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Abstract

This paper presents a method to estimate the uncertainty in a DEM using Cluster 
Analysis. The method considers that there are always more than one DEM 
available for a specific area, therefore, a statistical analysis can be performed and 
used to create a map with clusters of high and low uncertainty in elevation. The 
resulting map is particularly important for simulation applications, where the 
simulation process can apply the uncertainty information to select the best DEM 
for a region and to define the spatial uncertainty of the simulated result. The 
method is tested in a region of Sao Paulo State in Brazil, with heterogeneous 
terrain features. The results show that the method can be used not only in 
simulation, but also to define geographic regions where data collection can be 
improved. 
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1. Introduction

Environmental process models are useful for many different purposes, such as 
for simulation of scenarios and to fill gaps in data. These models use information 
about the environment to define values of the model variables. However, any piece 
of information has an uncertainty component, that is, any variable value is com-
posed by the true value and the measurement error. Therefore, model results are 
affected by the uncertainty in the input data

If uncertainty information is available, then the model may create data with in-
formation about the reliability of the result. With spatial uncertainty information, 
map reliability at each location of the model output can be improved. For the haz-
ard mapping example, a high vulnerable area may have uncertainty that is higher 
than the rest of the region, therefore, additional information with a better accuracy 
should be used to improve the vulnerability information at that location.

Therefore, the goal of this paper is to create a spatially distributed uncertainty 
map to be used by environmental process models. Since elevation data is used in 
many of these models, the uncertainty map to be created is about the spatial vari-
ability of uncertainty in elevation data set.

Traditionally, the accuracy of a data set is defined by taking samples of some lo-
cations with higher accuracy than the data set and comparing with the data set for 
the same locations. The drawback is that an uncertainty map cannot be created and 
the accuracy of the data set will be a global value instead of an uncertainty map. 
The approach here is to use publicly available data set to define the uncertainty map 
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of a given data set. In this approach, locations are classified as belonging to regions 
with higher probability of low accuracy. The definition of regions with higher 
probability uses spatial statists to search for regions with clusters of high uncer-
tainty values. Therefore, the aim is to extract the accuracy map with the support of 
freely available data and clustering analysis to define regions where the accuracy 
values are statically lower than in the rest of the area. In this paper, the study case is 
on elevation data, using SRTM and ASTER G-DEM to estimate the distribution of 
accuracy of topographic maps in 1:50000 scale of São José dos Campos, Brazil.

2. Uncertainty in Environmental Models

Environmental models are models of physical processes related to the Earth´s 
environment that occur in geographical scales. The model output accuracy is re-
lated to the accuracy of the model logic and to the accuracy of input data. Uncer-
tainty is a known characteristic in all geographical data and one should use the most 
accurate data. However, the information about accuracy is not easily available or if 
available, it is not in a spatially distributed format. In this paper, data about the 
elevation is used as an example of input data for environmental models. Digital 
Elevation Models (DEMs) contain uncertainties (Hunter and Goodchild 1997; Can-
ters et al. 2002). DEM represents the spatial distribution of elevation, which is a 
numeric value and accuracy values can be easily added to it. Unfortunately, current 
standards for DEM do not define a requirement for spatially distributed accuracy
and require only a global value. For example, USGS specifies the desired accuracy 
standard of Level-1 DEM to be below 7 meters calculated using Root Mean 
Squared Error (RMSE) at few locations (USGS 2003).  IBGE data should conform 
to the National Cartography Commission (CONCAR) standards, which defines the 
best standard to be half of the contour lines interval (Brazil, 1984).

3. Clustering Analysis

Since this paper proposes the generation of a map showing where the DEM has 
clusters of areas where the accuracy is statistically significant lower than the aver-
age using spatial statistics. This analysis considers elevation to be a random vari-
able; therefore, each DEM is a sample of the “real” DEM and the probability den-
sity function can be defined from a set of different DEMs. When a global accuracy 
value is defined, the assumption is that errors are random, and every location has 
the same probability of being within the stated accuracy. If the 90% RMSE is 10 m,
then the actual value at a location has 90% probability of being within 10 m from 
the stated one. Clusters are detected using the method proposed by Rogerson, 2001, 
which searches significant peaks on a surface representing a standardized measure 
that has been smoothed by a Gaussian kernel. A critical value is defined for a prob-
ability and the clusters are within the peaks with values higher than this value. 

