization
(ACO) and its modified version fuzzy-ACO (ACO-d). The proposed approach is tested using simulated data of the Inverted-
Pendulum system which is recognized as a benchmarck for control and diagnosis. With the purpose of analyzing the
advantages of such approach, some experiments, with data corrupted with noise, are considered. The influence of ACO
parameters are also taken in consideration. The results obtained show the suitability of the approach and also indicate
that the parameters values allowing a greater exploration of the search space yields a better diagnosis. The ACO-d
algorithm enables better diagnosis than ACO.

Keywords. Ant Colony Optimization, fault diagnosis, inverse problem, processing time, robustness, structural detectabil-
ity, structural separability

1 INTRODUCTION
The automatic early detection, isolation and localization of faults that have an effect on industrial systems are of high

interest in order to improve reliability, safety and efficiency (Isermann, 2005). This process is called Fault Diagnosis or
Fault Detection and Isolation (FDI) (Simani et al., 2002).

The increasing complexity of the systems causes an increase in the probability of failure. As a consequence, the FDI
gain more importance and many methods for that purpose have been developed since the early 1970s (Isermann, 2005;
Simani et al., 2002).

The FDI methods should guarantee the fast detection of the fault while rejecting false alarms attributable to noise,
external disturbances and spurious signal. The first characteristic is named sensitivity and the second one is called ro-
bustness. An adequate balance of these properties is the key for the practical applicability of the FDI methods (Isermann,
2005; Simani et al., 2002) and it is still considered as a limitation of the currents FDI methods (Simani et al., 2002; Simani
& Patton, 2008).

The methods for Fault Diagnosis are separated in three general groups: those which do not use a model of the pro-
cess, those which do use a qualitative model of the process and those that are based on a quantitative model (Angeli &
Chatzinikolaou, 2004; Venkatasubramanian et al., 2003a,b,c).

The model-based approaches using the quantitative analytical model allow a deep insight into the process behavior
(Isermann, 2005) and can be brought down to a few basic types such as: the parity space; observer approach; the fault
detection filter approach and the parameter identification or estimation approach. The parameter estimation approach is
based on the diagnosis of the faults via estimation of the parameters of the mathematical model (Frank, 1990; Isermann,
1984, 2005; Patton et al., 2000) and it is required the knowlegde of the relationship between such parameters and the
physical coefficients of the system, as well the influence of the faults in these coefficients (Frank, 1990; Isermann, 2005).

In the particular case of the parameter estimation based methods, there is an additional inconvenient: the high process-
ing time makes them almost unfeasible for most online applications (Frank, 1990; Isermann, 1993).

Despite the fact that the FDI problem is an inverse problem: based on an observed behavior of the system, the causes
(faults) that produced this effect should be determined, this approach has not been intensively used. Just some recent
incursions have been reported in that sense (Witczak, 2006; Yang et al., 2007). With the aim of developing new and
viable FDI methods and taking into account this similitude, this work presents the formulation of the fault diagnosis as an
inverse problem which is written as an optimization problem and solved with stochastic algorithms. Some results related
with detectability and separability are applied in order to obtain more prior information of the inverse problem and as a
consequence improving the quality and reliability of the diagnosis.

The stochastic algorithm Ant Colony Optimization (ACO) and its modified version ACO-fuzzy (ACO-d) have been
applied for obtaining the solution of the optimization problem. This selection is based on the adaptable and robust
performance of ACO in other optimization problems as well as the better performance reported for ACO-d in order to
avoid local optima based on a more intensive exploration of the search space (Becceneri et al., 2008).
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Our proposal is illustrated using simulated data of the Inverted-Pendulum System (IPS) which is widely recognized as
a benchmark for control and diagnosis problems. With the purpose of analyzing the advantages of such approach, mainly
with respect to robustness, sensitivity and processing time, some experiments with noisy data are considered. With the
aim of analyzing the influence of some ACO and ACO-d parameters in the quality of the diagnosis, different sets of values
for such parameters are taken in consideration.

The main contributions of this paper may be summarized as follows: the study of a new approach for the development
of robust and sensitive FDI methods based on direct fault estimation and its formulation as an inverse problem; the
combination of this approach with some results for diagnosis based on the structure of the model; and a comparison
between the direct fault estimation with the stochastic algorithm ACO and is modified version ACO-d. The viability of
the proposal is demonstrated by diagnosing simulated fault data of the IPS.

