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Abstract. Malicious programs pose a major threat to Internet-connected
systems, increasing the importance of studying their behavior in order
to fight against them. In this paper, we propose definitions to the differ-
ent types of behavior that a program can present during its execution.
Based on those definitions, we define suspicious behavior as the group of
actions that change the state of a target system. We also propose a set of
network and system-level dangerous activities that can be used to denote
the malignity in suspicious behaviors, which were extracted from a large
set of malware samples. In addition, we evaluate the malware samples
according to their suspicious behavior. Moreover, we developed filters
to translate from lower-level execution traces to the observed dangerous
activities and evaluated them in the context of actual malware.

Keywords: computer security, malware analysis, behavioral traces

1 Introduction

Malicious software are a major threat to Internet-connected systems. This kind
of software ranges from worms and trojan horses to rootkits and botnets and
is generically referred to as “malware”. Thousands of malware variants arise
periodically, hindering their analysis and the creation of effective vaccines by
antiviruses companies. Publicly available dynamic analysis systems (e.g., Anu-
bis [12], CWSandbox [17], Norman [1], ThreatExpert [2]) provide reports that
give an overview of a malware sample behavior. However, they present too many
technical details and/or too much information in a slew of activities that may
confuse a user on finding the activities that characterize the malignity of an
analyzed sample.

We propose a simpler and focused approach to describe malicious activities
that is based on the higher-level behavior extracted from analyzed malware sam-
ples. Thus, we can bridge lower-level and specialized actions, such as a kernel
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function call or a write operation performed into a specific registry key, to under-
standable, identifiable high-level activities that emphasizes only the suspicious
behavior. This can be useful to allow the identification of malware variants, to
speed up incident response and to help in the development of malware removal
procedures.

The main contributions of this article can be summarized as follows:

– We introduce a new notion of “execution behavior”, splitting it in subsets
according to the kind of interference perceived on the target system—active,
passive and neutral–modelling a program’s behavior in a simplified way.

– We characterize suspicious behavior by narrowing the scope of malware be-
havioral analysis to a reduced set of actions that change the state of a system.

– We define a “knowledge base” of network and system-level actions that cor-
respond to intelligible activities (behavioral filters) that extends the set of
behaviors described on the field’s literature.

– We developed a prototype tool that is added in our dynamic analysis system
to apply the behavioral filters and automatically extract potentially dan-
gerous activities (i.e., suspicious behaviors) from the execution trace of a
malware sample.

Additionally, we tested our proposed behavioral filters on a large set of ac-
tual malware samples that were gathered from malware collection honeypots [15]
and spam attachments and then executed in our dynamic analysis system, BehE-
MOT [3]. At the end of this process, we pinpoint the malicious activities obtained
from these samples and leverage results that allow us to analyze nuances among
malware from different sources and with distinct assigned labels.

2 Related Work

In [9], the authors propose a theoretical model to perform behavior-based de-
tection of infectious actions. Their work presents a strong mathematical basis
to define different types of behavior and is an extension of a previous work that
was only able to handle sequences of bytes [8]. The limiting factor is that their
new approach requires the malware’s source code, which is sometimes difficult
to obtain.

The authors of [11] describe a malicious behavior model that is based on
attribute grammars. They propose an abstraction layer to bridge the semantic
gap between the behavior-based detection of malware and subtleties of platforms
and systems. They trace a behavior by executing the sample inside a virtual
machine and monitoring its system calls, which are then translated to their
malicious behavior language. They examine and formally define four types of
malware behavior.

It is worth to note that, in our approach, we do not consider the malware
sample’s source code, as it would require a decompilation step that could turn
into an impossible task, due to the use of packers. Therefore, our work is based
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solely on the behavior logged during the execution of a program, which can
change due to peculiarities of the monitoring environment [4].

In [14], the authors propose to bridge the semantic gap using behavioral
graphs that were manually built to correlate common actions found in malicious
bots, such as e-mail sending and data leaking. They evaluate seven kinds of
behaviors related to bots, thus their coverage is mostly based on network actions.

Bayer et al. [13] provide a view on different behaviors presented by almost
one million malware samples that were analyzed by Anubis over 2007 and 2008.
They produced statistics and analyze trends, showing the percentage of observed
samples that performed a variety of actions, from a simple file creation to the
installation of a Windows kernel driver. We took some of their observed behav-
ior to compose our suspicious activity definitions, but instead of analyzing the
overall scene we tried to delve into behaviors that we believe that pose more risk
to target systems.