3.1.   Computing the Standardized Measure

The standardized measure is the zscore (zs), which is computed for normal dis-
tribution by:

�
��

�
xzscore (1)
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The zs is computed at each location of the DEM, using the global mean µ and 
the global �. The measure that is used to provide the value at each point is the coef-
ficient of variation (CV), which is the relative measure of the dispersion, that is, 
how relative � is in relation to the mean µ. The CV is computed at each location of 
the DEM, using the local mean µrc and the local standard deviation �rc. Therefore, 
for a grid representing the DEM and with location defined in terms of row r and 
column c coordinates, the coefficient of variation (CVrc) is computed by: 

%100
rc

rc
rcCV

�
�

� (2) 

3.2. Gaussian Kernel

The zs values are smoothed since targets are clusters and not individual loca-
tions. The selection of the smoothing ��for the Gaussian kernel is based on the best 
one to filter random differences and to enhance clusters. The Gaussian kernel is 
created by a weighted sum of the grid cell neighbours, with weights given by: 
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where � is the standard deviation of the Gaussian kernel and dij is the distance from 
the center cell i to neighbour cell j. The weights are applied at cell i by: 
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where yi is the smoothed value of zs at the center cell i, wij is the weight for the cell 
at the distance from center cell i to neighbour cell j, and zj

3.2. Critical Value

is the zs of cell j. Note 
that the distance unit is number of cells. 

Clusters of statistically significant high values of zs are defined based on a criti-
cal value M*, selected based on the probability of finding a value greater than M* at 
a selected significance level �. The M* is computed by (Rogerson 2001):

� 	 � 	 � 	 � 	
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where A is size of the DEM region in cell size units, D is the caliper diameter (D is 
half of the sum of the grid rectangle height and width), � is the standard deviation 
of the Gaussian kernel, � and � are the probability density function and the cumu-
lative distribution function of the normal distribution, respectively. 

The third term of Equation (5) is small enough to be discarded (Rogerson 2001), 
therefore, Equation (5) is simplified and approximated to: 
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281.14ln ��� (6) 

Equation (6) is valid only if A is smaller than 10000 or if �� is not smaller than 
one. If A is greater than 10000, the approximation can be only used if:

01.0�
A

t� (7) 

where � t
22

0 ��� ��tis the total smoothing given by , with �0

For most DEMs, A is greater than 10000, and � is expected to be between 1 and 
4. In these conditions, the restriction of Equation (7) is not satisfied, but the critical 

equal to 10/9.
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value computed by the approximation is only slightly smaller than the one from
Equation (6) (Rogerson 2001). 

4. Case Study 

In this paper, clusters of high values of uncertainty in elevation data presented to 
define a spatially distributed accuracy map. The resulting accuracy map is qualita-
tive and highlights regions in the DEM that should be checked carefully. The re-
gion around São José dos Campos, Brazil, was selected due to its diverse geomor-
phological features, with hilly areas, floodplain, escarpments and cuestas.

The analysed elevation is provided by IBGE, the Brazilian Institute for Geogra-
phy and Statistics in 1:50000 scale. The topographic map, identified by the label 
São José dos Campos SF-23-Y-D-II-1, includes a vector file with contour lines 
representing altimetry, and covers the region between coordinates 23° south, 46° 
west and 23°15´ south, 45°45´ west. The contour lines were used to create two 
DEMs with 30 meter spatial resolution. The first one was created using the nearest 
neighbour interpolator and the second with the Triangular Irregular Network (TIN).

The comparison data sets are the SRTM and the G-DEM elevation data. Since 
elevation is considered a random variable, each one of these three data sets repre-
sents independent realizations of the elevation probability density function. There-
fore, the accuracy of the DEM is not relevant to define the clusters. 

SRTM elevation data is generated from data captured by the Shuttle Radar To-
pography Mission and is available globally at 3 arc-second resolution from
ftp://edcsgs9.cr.usgs.gov/pub/data/srtm. The stated accuracy standard for this data
is 16 m vertical 90% linear error. ASTER G-DEM is also available globally, but at 
1 arc-second spatial resolution, from http://www.gdem.aster.ersdac.or.jp. The accu-
racy of G-DEM is estimated to be better than SRTM data; however, since elevation 
is extracted from stereo pairs of images, the accuracy is variable and dependent on 
the quality of the control points. 