This work is organized as follows. In the second section the modeling of faults and the model-based FDI methods
with an inverse problem formulation are introduced. After that, the third section details the study case, IPS, and the
simulation results. The following section describes the application of some reported results for getting prior information
of the system. The fifth section provides a brief description of the algorithms ACO and ACO-d. The Results section
shows the application of the methodology proposed to the solution of the study case and the results obtained. Finally
some concluding remarks are presented.

2 MODELING FAULTS AND FORMULATION OF THE FDI INVERSE PROBLEM
Let’s consider the following process model

ẋ(t) = f (x(t),u(t),θ)
y(t) = g(x(t) ,θ) (1)

that represents as close as possible the physical laws which govern the process behavior (Isermann, 2005). The vector of
state variables is represented by x(t) ∈ Rn. The measurable input signals u(t) ∈ Rm and output signals y(t) ∈ Rl can
be directly obtained by the use of physical sensors; θp ∈ R j is the process parameters vector and determines the model
parameters vector θ = [θp]

t .
The components of the process parameters vector are identified with the components of the physical process coef-

ficients vector ρ ∈ Rr, and in general r 6= j. The variations of these coefficients are generally related with faults. The
estimations of the vector θp will allow to detect the faults once the relationships between θp−ρ and ρ− faults are estab-
lished (Isermann, 1984). This divides the diagnosis into two steps, the first one considers the estimations of the parameters
vector θp, permitting the detection; and the second includes the determination of the faults based on the mentioned re-
lationships. If j ≤ r the relationship between process parameters and physical coefficients will be not one to one and as
consequence some faults will be not separable (Isermann, 1984, 2005).

For estimating θp, two main approaches have been considered: minimize the equation error or minimize the output
error. The first one permits the use of the least squares estimator and it is also necessary the use of the derivatives of the
input and output data vector as well the use of filters for improving the numerical properties. In the second case numerical
optimization is necessary, and the resulting high computational time brings difficulties in the applications for real on-line
processes (Isermann, 2005). Some applications of evolutionary algorithms and neural networks have been reported in that
sense (Witczak, 2006; Yang et al., 2007).

In order to avoid the described problem of the FDI based on the parameters estimation we have considered the model
that also includes the faults. In this case the model in Eq. (1) considers that the influence of the faults is absolutely
represented by the fault parameters vector θ f being θ = [θp θ f ]

t . This vector θ f contains the information regarding
magnitude of each fault that can affect the system. That is the reason why the estimations of the vector θ f will allow
diagnosing directly the system.

The modelation of faults in a state-space representation of a Linear Time Invariants Systems (LTI), (Ding, 2008),
permits to incorporate additive and multiplicative faults, while allows modelling the faults in the three main parts of the
system: actuator, process and sensors. Let’s fa ∈ Rs, fp ∈ Rq, fs ∈ Rp be the vectors containing the additive faults in
the actuator, process and sensors respectively. Making θ f = [ fa fp fs] and introducing it in the state-space LTI model of
the system we obtain

ẋ(t) = Ax(t)+Bu(t)+E f θ f
y(t) = Cx(t)+Ff θ f

(2)

The matrices A, B and C are known with appropiate dimensions, and the matrices E f , Ff are:

E f = [B E pn×q 0n×p] Ff = [0l×(s+q) Il×p] (3)

where the matrix E p represents the influence of the process faults and I represents the identical matrix.
This kind of faults modelling has been widely used for the residual generation in other FDI model based methods such

as parity space and observer approach (Ding, 2008; Frank, 1990; Simani et al., 2002), but not in the case of the methods
based on parameters estimation.

Considering the process parameters vector θp to be constant, the FDI inverse problem can be established as estimating
the vector θ f . It can be obtained from the solution of the parameter estimation inverse problem that can be formulated as

ISSN 2238-1007

382



Proceedings of the 1st International Symposium on Uncertainty Quantification and Stochastic Modeling
February 26th to March 2nd, 2012, Maresias, São Sebastião, SP, Brazil

a minimization problem:

min F(θ̂ f ) =
Ns
∑

t=1

[
yt(θ f )− ŷt(θ̂ f )

]2
s.a θ f (min) ≤ θ̂ f ≤ θ f (max)

(4)

where Ns is the number of sampling instants, ŷt(θ̂ f ) is the estimated vector output at each time instant t, and it is obtained
from the model given by the system of equations (2); yt(θ f ) is the output vector measured by the sensors at the same
instant t (Isermann, 2005).