Although the literature’s research works are very rich in their definitions and
findings, we believe that there is still a lack of focus on the practical applicability
of dynamic analysis systems as true generators of heuristics to detection schemes.
In addition, previous works on the subject take only specific malware classes
into account, e.g., spyware [7], bots [14], worms/viruses [11]. In this paper, we
propose to provide high-level behavioral filters to find suspicious behaviors bound
to malware samples independently of their assigned classes.

3 Behavioral Traces

To the extent of this work, we use behavioral traces to pinpoint the security-
relevant activities that a program performs. In this section, we explain how we
extract a malware’s execution trace to identify suspicious activities. Also, we
define different types of “behavior” within the scope of this article.

3.1 Extraction and Processing

The first step to extract a behavioral (execution) trace from a malware sample is
to run it inside a controlled environment and to monitor the important security-
related actions performed during a limited execution time. As the prevalent kind
of current malware targets Microsoft Windows-based systems, we chose them as
the main focus of interest. Hence, we developed a framework [3] to capture some
selected system calls through SSDT hooking [10] and to translate them to high-
level actions, logging the produced trace.

The monitored system calls considered in this paper are related to operating
system’s entities—file, process and registry—that cover a great variety of poten-
tially suspicious actions and are registered in a trace. This trace is, in its raw
form, an ordered set of the performed system calls and their parameters, which
need to be processed to represent a higher-level behavior. To monitor a malware
sample’s network behavior, we developed a layer driver4 which is interposed be-

4 Layered drivers are kernel modules that can manipulate data flows from the operat-
ing system through a specific driver, such as a device driver.



4

tween the network interface driver and the Microsoft Windows operating system.
Thus, our layer driver is able to capture all network operations that a malware
sample performs during its analysis and that are directed to the drivers that
control the devices related to TCP and UDP communication. Therefore, it is
possible to obtain network connections and attempts to open local ports made
during the analysis time.

To process a behavioral trace we need to translate the monitored system
calls into meaningful actions. This is done to facilitate the interpretation of the
extracted behavior, as in some cases more than one system call may represent
a single operation. Each action is represented by a number of attributes: the
timestamp, to identify the action’s position in the chain of captured events, the
source process, which represents the performer of an action, the operation—
i.e., the type of interaction, like CreateProcess, DeleteFile and ConnectNetwork—
between the source and the target of that operation.

To illustrate this process, let’s suppose a program “mw.exe” that wants to
create a process “mwproc.exe”. To do this, it calls the ZwCreateProcess routine.
When this happens, our tool intercepts the system call and produces an action
formatted in the following way:

<ts>,C:\mw.exe,CreateProcess,C:\mwproc.exe

In the same way, the routines ZwSetValueKey and ZwDeleteKey are trans-
lated to the WriteRegistry and RemoveRegistry operations, respectively.

The advantage of processing system calls in the above way is that when
several routines serve to the same purpose, we map them to a single operation.
For example, if an action’s goal is to delete a file, this can be accomplished by
ZwOpenFile, ZwDeleteFile or ZwSetInformationFile with carefully crafted
values as their parameters. By abstracting from the particular variant chosen by
a monitored program, we are able to present a much more meaningful result,
i.e., a DeleteFile operation.

3.2 Definitions of Behavior

The general behavior of a program consists of the set of actions performed during
its execution by an operating system. In the previous section we defined “action”
based on some attributes (timestamp, source, operation, target). Thus, an action
“α” is a tuple composed by the values of the aforementioned attributes and
can be represented as α = {ts, src, op, tgt}. Therefore, to define a behavior we
proceed as follows:

Let B be the general behavior of a malware sample Mk, and A
Mk be the set

of N actions αi performed during its execution, so that AMk = {αi}i=1..N and
B(Mk) = AMk .

The set of actions that compose a behavior can be divided into groups ac-
cording to their nature: if an action interferes with the environment, i.e. changes
the state of the system, it is part of an active subset of the behavior. This is



5

the case of actions that involve a file write, delete or creation, for instance. Oth-
erwise, the action is passive, meaning that it gathered a piece of information
without modifying anything, for example, read, open or query something.

However, there is a subset of the general behavior that is neutral, i.e., the
actions can be either active or passive, but they do not lead to a malign outcome.
The neutral behavior contains common actions that are performed during a
normal execution of any program, such as to load standard system libraries, to
read or to configure registry keys and to create temporary files.

