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Abstract. We study an alternative geometrical approach on the probfestassical cosmological
singularity. It is based on a generalized functibfx,y) = x* +y?> = (1 — 2)2" which consists
of a cusped coupled isosurface. Such a geometry is compuateédiacussed into the context of
Friedmann singularity-free cosmology where a pre-big kegemario is considered. Assuming that
the mechanism of cusp formation is described by non-linseitlations of a pre-big bang extended
very high energy density field5 3 x 10°*kg/m?), we show that the action under the gravitational
field follows a tautochrone of revolution, understood hesdhee primary projected geometry that
alternatively replaces the Friedmann singularity in tlaedard big bang theory. As shown here this
new approach allows us to interpret the nature of both mattdrdark energy from first geometric
principles.
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INTRODUCTION

The classical Friedmann Singularity-Free (FSF) theorsesilly consider more complex
structures than the simple spherically symmetric poiatli a Friedmann singularity
(null dimension with infinite density) [1, 2]. Indeed, detggihe high isotropy and homo-
geneity which have been inferred from recent observatimust FSF approaches have
considered anisotropic and inhomogenoeus scenarios @ofimeological past[3, 4, 5, 6].
In such cases the Universe evolution is described as theicluszillation of a point-
like particle in the so-called minisuperspace potentidl (gee, for example, the Bianchi
Model-Type I, whose one of the Kosner solutions leads to ardige 'singularity’). We
remark the importance of recent FSF theories assuming #al idiscrete spacetime,
like quantum-loops [7]. As far as we know, there is no FSF rh@dsuming a pre-
big bang single geometric configuration from what the biggoaniverse was emerged
remaining connected throughout its evolution. In this semg introduce here a new
geometric scenario that, for simplicity, incorporatesretients that alternatively admit
a non-bouncing FSF approach where both the nature of datkemnaaid dark energy are
interpreted from geometric first principles.

Our formalism begins with the projected geometry drawn ugfogeneral physical
principles, most of them compatible with most cosmologeg admit a 4-dimensional
expanding spacetime. The formalism of the cosmologicap @uld be introduced
to solve the problem of the energy density contrast unresoby theACDM model.
Therefore, this initial version we are assuming that thelmatsm of cusp formation is
described by non-linear oscillations of a pre-big bangreéel very high energy density
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field (> 3 x 10°*%g/m®). In fact, our aim in the present paper is to introduce a new
intuitive geometric notion which can be grounded in a magemus mathematical and
physical framework.

Our starting point here is to address the formation of a préhabcusp geometry from
which a coupled classical spacetime could emerges (thigrpics illustrated in Fig.1).
Following this path, we have initiated a program knowrcasp cosmologlgased on the
cusp-like geometries resulting from nonlinear wave thé8ese Appendix}.
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FIGURE 1. A hypothetical projected spacetime (considering ct) with the energy of the structure
flowing(¢g:) through a cusp geometry. This picture is called here thegetie cusp structure for which, in
a cosmological context, it is conjectured an energy densidyx 10°%g/n.

THE PROJECTED CUSP GEOMETRY AND ITSHAMILTONIAN

Let us first consider the existence of a projected couplethgty (hypersurfaces) for
the 4-dimensional spacetim@,y,z vt). In such case our object is a 3-dimensional
spacetiméx,y,z=vr). Then, in this section we look for a set of solutions of polyrial
equations (an algebraic variety) that represents two-aém@al surfaces, which must
be consistent with the energetic cusp hypothesis preseatédr. Our first inspiration is
based on the curvey & f(x)) namedConchoid of Nicomedg£N) which has the form

X2 4+ y? = b?x?/(x — a)?. Performing an appropriate representation, one can sege tha
in the range-2 < a/b < 0, there is the formation of the cusp as well as the structure
after the cusp whem/b tends to zero. After the CN cusp, when> 0, a family of
closed structures emerges as for example: right stropheithiscate and projections
of isosurfaces as Tschirmhausen cubic and piriforms[8gr&tore, extrapolating for
z= f(x,y), we focus on the following generalized form:

