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MINIMUM FUEL MULTI-IMPULSIVE ORBITAL MANEUVERS 
USING GENETIC ALGORITHMS 

Denilson P. S. dos Santos,* and Antônio F. B. A. Prado† 
 

This work aims to calculate transfer trajectories between two coplanar orbits us-
ing several impulses, trying to find solutions that minimize the costs related to 
the fuel consumption required to apply those impulses. The algorithm used here 
uses a time-free approach and a genetic algorithm as a method for solving the 
problem. Evolutionary optimization is used to solve the Lambert´s Problem as-
sociated with those transfers and searches for the best trajectories within the var-
ious possibilities for solving the problem. After that, a numerical algorithm to 
solve the same transfers is used, but now considering a low thrust maneuver. 
This type of propulsion system provides large savings in the consumption, at the 
expense of more complex and longer maneuvers.  

 

INTRODUCTION 

Genetic algorithms are heuristic methods that search for optimum solutions. It has applications 
in several fields. Functions, within a specific space domain, are determined by applying methods 
based on the theory of the Darwinian evolution. In this situation, a set of possible solutions of the 
problem considered here can be considered as a population. Then, applying methods of crossover 
and mutation among individuals, the population evolves and tends to produce better individuals 
that represent better the solutions of the problem. The key point in this approach is to specify a 
measurement that can define the best individuals. 

Several missions can benefit from the optimization algorithm used in this work. The main 
ones are: transfer with free time (to change the orbit of the space vehicle without restrictions to 
the time required for the execution of the maneuver); “Rendezvous” (when one desires that the 
space vehicle reaches and remains on the side of another space vehicle); “Flyby” (when it is de-
sired to intercept another celestial body, however without the objective of remaining next to it); 
“Swing-By” (when a close approach with a celestial body is used to gain or lose energy, velocity 
and angular momentum). Reference [1] shows more details on those problems. 
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The parameter a୲ is usually replaced by a different parameter y, that has the advantage of be-
ing a variable that assumes values between 0 and 1, which provides a୲ by means of the following 
relationship: 

    a୲ ൌ ୟmin
ସ୷ሺଵି୷ሻ

            (1) 

 

THE GENETICS ALGORITHM 

Genetic algorithms are iterative schemes where, in each iteration, the population is modified, 
using the best features of the elements of the previous generations. They are subjected to five 
basic operations to produce better results:  

 Creation: a procedure of making a population, randomly; 
 Reproduction: a process where each string is copied, considering the values of the adaptive 

function; 
 Crossover: a process where the combination of two chromosomes generates a new descendant;  
 Mutation: a process where there is an occasional random modification (that has low probabil-

ity) of the value of one element of the chain;  
 Epidemic: a process where part of the population is exterminated, with a consequent entrance 

of new individuals in the population. 

The reproduction is a process that is assigned to the elements that have the highest value of the 
quantity chosen to be the measurement of the fitness of the individual, and thus has a higher 
probability to contribute to the next generation, creating at least one descendant. The higher the 
values of this objective function, the higher are the chances that the individual will survive in the 
environment and that it will reproduce its genetic material to the next generations. 

The procedure starts with a random population of up to 800 individuals. The initial population 
is generated randomly, and it considers its characteristics of distances and angles according to the 
constraints of each variable. 

The random variables for the implementation of the algorithm are  xሬԦ ൌ ሺ∆θ୧,  R୧,  Y୧ ), where 
θ୧ ൌ ν୧ െ ω is the true anomaly of Pi, referred to the transfer orbit, ܴ௜ determines the radius vec-
tor (position) in each thrust, and  Y୧ are the angles between ሺܨଵ, ଵܲ, ଶܲሻ෣ . 

The first step towards the application of genetic algorithms to any problem is to find how the 
chromosomal gene should be and which mapping represents better the search space. Each gene is 
a real number between 0 and 1. The value of the corresponding parameter is ௜ܺ ൌ ௜ܺ

min ൅
௜ሺݑ ௜ܺ

max െ ௜ܺ
minሻ, where ௜ܺ

min and ௜ܺ
max are the minimum and maximum values; therefore they 

are the boundary conditions. Several papers considered this technique in orbital maneuvers, as 
shown in references [7] to [9]. 

