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Abstract

This work presents a methodology to create probability maps for spatial continuous
attributes based on indicator geostatistical approaches. The indicator kriging and
the indication simulation approaches can be used to infer approximations of
conditional cumulative distribution functions (cdf) for continuous attributes at
different spatial locations of interest. The cdfs are conditioned to a set of spatial
points containing continuous attribute values and sampled in a geographic region
of interest. The conditional cdfs are then used to infer probability maps of
exceeding, or being smaller than, a given threshold, or a predefined attribute,
value. In this work it was used an elevation data set sampled in Floriandpolis
Island, the capital of Brazilian state Santa Catarina, as a case study to illustrate
the methodology to create such probability maps.

Keywords: uncertainty modeling, indicator geostatistics, kriging, simulation,
probability maps.

1. Introduction

The modeling of continuous variables has been a necessary task for studies re-
lated to measures and estimates that can assist in the understanding of many phe-
nomena that occur in nature, such as mapping studies of soil properties (Burgess
and Webster, 1980), studies involving atmospheric (Lajaunie, 1984), hydrologic
(Kitanidis and Vomvoris, 1983), geological (Deutsch, 2002) and many other varia-
bles. In these cases, it is important to employ appropriate modeling procedures in
order to capture the behavior of the investigated variables within the region of
study. To accomplish this task the literature points to several methods and model-
ing procedures. The simplest are the deterministic methods which have limitations
because they do not consider reliable intrinsic spatial correlation structures and
anisotropy behaviors of the data and uncertainties of the estimates. To overcome
these weaknesses more complex models with probabilistic approaches can be used,
for example, geostatistics. The geostatistics offers a set of methods and procedures
which allow describing the spatial continuity of the variables involved in a more
realistic modeling, obtaining more accurate estimates, for example, and allow more
accurate investigations of the process, along with its uncertainties, which can later
be displayed on maps (Isaaks and Srivastava, 1989).
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For geostatistical approaches continuous attributes of spatial data are considered
Random Variables (RVs) at each spatial location in a region of interest. A
continuous RV has its uncertainty model represented by a local or spatial
conditional cumulative distribution function (cdf). The uncertainty model, the cdf,
of a continuous RV Z(u), at a specific spatial location u, conditioned to a (n)
sample points can be denoted by F(u;(z)|(n)) = Prob{Z(u)<=z|(n)} (Deutsch and
Journel, 1998).

From the uncertainty model F(u;(z)|(n)) one can derive different optimal
estimates for unsampled values z(u) in addition to the conditional cdf mean, which
is the least—squares error estimate (Deutsch and Journel, 1998). So, the conditional
cdf of continuous attributes is mostly used to evaluate mean, median or any other
quantil, values in order to create predictions maps. Also the cdf allows evaluating
confidence intervals that are used for representing error or uncertainty maps
(Felgueiras, 1999). The uncertainty maps can be propagated to the results of spatial
models using four different methods including Taylor expansions and Monte Carlo
simulations (Heuvelink, 1998). Goovaerts, 1997, presents different ways to account
for conditional cdf models in the decision making process: exceeding a probability
threshold, exceeding a physical threshold and minimization of the expected loss.

This work explores indicator geostatistical tools, kriging and simulation, that
allows estimate an approximation of the cdf for a continuous spatial attribute at any
location u inside a chosen spatial region. So, two different maps can be created: a
map of cdf probability values that contains, for each spatial location u, the
probability values of being smaller or equal to the predefined attribute value and; a
map of /-cdf probability values representing the probability values of being larger
than, or exceeding, the predefined attribute value. Therefore, these two types of
map are used to represent probabilities related to a predefined value and can be
considered as a preprocessing for classifications based on being smaller than, or
exceeding, a probability threshold value.

To illustrate the methodology applied to obtain such probability maps a case
study was performed with a set of sample points representing the elevation data in
Floriandpolis Island, capital of the Brazilian state known as Santa Catarina. It
shows how to create the probability maps, considering a minimum, or maximum,
elevation value, to prevent problems related to floods, caused by heavy rains in
residential areas, for example. Also these maps are then classified, considering
different probability intervals values, in order to facilitate decision making
activities based on such information.

2. Methodology

The entire methodology applied in this work was performed using the functions
of the geostatistical module available in the Analysis menu of the SPRING
(Camara et all, 1996) Geographical Information System (GIS).

The study area is the Florianopolis Island, which is the capital of Santa Catarina
State, in the Brazilian country. The bounding box coordinates of the Florianopolis
region is: w 48° 37°, w 48° 20, s 27° 51°, s 27° 23. The sample set is composed by
278 sample points of elevations distributed in the Florianopolis area as shown in
the Figure 1 below.
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Figure 1: The sample set of elevation distributed in the Floriandpolis Island.

Indicator geostatistical approaches allow estimate approximations of conditional
cumulative distribution functions, cdf, for variables, representing continuous
attributes at different spatial locations u. The inferred cdfs are used to estimate
local or global probabilities related to a predefined attribute value. The estimate
probabilities in the locations of a regular rectangular grid allow the creation of
probability maps of being smaller than, or exceeding, the predefined value. The
methodology to obtain such probability maps follows the steps below:

1.

2.

Perform an exploratory analysis to determine statistical properties of the
sample set;

Create a surface variogram to verify the presence of anisotropy behavior for
the continuous variable;

Apply a variogram analysis to obtain experimental and theoretical, mathe-
matical, variability models representing the variability of the variable in the
spatial region;

Apply the indicator geostatistical procedures, kriging or simulation, to get
cumulative distribution functions at each location of a rectangular grid in the
area of interest;

Use the cdfs to calculate the probability values, at each location of the rec-
tangular grid, of being smaller than a given threshold;

Classify the probability maps according several probability interval values.