X4y =(1-2)7" (1)
which can be represented parametrically as
x(9.0) =ap"2\ /22 Pleogy @

1 The research program began in 2002 at LAC-INPE, Brazil. Hewehe first formal presentation of this
idea was carried out by the first author in the fundamentasijaisyH.1. section on dark matter and dark
energy held at COSPAR 2010 in Bremen, Germany.
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2($,0) =ap"/2. (4)

Based on a marching cubes algorithm[9], the isosurface eatohstructed from a
data volume generated by equation 4. Fig.2 shows the owgpstiiface fon = 4. Our
computing inputs are: (i) a range p£1.5,1.5) for x andy; (i) —1 < z< 1, discretized
in a 30x 30 x 30 grid. The parametric refinement was performed makiagl.

FIGURE 2. The projected cusp spacetime coupling two inhomogenouststes (left: pre-big bang
open pure energetic tautochrone of revolution having megatirvature and, right: post-big bang closed
low density baryonic space-time.

It is important to mention that, from the parametric repréagon, coefficients of
the first fundamental form can be obtained and then the lemmeht is given explicitly
by the Riemannian metric which determines the arc lengthafrae on a surface. In
particular, there exist a family of cubic and quintic sugador which the respective
Gaussian curvatures have been calculated. Based on subbmadical formula, here
a generalized Gaussian curvature, as a function aily, can be given implicitly by

K= zn”—fz f(n,z). Thus, the determination of a geometry designed for the spapetime
is reduced to the task of finding the functions f(n, z). Onégighachieved, the isometric
surfaces in a Riemannian metric can then be incorporatetkast for the case n = 4,
the Ricci flow for each element of energy (Tachyon hypotladijy toward the cusp will

follow a line of action on a tautochrone of revolution whicdnde parametrized as

7 — x(@):%‘(e_sine)HL—%" 5)
p = y(@):g(l-l—cose)-l—yL, with 0<@<2m (6)

Note that this propertie support a new perspective of cosgicdl singularity from
where an action can be defined. Considering thatl (8 +sin8) andz=|(1— cos9)
the tautochrone Hamiltonian and its related action can lienras

2
4ml2(1+ cosB)

H +mgl(l4+cos8) |O|<m (7)
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where the following conditions are hold:
t:[0,1],z— z(x), z2(0) =0, z(h) =1, (I,h) — (0,0).

Thus, from the point of view of the physical formalism, theshappropriate model to
be adopted for cusp cosmology are those non-homogeneoltiag@a quantum gravity
approach in the cusp structure, the region where one shouklder the baryogenesis.
This implies novel approaches from quantum mechanics tefaéRelativity Theory.
Recently, it has been shown that Einstein equations cangenasrthe equation of state
of a quantum gravitational system [10]. Such cases inclddendntricate geometric
formalism which can be possibly unified in a simple way suclam@spossible in the
cusp cosmological scenario we have introduced here.

CONCLUDING REMARKS

In this paper we have concerned with alternative projecésshetry for dealing with the
problem of Friedmann singularity in physical cosmologye Bmergetic cusp hypothesis
introduced here motivate many interesting questions, kvivie have only begun to ex-
plore. Contrary to the classical version of the Big Bang colsigical model our geomet-
ric formalism contains a causal (+,-) structure at the sthtimelike baryonic moment
(t = 0), where all timelike geodesics have a spacelike extenstorthe tachyonic-like
past: a massless "dark energy" negative curvature hypacsuiOne of the interesting
aspect of this cusped coupled scenario is that both darlygaed dark matter can be
addressed into the cosmological apparatus as naturalgathysgredients: continuous
flux of energy from the warping negative curvature structureé possible spacetime de-
formations of the secondary positive (or locally flat) cuova structure due to the cusp
cosmological constraint (gravity-like stretched spaue)i