3.3 Suspicious Behavior

When a malicious program is executed, each of its actions can be considered
suspicious. These actions constitute a suspicious behavior that, when analyzed,
may reveal important details related to the attack. For instance, a malware
sample that downloads another piece of malicious code and use it to spread itself
has to perform a network connection, to write the file containing the malicious
code on the compromised system and to launch the process of the downloaded
file that will handle the spreading process.

Therefore, we are only interested in actions that modify the state of the
compromised system (the active subset of the behavior, that is, BA) at the same
time that we want to avoid the actions that are considered normal to a program’s
execution (the neutral behavior, that is, BN ). Thus, we define the suspicious
behavior of a malware sample Mk as BS(Mk) = BA(Mk)− BN (Mk). From the
analysis of each obtained BS(Mk), we extract a set of network and system-level
actions that represent dangerous activities to the security of a system.

4 Malicious Activities

During execution, a software piece interacts actively and passively with the op-
erating system. Thus, benign software presents active behavior such as creating
new registries, writing values to registry keys, creating other processes, accessing
the network to send debug information or to search for updates, downloading
and writing new files etc.

Therefore, as any piece of software does, malware interact with the operating
system in the same way. However, malware interactions cause undesired changes
on the operating system settings. These changes must be detected to allow for
a damage report and to begin an incident response procedure.

Hence, it is necessary to pinpoint the actions that correspond to dangerous or
malicious activities, so as to allow better understanding of the malware diversity.
To do this, we defined an initial set of network and system-level activities that
present a certain level of risk and that can be obtained from selected actions
extracted from the suspicious behavior.
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4.1 Network-level Risky Activities

Evasion of Information. Information related to the operating system or the
user can be evaded through the network, such as the hostname, hardware data,
network interface data, OS version and credentials. An adversary may use this
information to choose targets for an attack, or to map her compromised machines
(e.g., zombie computers that are part of a botnet). In a directed attack, sensitive
documents may be stolen and transferred to an FTP server, for instance. Also,
information can be evaded through a POST (HTTP method) performed on a
compromised server, a FTP transfer, an SQL update query to a remote database
or an e-mail message sent through an open SMTP server.

Scanning. Worm-like malware need to perform scans over the network to find
possible targets for spreading. This involves the search of known vulnerable ser-
vices or unprotected/open network applications. Apart from spreading, a mal-
ware sample may also perform scans to find out a network topology or to find
trampoline systems that could be used to launch attacks anonymously.

DoS. There are classes of malware (e.g., bots) whose features include flooding
attacks to perform denial of service (DoS). This is oftenly done through the
sending of an overwhelming amount of UDP packets, for example, by the nodes
(infected machines) of a botnet.

Downloading. Some types of malware are composed by several pieces that ex-
ecute specialized tasks. Thus, the first piece—the downloader—is responsible for
downloading the other components, such as libraries, configuration files, drivers
or infected executable files. This compartimentalization is also used by malware
developers to try to avoid antiviruses or other security mechanisms. This activity
can also indicate a drive-by download, which is a download commonly performed
during a user’s Web browsing without his/her knowledge.

E-mail Sending. A malicious program can communicate with its owner through
e-mail to announce the success of an attack or to send out sensitive data from
the compromised machine. Also, a compromised machine can be used as an un-
solicited e-mail server, sending thousands of spam on behalf of an attacker that
is being paid for the service. The victim’s machine is “rented” and acts as a
provider of spam or phishing, aiming to distribute commercial messages or even
malicious links or attached infected files [6].

IRC Connection. If an attacked system becomes part of a botnet, it needs to
“phone home”, i.e., to contact a C&C5 server to receive commands, updates etc.
Botclients commonly connect to an Instant Relay Chat (IRC) server that acts
as a C&C.
5 Command and Control that manages the bots that belong to a botnet.
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4.2 System-level Risky Activities

Name Resolution File Modification. A trojan-like malware sample can
modify the network name resolution file to forward users to a compromised
server and lure them into supplying their data. These can be credentials (e-mail,
online banking, Web applications such as Facebook and Twitter) or financial
information (credit card numbers). This kind of modification tricks users to
access fake online banking sites as a direct cause of malware known as “bankers”.