 

Individual fitness (Objective Function) 

The fitness (the objective function) is the value attached to the individual that evaluates how 
well is the solution represented by him. The fitness of each individual is represented by the total 
velocity impulse ∆ܸ required to perform the orbital transfer. The total impulse is given by the 
sum of the single impulses ∆Vi provided in each thrust point in order to pass from an orbital arc to 
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the next one. It corresponds to the velocity difference at the relevant thrust point. In this case, the 
fitness of each individual can be computed using data that define the problem (ܽଵ, ݁ଵ, ܽଶ, ݁ଶ, Δ߱) 
and the three genes (ߥଵ, Δߥ,   :ሻ that characterize the individual. One obtains, in sequenceݕ

the true anomaly of the arrival point 

௜ߥ ൌ ௜ିଵߥ ൅  (2) ߥ∆

the radii of the departure and arrival points 

ଵݎ ൌ ௔భ൫ଵି௘భ
మ൯

ଵା௘భcosఔభ
   (3) 

ଶݎ ൌ ௔మሺଵି௘మ
మሻ

ଵା௘మcosఔమ
     (4) 

the cord, i.e., the distance between P1 and P2 

ܿ ൌ ටݎଵ
ଶ ൅ ଶݎ

ଶ െ (5) ߥ∆ ଶcosݎଵݎ2    

the semi-major axis of the transfer orbit 

ܽmin ൌ
ଵݎ ൅ ଶݎ ൅ ܿ

4
  (6)    

the distances c1 and c2 of P1 and P2 from the vacant focus F* 

ܿ௜ ൌ 2ܽ െ ௜ݎ   (7)    

the angles that appear in Figure 1 (ߛ ൌ ଵߛ ൅  (ଶߛ

ߛ ൌ arcos ቀ௥భ
మି௥మ

మା௖మ

ଶ௥భ௖
ቁ               (8)    

ଵߛ ൌ arcos ቀ௖భ
మି௖మ

మା௖మ

ଶ௖భ௖
ቁ     (9)    

the eccentricity of the transfer orbit 

݁௧ ൌ
ට௖భ

మା௥భ
మିଶ௖భ௥భcos ఊ2

ଶ௔೟
  (10)   

 

the true anomaly ߠଵ of P1 on the transfer orbit 

ଵݎ ൌ ௔೟൫ଵି௘೟
మ൯

ଵା௘೟cos ఏభ
  (11)     

ଵߠ ൌ arcos ቀ௔೟ሺଵି௘೟
మሻି௥భ

௥భ௘೟
ቁ  (12)     

the argument of perigee for the transfer orbit  
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߱ ൌ ଵߥ െ ଵ        (13)ߠ     

which is the angle between the perigees of the transfer and the initial orbits. 

After the geometry of the maneuver has been defined, one calculates the radial and tangential 
components of the spacecraft velocity before and after both impulses, what permit the computa-
tion of the total Δܸ, which has been assumed to be the measurement of the individual fitness. 
Non-dimensional variables are used in the procedure. They are shown below. 

ݎ ൌ
ݎ̃
෤ܽଵ

 (14)     

ݒ ൌ
෤ݒ

ට
ఓ

௔෤భ

 (15)     

Δݐ ൌ ට௔෤భ
య

ఓ
. (16)     

      

The distance and velocity units for the normalized variables are the semi-major axis of the ini-
tial orbit and the velocity on a circular orbit with the same energy as the initial one (Equations 14 
and 15). The reference time is shown in Equation (16). 

 

NUMERICAL SOLUTIONS 

 
To apply the genetic algorithms in orbital maneuvers, an impulsive hypothesis is used for the 

engine of the spacecraft. It means that the velocity is assumed to change in zero time and a se-
quence of keplerian orbits represents the motion of the spacecraft. More details about this type of 
maneuver can be seen in References [10] to [14]. 

Then, the optimization method using genetic algorithms was used and several missions were 
simulated. Some of them are shown in more details, with initial radii ro = 1 and final radius rf = 2 
and rf = 3. The results are shown in Table 1 and Figures 2 to 4. 