For the solution of the optimization problem that was specified in Eq. (4), even in a noisy environment and for
both linear or non linear problems, stochastic algorithms can be applied. In the present work the ACO and ACO-d are
implemented.

The idea behind the application of ACO and ACO-d is to perform a robust diagnosis of the system, via direct fault
estimation, with an acceptable computational effort, which makes it feasible for the on-line diagnosis and also avoiding
to divide the diagnosis in two steps as required by the usual FDI parameter estimation methods.

3 STUDY CASE: INVERTED-PENDULUM SYSTEM (IPS)
This system is considered as a benchmark for control and diagnosis. It is formed by an inverted pendulum mounted

on a motor-driven car. The objective is to keep the beam aligned with the vertical position. Here it has been considered
only the two -dimensional problem where the pendulum moves only in the plane of the paper, see Fig. 1.

Figure 1: Inverted- Pendulum System

The mathematical model of the IPS has been widely studied, see (Ding, 2008). The system is described by a state-
space representation of a linear time invariant system, affected by additive faults, see the system of equations (2). The
state vector is x = [γ γ̇ x ẋ]t , where γ and γ̇ are the angle of the pendulum with respect to the vertical position and the
angular velocity respectively; x and ẋ are the position and the velocity of the car respectively. The outputs of the system
are y = [γ x]t and the input u(t) = F is the control force applied to the car. The relationship between each element of the
fault vector θ f = [ f1 f2 f3]

t and the faults of the system is one to one: f1 causes undesired movement of the car taking
place in the actuator, this kind of fault is represented by an additive fault affecting the system input F ; f2 represents a fault
in the sensor of γ and f3 identifies faults in the sensor that measures x. The matrices A, B, C, E f , Ff are known and with
appropiate dimensions:

A =


0 1 0 0

m+M
Ml g 0 0 0
0 0 0 1
− m

M g 0 0 0

 B =


0
− 1

Ml

0
− 1

M

 C =

[
1 0 0 0
0 0 1 0

]
E f = [B 04×2] Ff = [01×2 I2×2]

Considering the system with the characteristics M = 2 kg, m = 0.1 kg and l = 0.5 m, the following matrices are
obtained:

A =


0 1 0 0

20.601 0 0 0
0 0 0 1

−0.4905 0 0 0

 B =


0
−1
0

0.5

 C =

[
1 0 0 0
0 0 1 0

]
E f =


0 0 0
−1 0 0
0 0 0

0.5 0 0

 Ff =

[
0 1 0
0 0 1

]

Considering the nature of the faults and the properties of the IPS, then the elements of θ f have the following restric-
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tions:

θ f 1 ∈ R : −0.5≤ θ f 1 ≤ 0.5 N
θ f 2 ∈ R : 0≤ θ f 2 ≤ 0.01 rad
θ f 3 ∈ R : 0≤ θ f 3 ≤ 0.02 m

In order to make a direct diagnosis of the system we must obtain estimates for θ f . In that sense the inverse problem of
FDI that was formulated in Eq.(4) should be solved.

3.1 Data simulation
The behavior of the system was simulated for free of faults and under different faulty situations. The direct problem

given by the system of equations in (2), was numerically solved with the fourth order Runge Kutta method. In Figs. 2 and
3 are shown two different situations that were simulated.

Figure 2: Simulation with no faults and fault f1, corrupted with 5 % level noise

Figure 3: Simulation with no faults and faults f2 and f3, corrupted with 5 % level noise

4 INVESTIGATION OF THE PROBLEM STRUCTURE
The diagnosis includes the detectability, isolability and causes of the faults. In the case of analytical model- based FDI

methods, we can distinguish between the influence of the model in these characteristics, as well the way that the method
used for diagnosing permits dealing with the balance between sensitivity and robustness (Ding, 2008).