Evidence Removal. Some malware disguise themselves as system processes to
deceive security mechanisms or forensic analysis: they can “drop” a file that was
embedded in a packed way inside their main file or download the actual malicious
program from the Internet. In some cases, these droppers/downloaders remove
the evidence of compromise, deleting the installation files after the attack. In
addition, a malware sample that is able to identify that it is being analyzed may
also remove itself from the system.

Critical Registry Key Removal. There are registry keys that are critical
to the normal operation of a system, e.g., the one that allows initialization in
secure mode. The removal of this kind of key can cause instability in the system
and inconvenient obstacles during a disinfection procedure.

Security Mechanisms Corruption. To compromise a target system while
avoiding detection, malware authors usually try to identify and disable security
mechanisms. This activity can be accomplished by turning off the system firewall
or known antivirus engines, through the termination of their processes and/or
removal of the associated registry keys.

Browser’s Proxy Modification. The effect of this activity is similar to that
described on “name resolution file modification”. The difference here is that a
malware sample loads a cofiguration file in the browser’s memory (when it is
running) that changes the proxy on the fly, resulting in an automatic redirection
of the user to a malicious site. Malware usually do this using PAC (proxy auto-
config) files, which are effective on different operating systems and browsers.

Driver Loading. Drivers are kernel modules that access the most privileged
level of a system. A driver makes the interface between the operating system
and the hardware, such as network interfaces, graphic cards and other devices.
However, drivers are also used by rootkits, a kernel-level kind of malware that can
hide their processes, files and network connections in order to remain undetected.

5 Experimental Results

We collected 1,641 malware samples from July, 2010 to July, 2011—463 from hon-
eypots (collector), 1,182 from spam messages (phishing)—and executed them
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in our dynamic analysis environment, which is a Qemu-emulated [5] MS Windows
XP SP3. This execution produced a behavior trace for each analyzed sample,
which were also sent to the VirusTotal service (http://www.virustotal.com) so
that we could get their Kaspersky Anti-Virus (KAV) label. We then applied the
behavioral filters described in Section 4 to the traces and analyzed the network-
and system-level malicious activities. We discuss, the observed malicious activ-
ities over the full malware set in Section 5.1 and the results regarding different
malware classes (attributed by KAV) in Section 5.2.

5.1 Malicious Activities’ Pinpoint

The purpose of the behavioral filters is to map suspicious actions performed
by a program to intelligible activities. These filters provide high-level and useful
information about a malware sample execution and describe its presented behav-
ior. For example, if a malware sample tries to turn off the security mechanisms
natively running on a Windows OS to avoid detection and weaken the machine
defenses, it commonly launches a script that performs some shell commands,
such as net stop ‘‘Security Center’’, net stop SharedAccess and netsh

firewall set opmode mode=disable. Also, a sample might perform changes
on the FirewallPolicy\StandardProfile registry keys, for instance, by set-
ting the value of EnableFirewall to “0”.

This kind of action causes a positive match against our behavioral filter
and leverages, in the particular aforementioned example, “Security Mechanism
Corruption” as a malicious activity found in the evaluated sample. When the
“pinpointing” process is finished, we have a list of dangerous (and potentially
malicious) activities for each sample from our malware dataset. This process
produced the results from Table 1, divided by source (phishing or collector),
when applied to the complete dataset.

Table 1. Malicious activities discovered through the pinpointing process on our col-
lection; sum may be higher than 100%.

Level Activity Phishing (%) Collector (%)

NT1 (Evasion) 3.72 6.69
NT2 (Scan) 14.21 50.54

Network NT3 (DoS) 37.22 29.37
NT4 (Download) 1.10 9.07
NT5 (E-mail) 1.95 3.45
NT6 (IRC) 0.42 9.28

OS1 (Hosts File) 1.10 0.43
OS2 (Evidence) 15.06 4.32

System OS3 (Critical Key) 0.34 0.43
OS4 (Security Bypass) 4.48 5.18
OS5 (PAC) 0.25 0
OS6 (Driver) 5.16 0
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We notice that most of the analyzed malware samples performed the same
set of malicious activities, despite their source. Those activities are attempts
to scan networks for vulnerable services or UDP flooding (NT2, NT3) at the
network-level and self-removal and security mechanism bypass (OS2, OS4) at the
system-level. From the samples that came from our collectors, 15.15% did not
present any behavior, either due to crashing during the execution, to corrupted
binaries or to the use of anti-analysis techniques. From the samples obtained by
e-mail crawling (phishing set), 12.01% either presented an incomplete trace or
did not match any of our defined suspicious behaviors.