 

Table 1- Maneuvers between coplanar circular orbits showing the values of the ΔV. 

nº 
Simulation 

(ro=1) 

Values of the impulses 

ΔV1 ΔV2 ΔV3 ΔV4 Δࢀࢂ ൌ  ෍Δ࢏ࢂ

૝

ୀ૚࢏

 

1 rf = 2 0.047578   0.000000   0.200723   0.170924   0.419226 
2 rf = 3 0.013201   0.000000   0.235550   0.227344   0.476096 
3 rf = 1.2 0.035366   0.017818   0.068514   0.074579   0.196277 
4 rf = 1.5 0.036376   0.108244   0.029295   0.170630   0.344545 
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In particular, optimal rendezvous between two coplanar orbits, with maneuvers using up to 4 
burns, were used to generate those results. Rendezvous is a maneuver where a space vehicle 
needs to encounter a second one that is in a different orbit. Some more information regarding 
rendezvous maneuver can be seen in References [15] to [17]. Figure 3 shows the states of the 
genetic algorithm and its evolution after 500 evaluations of the objective function. The genetic 
algorithm provided satisfactory solutions when compared with the solutions of the literature. The 
population comprises of 500 individuals and up to 250 generations of individuals in those simula-
tions. Maneuver 2 shows an interesting feature of the algorithm. Although the specified number 
of impulses was four, the algorithm found a better solution that uses only three impulses, so it 
generated an impulse with zero cost. 

 

 
 

Figure 2. Four-burn orbital rendezvous, simulation 1: r0 =1, rf = 2 . 
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Figure 3. Four-burn orbital rendezvous, simulation 2: r0 = 1, rf = 3. 

 

 

Figure 4 - The variables of the problem and the best fitness, simulation 1, with 4 burns. 
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ing by specific orbits). Two different solutions were found and they are shown in Tables 2 and 3 
and in Figures 5 and 6.  

The consumption is large (ΔVT = 2.234601 for the first solution (Table 2) and ΔVT = 3.249184 
for the second one (Table 3)), but it is a consequence of adding the intermediate constraints. The-
se solutions differ from each other by intermediate constraints that we used, so the solutions have 
different transfer times and the trajectories of the spacecraft passes by different regions of the 
space, to be able to accomplish different goals for the mission. 

 

Table 2 - Seven-burn orbit transfers, solution 1 

ΔV1 ΔV2 ΔV3 ΔV4 ΔV5 ΔV6 ΔV7 ΔV8 ΔVT 

0.276038 0.116922 0.637252 0.215662 0.638076 0.000000 0.107102 0.243548 2.234601 

 

 

 

Figure 5. Seven-burn orbit transfers, r0 = 1 (Earth), rf  = 5.202803 (Jupiter). Solution 1, with 7 burns 
and ΔVT = 2.234601.  
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Figure 6. Seven-burn orbit transfers, r0 = 1 (Earth), rf = 5.202803 (Jupiter). Solution 2: with 7 burns 
and ΔVT = 3.249184.

 

Then, we implemented a low thrust algorithm. This type of maneuver assumes that the engine 
can deliver a continuous but low thrust to the spacecraft. Similar problems are studied in several 
papers in the literature, like shown in References [18] to [22]. The main advantage is that it con-
sumes a lot less fuel, but at an expense of larger times for the maneuver, as well as more complex 
implementation of the hardware. The choice of which technique to use depends on the mission 
requirements and on the engines available for the spacecraft. 

In the present formulation, the main ideas shown in References [21] to [22] are used and, to 
avoid singularities in the equations of motion, the following variables are used: 

X1 = [a(1-e2)/μ]1/2  (17) 

X2 = ecos(ω-φ)   (18) 

X3 = esin(ω-φ)                                              (19) 

X4 = (Fuel Consumed)/m0 (20) 

X5 = t   (21) 

X6 = cos(i/2)cos((Ω+φ)/2)   (22) 

X7 = sin(i/2)cos((Ω-φ)/2) (23) 

X8 = sin(i/2)sin((Ω-φ)/2) (24) 

X9 = cos(i/2)sin((Ω+φ)/2) (25) 

      φ = f +ω - s;                          (26) 

where: 
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     a = semi-major axis; 

     e = eeccentricity; 

      i = inclination; 

     Ω = argument of the ascending node; 

     ω = argument of perigee; 

      f = true anomaly; 

      s = range angle; 

      μ =gravitational constant; 

      m0 = initial mass of the spacecraft. 