For obtaining some prior information about the uniqueness, or not, of the set of fault parameters values that can justify
the observed behavior of the system, some results related with sensor placement for faults detectability and separability
are applied (Aslund & Frisk, 2008; Krysander & Frisk, 2008).
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The detectability of a fault indicates if the effect of the fault in the system can be monitored. The isolability of a fault
is related with the separability of the fault from the other faults that may be eventually affecting the system. Some recent
papers have shown that some information concerning this topic can be be extracted from the structural representation of
the model (Aslund & Frisk, 2008; Krysander & Frisk, 2008). These results are based on the description of the model as a
bipartite graph and its Dulmage- Mendelsohn Decomposition (Krysander & Frisk, 2008).

Let’s denote E = {e1,e2, ...eh}, with h≥ (n+m), the set of equations in the model of the system, and V = {x1,x2..xk},
with k ≥ n, the set of variables. Let’s also asume that each fault fl only affects one equation e fl . Let’s construct the
biadjacency matrix M of the bipartite graph G = (E,V ) that represents the structural information of the model formed by
the equations of E and the variables of V , whose elements are:

mi j =

{
1 if x j ∨ ẋ j ∈ ei
0 otherwise (5)

Let’ s be M+ the overdetermined part of the model M, the fault fl is structurally detectable if there exists an observation
that is consistent with fault mode fl and inconsistent with the non fault mode, in other words the fault fl can violate a
monitorable part of the model: e f l ∈M+.

On the other hand a fault fl , isolable from f j, can violate a monitorable equation in the model describing the behavior
of the process having fault f j. This motivates the definition that fl is structurally separable from f j in a model M if
e f l ∈ (M\e f j)

+.
The Dulmage-Mendelsohn decomposition (Krysander & Frisk, 2008) allows partitionating the model M in three parts,

M0 the structurally undetermined part,
⋃n

i=1 Mi the just-determined part and M+ the structurally overdeterminaded part.
Not all the parts may be present in a given model. In graph theory terms the Dulmage-Mendelsohn decomposition
finds a maximum-size matching in the bipartite graph of M. This has been applied for determining the detectability and
isolability properties of a model, as well the minimum number of sensors to be placed in order to achieve the detectability
and isolability requeriments (Aslund & Frisk, 2008).

These results will be adapted and applied for the determination of some information about the structure of the system
to be diagnosed. This information will permit to decide when the diagnosis can satisfy detectability and isolability require-
ments, which leads to the possibility of studying the more appropriate method for satisfying robustness and sensitivity
conditions. This will be exemplified with the IPS.

Let’s consider the model of the IPS when no sensors are added, therefore only a fault f1 = θ f 1 is affecting the system.
The model of the system in this case is:

ẋ1 = x2
ẋ2 = 20.601 x2−u−θ f 1
ẋ3 = x4
ẋ4 = −0.4905 x1 +0.5 u+0.5 θ f 1

(6)

With the aim of satisfying the requirement that a fault affects only one equation, the new variable x5 and the new
equation e5 : x5 = θ f 1 are introduced. The equation affected by the fault f1 is e f 1 = e5. The biadjacency matrix of the
system has the form:


x1 x2 x3 x4 x5

e1 1 1 0 0 0
e2 1 1 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 0 0 0 1

 (7)

From matrix (7), that represents the model M described by the equations in (6), is obtained its Dulmage- Mendelsohn
decomposition. This is made with the function dmperm of MATLAB. The result is shown in matrix (8), and it can be seen
that

⋃n
i=1 Mi = M, in other words, the actuator fault f1 can not be detected without sensors.


x3 x4 x1 x2 x5

e3 1 1 0 0 0
e4 0 1 1 0 0
e1 0 0 1 1 0
e2 0 0 1 1 1
e5 0 0 0 0 1

 (8)

The Dulmage- Mendelsohn decomposition also gives the order between the connected or strongly connected compo-
nents of the graph with the biadjacency matrix M. Such order permits to know what variables should be measured in order
to obtain that a certain equation eh forms part of M+. In this case as a consequence of this order, the order between the
variables is:

x3,e3 > x4,e4 > x1,e1 > x2,e2 > x5,e5 (9)
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This order indicates that the measurements of any of the variables x1,x2, ...x5 make the equation e f1 = e5 be part of
M+, in other words, make the fault f1 be structurally detectable. Let’s introduce a sensor for measuring the variable x3,
the position of the car. This is described in the model by adding a new equation e6 : y2 = x3. The relationship expressed
in (9) indicates that the monitorable part of the new model M