5.2 Malware Classes Behavior

As mentioned previously, we obtained the KAV labels from VirusTotal for each
malware sample from our dataset. Then, we processed these labels to extract only
the assigned class (e.g., trojan, worm, backdoor etc) according to the Kasper-
sky naming rules [16]. These rules define a naming system that is composed by
[Prefix:]Behavior.Platform.Name[.Variant], where the parameter Behav-
ior represents the malware class.

Hence, we grouped those samples whose assigned class is the same and ana-
lyzed the ten more populated classes, which correspond to more than 85% of the
samples (excluding the ≈ 7% that are unknown to antivirus engines at the time
of this analysis, i.e., August, 2011). After that, we tested our behavioral filters
on each sample of the ten selected classes to extract their malicious activities
(defined in Section 4).

We show the network-level malicious activities performed by the different
classes in Table 2 and the system-level ones in Table 3, where a checkmark (X)
denotes that at least one of the samples assigned to the class (rows) performed
the suspicious activity (column) and a blank entry denotes that this behavior
was unmatched.

Table 2. Union of network-level risky activities per malware class.

Class NT1 NT2 NT3 NT4 NT5 NT6

Worm X X X X X
Backdoor X X X X X X

Trojan X X X X
Downloader X X X X

Virus X X
UNKNOWN X X

Packed X X
Gamethief X

Banker X X X
Dropper X X X
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Table 3. Union of system-level risky activities per malware class.

Class OS1 OS2 OS3 OS4 OS5 OS6

Worm X X X X X
Backdoor X X X X

Trojan X X X X X
Downloader X X X X

Virus X X
UNKNOWN X X X

Packed X X X
Gamethief X X X

Banker X X X
Dropper X X X X

These tables are the union of the pinpointed malicious activities from a spe-
cific AV-assigned class, i.e., if at least one sample from the assigned class per-
formed the activity, then we put a checkmark. The ideal situation happens when
a malware class is characterized by a specific behavior, for instance, a downloader
obtains something from the Internet and a worm tries to spread. Although this
may be true, antivirus labels are not good to separate malware in meaningful,
representative classes as the assigned name can confuse and mislead the user
about the actual behavior of a sample.

Thus, if we take a closer look on the tables’ results, it is worth noting that
there are classes whose samples share a great amount of suspicious activities
among each other. To illustrate this, lets analyze the three most populated
classes: worm, backdoor and trojan. From Table 2, it seems that worms dif-
fer from backdoors only by “NT6”, whereas trojans differ from worms by “NT5”
and from backdoors by “NT5” and “NT6”. However, due to the fact that our
results are presented as the union of identified suspicious activities, there could
be samples from these three distinct classes that share a common subset of net-
work and system-level presented behavior. One such instance might happen when
some samples from the worm, backdoor and trojan classes perform exclusively
the suspicious network-level activities “NT1”, “NT2”, “NT3” and system-level
activities “OS1” and “OS2”. Therefore, although these samples are classified
by KAV into three distinct classes, if we consider their observed behavior they
should be assigned to a single one. Unfortunately, all antivirus engines share
the same problem, making their malware assigned labels nearly useless to users
when regarding the malicious behavioral information.

Conversely, our approach produces detailed enough information that can pro-
vide a better understanding about the risks related to a program’s execution. It is
also possible to overcome the misclassification of antivirus engines by classifying
the unidentified (UNKNOWN) samples by their traced behavior. This way, our
scheme can be used to generate a malware class characterized by“NT2”, “NT3”,
“OS2”, “OS4” and “OS6”, thus avoiding the false-negative results produced by
antivirus engines.
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It is interesting to notice that in Table 3, as expected from malware that
attack online banking sites, only the bankers presented the behavior labeled as
“OS5” (Browser’s Proxy Modification).

6 Conclusion

In this paper, we divided a program’s execution trace in different types of be-
haviors and proposed the suspicious behavior definition to denote the dangerous
activities that change the state of a system. We leveraged behavioral filters com-
posed by these activities—performed at the network and system-level—to iden-
tify potentially harmful actions and to help with incident response as well as to
provide a better understanding of malware. To evaluate our approach, we tested
it in a dataset of malware collected from different sources. We provided results
that show the percentage of malware samples that presented our behaviors and
that compare them to AV-assigned classes. This latter comparison pointed to
the problems in the current malware naming scheme, which we plan to address
in a future work.
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