 

 In those variables, the equations of motion are: 

dX1/ds = f1 = SiX1F1 (27) 

dX2/ds = f2 = Si{[(Ga+1)cos(s)+X2]F1+GaF2sin(s)}    (28) 

dX3/ds = f3 = Si{[(Ga+1)sin(s)+X3]F1 -GaF2cos(s)} (29) 

dX4/ds = f4 = SiGaF(1-X4)/(X1W)                         (30) 

dX5/ds = f5 = SiGa(1-X4)m0/X1    (31) 

dX6/ds = f6 = - SiF3[X7cos(s)+X8sin(s)]/2          (32) 

dX7/ds = f7 = SiF3[X6cos(s)-X9sin(s)]/2           (33) 

dX8/ds = f8 = SiF3[X9cos(s)+X6sin(s)]/2            (34) 

dX9/ds = f9 = SiF3[X7sin(s)-X8cos(s)]/2        (35) 

where: 

Ga = 1 + X2cos(s) + X3sen(s) (36) 

Si = (μX1
4)/[Ga3m0(1-X4)]   (37) 

     F, F1 , F2 , F3  are the forces generated by the thrust, given by: 

321 FFFF
rrrr

++=  (38) 

FF =
r

    (39) 
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)cos()cos(1 βαFF =    (40) 

)cos()(2 βαFsenF =    (41) 

)(3 βFsenF =  (42) 

where α is the angle between the perpendicular to the radius vector and the direction of the 
thrust and β is the out-of-plane angle of the thrust. The equations for the Lagrange multipliers are: 

ଵ݌݀

ݏ݀
ൌ െ

4 ∑ ௝݌ ௝݂ ൅ ଵ݌ ଵ݂ െ ସ݌ ସ݂ െ ହ݌ ହ݂
ଽ
௝ୀଵ

ଵܺ
 (43) 

ௗ௣మ
ௗ௦

ൌ ௖௢௦ ሺ௦ሻ
ீ௔

ൣ3 ∑ ௝݌ ௝݂ െ ସ݌ ସ݂ െ ହ݌ ହ݂
ଽ
௝ୀଵ ൧ െ ଵܨଶ݌݅ܵ െ ଵܨଶ݌ሻሺݏଶሺݏ݋ܿ݅ܵ െ ଶሻܨଷ݌ െ

െܵ݅ܿݏ݋ሺݏሻ݊݁ݏሺݏሻሺ݌ଶܨଶ ൅                ଵሻܨଷ݌
(44) 

ଷ݌݀
ݏ݀ ൌ

ሻݏሺ ݊݁ݏ
ܽܩ

቎3 ෍ ௝݌ ௝݂ െ ସ݌ ସ݂ െ ହ݌ ହ݂

ଽ

௝ୀଵ

቏ െ ଵܨଷ݌݅ܵ െ ଵܨଶ݌ሻሺݏሺ݊݁ݏሻݏሺݏ݋ܿ݅ܵ െ ଶሻܨଷ݌

െ ଶܨଶ݌ሻሺݏଶሺ݊݁ݏ݅ܵ ൅  ଷሻܨଷ݌

(45) 

ସ݌݀

ݏ݀
ൌ െ ቈ

∑ ௝݌ ௝݂ െ ସ݌ ସ݂ െ ହ݌ ହ݂
ଽ
௝ୀଵ

݉଴ሺ1 െ ܺସሻ
቉ (46) 

ହ݌݀

ݏ݀ ൌ 0 (47) 

଺݌݀

ݏ݀
ൌ െܵ݅ܨଷሾ݌଻ܿݏ݋ሺݏሻ ൅ ሻሿݏሺ݊݁ݏ଼݌

2
 (48) 