It is worthily to note that our approach starts from geonedirst principles directly
at the level of established geometrical properties. Tloeeethe consistency of the cusp
energetic hypothesis introduced here should be verifiedisyireg theories as well as by
those in development. In this sense, the second part ofticgeawill aim to provide a
comprehensive approach that can select the best candfdatésscribe the energetic
cusp (+.-) in a complete cosmological approach pointing pmgsible observational
constraints [11, 12].
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APPENDI X

A Possible Physical Cusp Formation

The freely nonlinear density wave theory allows to desdfilgedensity cusp formation from harmonic
oscillations [13]. Then, let us discuss one example in gitebm construct a cusp geometry induced by
parametric instability ocurring for density waves.

In common with other approaches of the free waves, we adopbdified (normalized rotation)
shearing box approximation (SBA) [14] from which the sabas of the wave equation can be obtained
[15,16]. Using an equivalent Lagrangian formalism as idireed by Fromang and Papaloizou [16] to
study parametric instabilities in accretion disks, it haem defined ap(@, T) to be the position of a
energy flux element witlp = @ in the absence of any instability. If the component of the rantam
conservation equation is defined in all coordinates, thegumre is uniform and the equation of motion in
the ¢ direction is given by [16].

D3¢ V2 dp

—_— —_— = —_—— 9
wherep is the energy density andis the isothermal propagation speed. The derivatives &sntan
line elementst, ¢') wherert is a timelike domain ang/ is a spacelike domain of the flux direction.
Following Fromang and Papaloizou [16] we can consider timsexvation of energy. Then, in order to
expres9 in terms ofg we must have

99 _ 98\

92 —p(1+95) = po (10)
whereé (@, T) = @(@, T) — @. Since the boundary conditions are periodic in SBA, thedliag wave

solutions depend only on the phabe= @ — U T, such tha€ = &(®) with U being the phase velocity.

The governing equation that describes traveling wave graiian is then obtained using Eq.(2) in Eq. (1),

FE

U +&=—3%——2.
de? (1+%)2d¢2

(11)

Note that, the first derivative of respect tod can be periodic so that it is possible to interpret the
problem as corresponding to the motion of a particle in amt@bwell given by

z 2 dé
V(p) ~ E(l_ (v/U)9) where = 1o (12)
In this linear limit the system behaves as an harmonic @seillwhose solution is given b§ =
Eocogkg — wt) + &1 sin(kgy — wrt) wherek is the wavenumber and = kU is the wave frequency.
Finally, the study of cusp formation can be performed apwy finite difference scheme[17] to solve
the system of two coupled first order differential equations

d
&2 (13)
dz 1\? (v/U)2&
do (V) 1_ U2 (14)
(1+27?

The solution of the wave equation above is specified only hyhé parameteo = v/U and (ii) the
maximum value of the energy density, defined as bejfmwheree is the wave energy. In our numerical
scheme, the parameters a normalized maximum amount of energy which we have censiequals to
1, so that when the wave amplituggoes frongy = 2.6 toz(¢ = 0) = 0 the energy density goes to infinite.
Actually, this procedure determines the initial conditdar the integration (performed untiz = 2.650
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FIGURE 3. Profiles of the functior= f(¢ = ®+UT). Snapshots &= 2.6 andz= 0.76 (left panel),
z=0.38 (middle), andz = 0.038 (right panel). The black curve corresponds to the tagjetion which
is the energetic cusp final state.

in 24 steps, which gives reliable results considering ooppsals). A canonical solution obtained for
02 = 0.3, in the domain 4> z> —1 with zy = 2.650, using a 64 32 discretized grid is shown in Fig. 2.
As one sees from Fig. 3, as the parametric wave amplitudeasess nonlinearity dominates the process
and a cusp forms in the interval.@B8> z > 0), the region in whiclz goes to zero (the infinity energy
density location). This result is important since it prasgbased on the previous formalism, the concept
of wave-cusp parametric instabilitf’éCPI) to describe the physical process which we are inteedes
Pursuing the details of this physical process we might thenttoduce the energetic cusp hypothesis.
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