3. Results and analysis

The statistical results of a exploratory data analysis for the sample set of 278
elevation points above are shown in Table 1.

The results of the Table 1 make possible the knowledge of the statistical proper-
ties of the data supporting hypotheses a priori, as for example, the probability dis-
tribution function of the used data.
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Table 1: Statistics of the elevation sample set.

Mean 95.528 Minimum Value 2.000
Standard Deviation 107.433 First Quartil 13.000
Variation Coefficient 1.124 Median 33.000
Asymmetry Coefficient 1.171 Third Quartil 169.000
Kurtosis Coefficient 3.280 Maximum Value 437.000

Then a surface semivariogram analysis was performed in the elevation data set
and an anisotropic continuity behavior was detected. As can be seen in Figure 2 the
continuity is greater in the direction of 15° and smaller in the direction of 105°.

Figure 2: The surface semivariogram analysis of the elevation data set.

In order to model the conditional cdf, using indicator geostatistical approaches, it
was used the first, the second (median) and the third quartiles as threshold cut val-
ues, 13, 33 and 169. Experimental indicator semivariograms were fitted with
spherical models for the chosen cut values and for the two anisotropic directions,
15° and 105°. The semivariogram models are presented in the Figures 3, 4 and 5.

Hih}

Figure 4: Semivariogram models fitted for the median value.
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Figure 5: Semivariogram models fitted for the third quantil value.

Figure 6 shows three maps representing the probabilities of being smaller than
the elevation values 50, 150 and 250, respectively. The dark areas represent low
probabilities, closer to 0, and the white areas represent high probabilities, closer to
1 or 100% of probability.
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Figure 6: Probability Maps of being smaller than the elevation values 50, 150 and 250.

The figures above show that as the threshold values get larger the probability
maps show larger white regions. These white regions can be considered as regions
of flood risks and problems related to natural disasters caused by excessive rains in
this region. The maps of Figure 7 are classified representations of the maps depict-
ed in Figure 6. Maps ranked by probability intervals can facilitate the determination
of subregions which should be considered for mitigation of adverse effects in the
study area. The darkest areas of the maps below should be the first candidates to
receive attention of the decision makers for flood risks applications
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Figure 7: Classified Probability Maps of being smaller than the elevation values 50, 150 and
250.
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3. Conclusions

This work presented a methodology to create unclassified, and also classified,
probability maps of being smaller than a predefined threshold value. An elevation
data set was used in order to illustrate the steps involved in the methodology. These
probability maps are useful for decision making process in order to prevent and
avoid disasters related to flood areas when heavy rains occurs in a short period of
time at one small spatial region, for example. It is important to note that the prob-
ability maps were obtained not from estimates but directly from the uncertainties
models obtained with geostatistical indicator procedures, kriging or simulation.
This methodology can be applied to other environment attributes, as soil and air
toxic elements for example, to support decisions making on whether a geographic
region must be cleaned or not. This work shows, also, that a GIS containing a geo-
statistical module can be a powerful tool to manipulate spatial data in order to ob-
taining important results, as maps or reports, based on uncertainty analysis.

References

Burgess, T. M.; Webster, R. (1980), “Optimal interpolation and isarithmic mapping of soil
properties. 1. The semi-variogram and punctual kriging”. In: Journal of Soil Science, Vol
31:315-31.

Burrough , P. A.; Mcdonnell , R.A. (1998), “Principles of geographical information sys-
tem”, Oxford University Press, New York, U.S.A, 344p.

Camara G., Souza, RCM, Freitas UM and Garrido J. (1996), “SPRING, Integrating Remote
Sensing and GIS by object-oriented data modeling”. In: Computer & Graphics, Vol.
20:395-403.

Deutsch, C.V.; Journel, A.G. (1998), “GSLIB: geostatistical software library and user’s
guide”, Oxford University Press, New York, U.S.A, 369p.

Deutsch, C.V. (2002), “Geostatistical Reservoir Modeling”, Oxford University Press, New
York, USA, 376 p.

Felgueiras, C.A. (1999) “Modelagem ambiental com tratamento de incertezas em sistemas
de informagdo geogrdfica: o paradigma geoestatistico por indicagdo”, 165p. PhD Thesis,
Instituto Nacional de Pesquisas Espaciais, Sdo José dos Campos, SP, Brazil.

Goovaerts, P. (1997) “Geostatistics for natural resources evaluation”. Oxford University
Press, New York, U.S.A, 483p.

Heuvelink, G. B. M. (1998) “Error Propagation in Environmental Modeling with GIS”,
Taylor and Francis Inc, Bristol, 345p.

Isaaks, E. H; Srivastava, R.M.(1989), “An introduction to applied geostatistics”, New York:
Oxford University Press, New York, 561p.

Kitanidis, P.K.; Vomvoris, E. G. (1983). “A geostatistical approach to the inverse problem in
groundwater modeling (steady state) and one-dimensional simulations”. In: Water
Resour. Res., 19(3), 677-690.

Lajaunie, G. (1984). "A geostatistical approach to air pollution modeling." In: “Geostatistics
for Natural Resources Characterization”. G. Verly, M. David, A. G. Journell, and A.
Marechal eds, Reidel, Dordrecht, Netherlands, 877-891.

304