଻݌݀

ݏ݀
ൌ ሻݏሺݏ݋଺ܿ݌ଷሾܨ݅ܵ െ ሻሿݏሺ݊݁ݏଽ݌

2
 (49) 

଼݌݀

ݏ݀
ൌ ሻݏሺ݊݁ݏ଺݌ଷሾܨ݅ܵ ൅ ሻሿݏሺݏ݋ଽܿ݌

2
 (50) 

ଽ݌݀

ݏ݀
ൌ െܵ݅ܨଷሾݏ݋଼ܿ݌ሺݏሻ െ ሻሿݏሺ݊݁ݏ଻݌

2  (51) 

 

 The control to be applied to the spacecraft can also benefit from a substitution of variables, to 
avoid numerical problems. The following set of variables is used: 

u1 = s0         (52) 

u2 = (sf - s0)cos(β0)cos(α0) (53) 
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u3 = (sf - s0)cos(β0)sin(α0)   (54) 

u4 = (sf - s0)sin(β0) (55) 

u5 = α’                       (56) 

u6 = β’          (57) 

 

First order necessary conditions for the optimal problem can be written. For every instant of 
time we have: 

        

sin(α) = q2 / S’ (58) 

sin(B) = q3 / S”      (59) 

cos(α) = q1 / S’      (60) 

cos(B) = S’ / S”     (61) 

where: 

S’ = ± [ q1
2 + q2

2 ]1/2   (62) 

S” = ± [ q1
2 + q2

2 + q3
2 ]1/2   (63) 

q1 = p1X1 + p2[X2 + (Ga + 1)cos(s)] + p3[X3 + (Ga + 1)sin(s)]                     (64) 

      q2 = p2Gasin(s) - p3Gacos(s)   (65) 

q3 = - p6[X7cos(s) + X8sin(s)]/2 + p7[X6cos(s) - X9sin(s)] +  p8[X6sin(s)  

              + X9cos(s)] + p9[X7sin(s) - X8 cos(s)] 
(66) 

 

It is also possible to include constraints. Some of the most used ones can be represented by: 

S ( . ) ≥ 0 (67) 

( ) 0
*

0

*

=
−
−

aa
aa

 (68) 

( ) ( )[ ]
( ) ( ) 0

11
11

**
00

**

=
+−+
+−+

eaea
eaea

 (69) 



13 

 

( ) 0
*

0

*

=
−
−

ii
ii

 (70) 

( ) 0
*

0

*

=
Ω−Ω
Ω−Ω

 (71) 

( ) 0
*

0

*

=
−
−
ωω
ωω

 
(72) 

The first one represents generic inequality constraints, while the other five is used to specify 
an orbit. 

After the implementation of this technique, the simulations showed in Table 1 was considered 
again, this time using this low thrust approach. The results are shown in Table 4. The consump-
tions are much lower, but it is necessary to have in mind that this situation is normal and consti-
tute the most important characteristics of low thrust engines. 

 
Table 4- Maneuvers between coplanar circular orbits using low thrust. 

nº Simulation (ro=1) 

Consumption 

Low Thrust Maneuvers 

1 rf = 2 0.0886 
2 rf = 3 0.1271 
3 rf = 1.2 0.0831 
4 rf = 1.5 0.0865 

 

CONCLUSIONS 

From the analysis of the results obtained, the genetic algorithm implemented here showed that 
this technique can obtain results for the proposed four impulsive rendezvous maneuvers. It means 
that it can be used in real cases. In particular, the algorithm is able to find solutions with a smaller 
number of impulses by making one or more of them with zero magnitude, if a maneuver with a 
lower number of impulses can be used. 

It also can generate results in situations where intermediate constraints of passing by specific 
orbits are included. In this case, several burns are required and the consumption is larger, as ex-
pected. In the examples used here the number of impulses reached the number of seven and two 
solutions were found, by considering two different sets of intermediate constraints. 

Then, a low thrust was used for the rendezvous missions. It shows the importance of this ap-
proach, which can find solutions with much lower fuel consumption, although it has some disad-
vantages like more time required for the maneuvers and more complex implementation of the 
hardware. 
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