⋃
e6 is (M

⋃
e6)

+ = M
⋃

e6, then e f 1 ∈ (M
⋃

e6)
+ and as

consequence, f1 is detectable.
But now let’s suppose that the sensor of x3 can be affected by an additive fault f3, then the equation e6 : y2 = x3 + f3

is affected by this fault. The fault f3 is detectable with no more sensors because of e6 = e f 3 ∈ (M
⋃

e6)
+. The other

question is related with the separability of the faults f1 and f3. Based on the definition of faults structurally separable,
f1 will be separated from f3 if e f 1 ∈ ((M

⋃
e6)\e f 3)

+ which produces the same problem as described in (7-9), which
means that another sensor to measure any of the variables is necessary in order to separate f1 from f3. Let’s add such a
sensor measuring the variable x1, the angle γ , with equation e7 : y1 = x1, now e f 1 ∈ (M

⋃
e7)

+ = e1
⋃

e2
⋃

e5
⋃

e7, see the
Dulmage- Mendelsohn decomposition of the matrix M

⋃
e7 in matrix (10),


x3 x4 x1 x2 x5

e3 1 1 0 0 0
e4 0 1 1 0 0
e1 0 0 1 1 0
e2 0 0 1 1 1
e7 0 0 1 0 0

 (10)

It is observed that with the two added sensors it is possible to achieve detectability and separability of the faults f1 and
f3. It means that the estimation of those faults will be possible. Assuming that the new sensor y = x1 can also be affected
by an additive fault f2 we have e f 2 = e7 : y1 = x1 + f2. This fault is detectable as a consequence of e f 2 ∈ (M

⋃
e6
⋃

e7)
+,

but know the cases for analyzing separability have been increased with the appearing of five new situations: f1 separable
from f2; f2 separable from f3, f1 separable from f2 and f3 simultaneously, f2 separable from f1 and f3 simultaneously
and f3 separable from f1 and f2 simultaneously.

From the previous analysis it can seen that f1 is separable from f2, and f2 separable from f3. For situations in which
only two faults are affecting the system, the faults can be separated, which means that the faults can be estimated. For the
cases when the three faults are affecting the system we can not achieve separability with the considered sensors. In all the
cases new sensors need to be added, which, considering that the sensor can be affected by faults, means that the problem
of separability can not be solved adding more sensors if their measurements are not free of faults.

Let’a show the case when considering the separability between the fault f1 and the faults f2, f3 affecting the system at
the same time. By the definition of structurally separable, f1 is separable from f2, f3 if e f1 ∈ ((M

⋃
{e6,e7})\

{
e f 3,e f 3

}
)+.

This means that the we have returned to the initial problem, M =(M
⋃
{e6,e7})\

{
e f 3,e f 3

}
, and its analysis was presented

in matrix (8) which indicated that M+ = φ and f1 is not separable from f2, f3. New sensors can be added for obtaining
this separability which can introduce new faults and the problem has no solution when the sensor is not free of faults.

After this analysis we can expect that the diagnosis of the IPS based on fault estimation will be better for situations
with single or only two faults affecting the system, since for the three faults affecting the system at the same time the
diagnosis can be incorrect. This indicates that we can invest in algorithms for estimating the faults in a robust an sensitive
way only for the first two situations.

5 FDI WITH ANT COLONY OPTIMIZATION
Ant Colony Optimization (ACO) was initially proposed for integer programming problems (Dorigo & Blum, 2005)

but recently it has been successfully extended and adapted to continuous optimization problems (Silva-Neto & Becceneri,
(Eds.; Socha & Dorigo, 2008). A good feature of this algorithm is that its parameters can be manipulated in order to
achieve a more exploitation or exploration driven structure which allows an efficient hybridization with other algorithms.
ACO is inspired on the behavior of ants seeking a path between their colony and a food source. This behavior is due to
the deposition and evaporation of a substance, the pheromone.