4.1. Clustering Analysis of IBGE Elevation

The three DEMs (IBGE, SRTM and G-DEM) were used to define the mean and 
��������������	�
����
��������	������
�������
����
������������
�������������������
cell. Note that since the SRTM has the lowest spatial resolution, the other two 
DEMs were re-sampled and re-projected using the nearest neighbour interpolator to 
coincide with the original SRTM 3 arc-second locations.

The cv of the IBGE elevation was computed at each location using Equation (2). 
Next, the global mean and standard variation of the cv were computed in order to 
compute the zs using Equation (1). The Gaussian kernel was applied to the cv grid 
���
�������������
��������
����������� ����
��������
�������������
���!�����
����c-
������������
�	������������
�	��
����
�������������
���������	��������������������������
1 and 2 were computed using Equation (3). The critical value M* was computed for 
the two �s of the Gaussian kernel (� = 1 and � = 2), region size A equal to 90000 
(grid size is 300 rows by 300 columns) and significance level � equal to 0.05, using 
Equation (6). The critical value M* are 4.692 for � = 1 and 4.529 for � = 2.
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Figure 1: Clustering analysis of the IBGE DEM interpolated by nearest neighbour. (a) zs
distribution. (b) Contour lines in pink colour, clusters of low accuracy for � one in thick dark 
lines, and for ��two in thin dark lines. (c) Colour legend for the zs represented in (a).

Figure 2: Clustering analysis of the IBGE DEM interpolated using TIN. (a) zs distribution. 
(b) Contour lines in pink colour, clusters of low accuracy for ��one in thick dark lines, and
for ��two in thin dark lines. (c) Colour legend for the zs represented in (a).

4.2. Results Analysis

Figure 1 shows the clustering analysis of the IBGE DEM interpolated by the 
nearest neighbour method. The zs statistics is shown in Figure 1.a, with the colour 
code shown by Figure 1.c, and it indicates that there must be regions of significant 
low accuracy. Using the critical value M* equal to 4.692 for ���
������������
�����
significant low accuracy (� = 0.05) are 1.8176 Km2 in size, and are inside the thick 
dark lines in Figure 1.b. The thin lines in Figure 1.b indicates the regions of signifi-
cant low accuracy (� "�#�#$%���������� (critical value M* = 4.529), with 14,158 Km2

in size. Note the particular geomorphology of the case study region indicated by the 
pink colour lines representing the contour lines from the IBGE topographic map.

(a) (b)

-1.982                                                                                           6.899

-1.940                                                                                           10.55

        (c)

(a) (b)

        (c)
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The clustering analysis of the IBGE DEM interpolated using TIN is shown in 
Figure 2. The spatial distribution of the zs is shown in Figure 2.a, with the colour 
code shown by Figure 2.c. Using M* = 4.692 for � one, the regions of significant 
	������������&' = 0.05) are 1.710 Km2 in size, and are inside the thick dark lines. 
���� ���
� 	�
��� �
�������� �����
����� ���
�����
�� 	������������&'�"�#�#$%� ����� two, 
with 12,227 Km2

5.   Conclusion 

in size. Note that the difference in the size between the interpola-
tors is not large indicating that results are not influenced by the interpolators.

This paper proposes a method to create spatially distributed uncertainty informa-
tion for elevation data from any source, in order to complement the information 
about the existing accuracy. Traditionally, accuracy for a data set is stated in terms 
of a global measure. Since there must be areas with lower accuracy in the whole 
region, the spatially distributed uncertainty map created by the proposed method 
can be used to verify if the DEM is suitable for the application or to direct data 
collection to improve data where it is more important.

The method uses the cluster analysis for data in a regular grid proposed by 
Rogerson, 2001. The clusters of low accuracy are detected on a grid of standardized 
measure, the zscore statistics generated from the map of the coefficient of variation
for the DEM to be analyzed. This map of a coefficient of variation is created from 
the local statistics extracted using two another DEMs. In this paper, DEMs from 
SRTM and the G-DEM from ASTER were used to compute the local statistics. 

In the study case, the method showed that can be used to create the uncertainty 
map. These maps can be set by the smoothing defined by the standard deviation. 
Therefore, if the user wants to have smaller clusters, small values of the Gaussian 
kernel standard deviation can be used. In the study case, the regions size decreased 
7 times when the standard deviation changed from two to one (from 12 Km2 to 1.7 
Km2 for the clusters extracted using the TIN interpolation). The numeric results 
indicate that the regions to be carefully analyzed decreased from 12412 Km2 to 12 
Km2
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