5.1 Description of the algorithm
For the continuous case the idea of the ACO is to mimic this behavior with simulated ants which are identified with

feasible solutions (Dorigo & Blum, 2005; Silva-Neto & Becceneri, (Eds.; Socha & Dorigo, 2008). The first step is to
divide the feasible interval of each variable of the problem in k possible values xk

n. For each iteration a family of Z
new ants is generated based on the information obtained from the previous ants and based on a selection mechanism.
The information of the previous ants is saved on the pheromone accumulative probability matrix PC (the matrix has
dimensions n× k where n is the number of variables in the problem) whose elements are

pci j(t) =
∑

j
l=1 fil(t)

∑
k
l=1 fil(t)

(11)

and it is updated at each iteration; fi j are the elements of the pheromone matrix F and express the pheromone level of the
discrete jth value of the ith variable . This matrix is updated in each iteration based on an evaporation factor Cevap and an
incremental factor Cinc:

fi j(t +1) = (1−Cevap) fi j(t)+δi j,bestCinc fi j(t) (12)
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where

δi j,best =

{
1 if x j

i = xbest
i

0 otherwise
(13)

The scheme for generating the new colony of ants considers a parameter q0 and a family of n random numbers qrand
1 ,

qrand
2 ,. . . , qrand

n for the zth ant to be generated. For each variable x(z)n that will be part of the zth ant is set the following
generation mechanism:

x(z)n =

{
xm̄

n if qrand
n < q0

xm̂
n if qrand

n ≥ q0
(14)

where

m̄ : fnm̄ ≥ fnm ∀ m = 1,2, . . . ,k (15)

and

m̂ :
(

pcnm̂ > qrand
n

)
∧ (pcnm̂ ≤ pcnm) ∀m≥ m̂ (16)

The control parameter q0 allows controlling the level of randomness during the ant generation. This fact determines,
together Z and k, the level of exploitation or exploration of ACO (Dorigo & Blum, 2005; Silva-Neto & Becceneri, (Eds.;
Socha & Dorigo, 2008). The general scheme of the algorithm is presented in Fig. 4.

Data: Cevap, Cinc, q0, k, Z, Itrmax
Generate a random initial pheromone matrix F with the condition that all fi j are the same;
Compute the matrix PC with Eq. (11);
Generate the random initial ants with Eqs. (14-16) and update Xbest ;
for l = 1 to l = Itrmax do

Update F with Eq. (12)
Update PC with Eq. (11)
for z = 1 to z = Z do

Generate a new ant with Eqs. (14-16)
Update Xbest ;

end
Verify stopping criterio;

end
Figure 4: Algorithm ACO

5.2 Fuzzy- Ant Colony Optimization
The Fuzzy- Ant Colony Optimization intends to mimic a more realistic behavior of the pheromone deposit: the

pheromone is an exhale odor substance and its deposit will not only affect the path where it was deposited but also those
nearby paths. The idea behind the ACO-d is to simulate that kind of pheromone dispersion which will allow a more
efficient exploration of the serach space (Becceneri et al., 2008).

The difference between the ACO and ACO-d is based on the way the pheromone matrix is updated. In the ACO-d a
fuzzy rule is used, and the amount of pheromone to be deposited on each path is proportional to the distance to the best
one (Becceneri et al., 2008).

In (Becceneri et al., 2008) this scheme is applied to the traveling salesman problem, in the present work we have
adapted the ACO-d to the continuous problem. Therefore we have considered a new parameter Cdis that indicates the
coefficient of dispersion. The pheromone deposition considers the scheme described in (12) and includes a deposit (dis-
persion) of the pheromone in the solutions nearby to the best one Xbest . This deposit is inversely proportional to the
distance to Xbest .

For deciding the maximum number of neighbors of Xbest that receive pheromone at each iteration we have adopted a
scheme in which each component xbest

n has a maximum number of neighbors for receiving pheromone, let’s call such set
of neighbors V [xbest

n ] and let’s define it as:

V [xbest
n ] =

{
xm

n : d(xbest
n ,xm

n )< dmax, 0 < m≤ k
}

(17)

The distance dmax is computed taking the average of the half of all the possible distances between values xm
n and xr

n
with m,r = 1,2, ...k. Based on the structure of the search space with the average
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dmax =
h+2h+3h+ ...+

[ k
2

]
h[ k

2

] (18)

where h = b−a
h with xn ∈ (a,b), and [x] represents the nearest integer from x. Working with Eq. (18) and applying the

expression for the sum of the first n integers can be obtained:

dmax = h

[ k
2

]
+1

2
(19)

Noting that d(xm
n ,x

m+1
n ) = h we reformulate equation (17) as

V [xbest
n ] =

{
xm

n : d(xbest
n ,xm

n )<

∣∣ k
2

∣∣+1
2

, 0 < m≤ k

}
(20)

making xm
n = a+hm and xbest

n = a+hm̄ we can also reformulate (20) as

V [xbest
n ] =

{
xm

n : m̄−
∣∣ k

2

∣∣+1
2

< m < m̄+

∣∣ k
2

∣∣+1
2

, 0 < m≤ k

}
(21)

The scheme to lay down the pheromone is ready with the following expression for the xm
n ∈V [xbest

n ],

fnm(t +1) = fnm(t +1)+
Cdis

m̄−m
(22)

5.3 Implementation
The variants of ACO were based on the different values for the parameters q0. The parameter q0 permits to establish

the level of randomness in the selection of the discret value of the variable (Silva-Neto & Becceneri, (Eds.), determining
the trend of the search. The values q0 = 0.15, q0 = 0.55 and q0 = 0.85 indicate a more exploration driven procedure, a
balance between exploration and exploitation, and a more exploitation of the search space, respectively. All the variants
are based on the algorithm of Fig. 4 and Tab. 1 shows the values for the parameters of the algorithm in each variant. The
number of ants was set in Z = 30. For the case of ACO-d the same parameters values were considered and the value for
Cdis = 0.10 in all the cases.

Table 1: Values for the parameters in ACO and ACO-d
k qo Z Cdis

ACO-1, ACO-d1 63 0.15 30 0.10
ACO-2, ACO-d2 63 0.55 30 0.10
ACO-3, ACO-d3 63 0.85 30 0.10

The stopping criterion is satisfies one of the conditions:

1. Condition 1: Maximum number of iterations Itrmax = 100.

2. Condition 2: Maximum number of iterations for which the best value of the objective function remains constant
Itrcte = 20.

3. Condition 3: Minimum value for the objective function F(θ̂ f )< 0.001.

6 RESULTS
With the aim to analyze the merits of the diagnosis based on faults estimation with ACO and ACO-d, two aspects have

been considered: robustness and computational effort. We are also concerned with the influence of some parameters of
ACO in these characteristics of the diagnosis.

With this goal in mind and with the aim of testing the conclusions derived in section 4 regarding the detectability and
separability, the experiments have been divided into three parts:

• First Part: A situation of single fault is considered, and only the actuator fault f1 can afect the system. The output
of the system is corrupted with 5% level noise in order to analyze robustness. The faulty situation is the Case 1
shown in Tab. 2.

• Second Part: A situation of multiple faults is considered, the faults f1 and f3 are the only affecting the system. The
output of the system is corrupted with 5% noise level in order to analize robustness. The faulty situation is the Case
2 shown in Tab. 2.
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• Third Part: A situation of multiple faults is considered, with the faults f1, f2 and f3 affecting the system. The output
of the system is corrupted with 5% noise level in order to analyze robustness. The faulty situation is the Case 3
shown in Tab. 2.

All the parts considered the three sets of values for each algorithm, as shown in Tab. 1, in order to analyze their
influence in the diagnosis properties.

Table 2: Faulty situations for the numerical experiments
f1 f2 f3

Case 1 0.5 - -
Case 2 0.5 - 0.02
Case 3 0.5 0.01 0.02

Each experiment was repeated 30 times with the intention of making statistically valid the description of the results
by means of computation of the arithmetic average of the parameters estimates. The abbreviations that were used in the
tables and figures are: f̂l and σ f̂l

for the mean and variance, respectively, of the estimations for the fault fl , ¯Iter for the
arithmetic average of the number of iterations that were achieved, and t̄ for the arithmetic average of the computing time,
in seconds. The computational effort of the algorithm is analyzed based on the number of iterations.

In Tabs. 3- 5 are shown the results of the estimations for each case considered in Tab. 2.
The results in Tab. 3 show that when only a detectable fault is considered to be affecting the system, the diagnosis is

correct. The best results are for ACO-1 and ACO-d1, indicating that the major exploration of the search space provides
better results in the diagnosis.

Table 3: Results of the diagnosis for the Case 1 of the Tab. 2
f̂1 σ f̂1

f̂2 f̂3 t̂(sec) ¯Iter
ACO-1 0.4903 1.2e-006 - - 35.007 32
ACO-2 0.4755 2.1e-005 - - 50.620 48
ACO-3 0.4606 1.5e-005 - - 45.4218 41
ACO-d1 0.4980 1.0e-006 - - 34.6556 30
ACO-d2 0.4795 4.2e-005 - - 39.0320 38
ACO-d3 0.4723 3.1e-005 - - 48.5302 47

The results in Tab. 4 show that when two separable faults are affecting the system, the diagnosis is also correct. The
best results are, again, for ACO-1 and ACO-d1. The number of iterations was higher than those for the previous case.

Table 4: Results of the diagnosis for the Case 2 of the Tab. 2

f̂1 σ f̂1
f̂2 f̂3 σ f̂3

t̂(sec) ¯Iter
ACO-1 0.4891 9.3e-006 - 0.0190 1.4e-008 46.154 43
ACO-2 0.4701 7.4e-005 - 0.0188 1.0e-007 59.962 57
ACO-3 0.4499 7.6e-005 - 0.0185 3.1e-007 60.005 58
ACO-d1 0.4958 8.1e-006 - 0.0198 1.2e-008 45.094 42
ACO-d2 0.4797 7.4e-005 - 0.0182 2.8e-007 57.082 55
ACO-d3 0.4555 8.0e-005 - 0.0170 9.0e-008 61.9925 60

The results in Tab. 5 show that diagnosis is not correct when the three fauls are affecting the system at the same time.
These results are in agreement with the analysis of separability for the study case shown in section 4. The estimations
permit to detect the faults affecting the system, but do not allow the other requirements for a diagnosis of the system. In
these cases the diagnosis via faults estimation is not feasible.

The results presented in the Tabs. 3- 5 are summarize in the Fig. 5. In the Fig. 5 is shown that for the Cases 1 and 2
the diagnosis is completed, while for the Case 3 the diagnosis is not possible.
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Table 5: Results of the diagnosis for the Case 3 of the Tab. 2

f̂1 σ f̂1
f̂2 σ f̂2

f̂3 σ f̂3
t̂(sec) ¯Iter

ACO-1 0.3892 1.1e-004 0.07 1.8e-007 0.17 2.0e-007 138.0004 98
ACO-2 0.0381 9.2e-004 0.015 9.5e-007 0.0060 1.1e-006 122.0973 85
ACO-3 -0.2707 9.2e-004 0.0001 1.8e-007 0.0115 1.3e-006 100.50 77

ACO-d1 0.0013 3.8e-004 0.0001 9.0e-007 0.0173 1.1e-007 136.865 97
ACO-d2 -0.276 9.7e-003 0.0009 9.3e-007 0.0555 3.1e-006 127.72 89
ACO-d3 -0.631 1.2e-003 0.0063 1.4e-006 0.0051 3.4e-006 109.634 70

Figure 5: Comparison between the estimations of f1 and f3 for the faulty situations described in Tab. 2

7 CONCLUSIONS
This study indicates that the formulation and solution of an FDI based on fault estimation is feasible. The results on

structural detectability and separability give a prior information for determining the limitations of the diagnosis via fault
estimation ones the inverse problem is formulated.

The study of the influence of the parameters of the algorithms indicated that the best set of parameter values for
ACO and ACO- d correspondes to the version that makes a major exploration of the search space, q = 0.15. Following
that experience is evident to obtain a better diagnosis with ACO-1 than with ACO-d1. This fact is because of ACO-d
conception is based on a pheromone dispersion that helps in the exploration of the search space.

The results confirm the results of the section 4: the faults in the IPS can be detected via direct fault estimation in the
IPS but the diagnosis is only feasible for the situation with one or two faults at the same time. For the case with the three
faults affecting the system at the same time the diagnosis is not reliable due to the lack of separability between the faults.
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