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Abstract: In Brazil, plantations of exotic species such as Eucalyptus have expanded 
substantially in recent years, due in large part to the great demand for cellulose and wood. 
The combination of the steep slopes in some of these regions, such as the municipalities 
located close to the Serra do Mar and Serra da Mantiqueira, and the soil exposure that 
occurs in some stages in the Eucalyptus cultivation cycle, can cause landslides. The use of 
a geographic information system (GIS) assists with the identification of areas that are 
susceptible to landslides, and one of the GIS tools used is the spatial inference technique. 
In this work, the landslide susceptibility of areas occupied by Eucalyptus plantations in 
different stages of development in municipalities in the state of São Paulo was examined. 
Eight thematic maps were used, and, the fuzzy gamma technique was used for data 
integration and the generation of susceptibility maps, in which scenarios were created with 
different gamma values for the dry and rainy seasons. The results for areas planted with 
Eucalyptus were compared with those obtained for other land uses and covers. In the 
moderate and high susceptibility classes, the pasture is the land use type that presented the 
greatest susceptibility, followed by new Eucalyptus plantations and urban areas.  
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1. Introduction 

Brazil has more than 6 million hectares of forest planted with species from the genera Pinnus and 
Eucalyptus [1]. The primary purpose of these plantations is the production of cellulose pulp. The 
forests of the genus Eucalyptus are present in different regions of the country at sites with different 
topography and rainfall. In the state of São Paulo, Brazil, these plantations are concentrated in the 
Ribeirão Preto, Botucatu, Vale do Paraíba and São Paulo regions, which, with the exception of 
Ribeirão Preto, are located close to the Serra do Mar and/or Serra da Mantiqueira. 

The Serra do Mar and Serra da Mantiqueira are characterized tectonically by a fault block terrain, 
and their lithology is made up of crystalline and metamorphic rocks, such as gneiss and granite, 
associated with heavily decomposed intrusive rocks [2]. These characteristics, along with the rainfall 
regimen of this region, with an average annual rainfall of 1200 mm, can result in large landslides. The 
disasters that occurred in Caraguatatuba (March 1967, 200 lives lost), Cubatão (February 1994, flood 
of RPBC and interruption in petroleum production with losses of 40 million dollars, according to 
Gramani [3]) and Campos do Jordão (January 2000, with the destruction of many houses) are examples. 

Vegetation cover can control and prevent natural disasters caused by mass movement such as 
landslides on the hillsides of mountainous areas. On the other hand, improper soil management linked 
with natural constraints accelerates the degradation process. Intense and concentrated rainfall, steep 
hillsides unprotected by vegetation, illegal settlements on steep hillsides and lithologic and pedogenic 
discontinuities are some of the conditions that can accelerate erosion processes and, consequently, 
mass movements [4–7]. 

Eucalyptus forests pass through different developmental stages, from deployment to harvest, which 
are characterized by different percentages of soil coverage and leaf biomass. During the harvesting 
period, the erosion rate and landslide frequency increase. Compared with a preserved forest area, the 
rate of erosion in a harvested area can increase by a factor of as much as four [8]. There is concern 
about the increasing area of Eucalyptus plantations in places with steep hillsides in the state of São 
Paulo, as there are no specific studies on the impact of reforestation on mass movement processes. 

Parise [9] highlights four types of landslide maps: maps of inventory, maps of the current 
movements of landslides, maps of susceptibility and maps of vulnerability. Geographic information 
systems (GIS) are an important analysis tool, allowing the mapping of areas that are susceptible to 
landslides using different modeling methods. There are two classifications of such methods in the 
literature: direct and indirect [10]. The direct methods are based on a detailed geomorphological map, 
and the different degrees of susceptibility are mapped with the aid of field surveys. The primary 
disadvantage of these methods is the delay in mapping [11]. The indirect methods are based on the 
mapping of places where landslides have already occurred in the past and the mapping of geological 
and geomorphological characteristics that are directly or indirectly related to hillside stability [12]. 

Approaches to mapping can also be classified as either quantitative or qualitative. A quantitative 
approach uses mathematical tools to estimate susceptibility and includes multivariate statistical methods, 
discriminant analysis, linear regression and nonlinear methods, such as neural networks [6,13,14]. 
Qualitative methods are based on the previous experience of an individual or a group of people and are 
therefore more subjective. Some examples are the WLC (Weighted Linear Combination) and AHP 
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(Analytic Hierarchy Process) methods [15]. Some techniques are classified as semi-quantitative, such 
as fuzzy logic [16–21]. 

Due to the uncertainties in the parameters used in the evaluation of landslides and the non-linearity 
that characterizes this phenomenon, fuzzy logic is considered an effective approach to mapping 
landslides, incorporating expert knowledge in the spatial inference technique and resulting in maps that 
are easy to understand, which are indicated for the analysis of large areas [17]. In Brazil, the most 
common mass movements are shallow translational landslides induced by rainfall, and this work 
predicts this movement. Translational movement represents the most common form among the types of 
mass movement, showing a plane-like surface of rupture, which accompanies, in general, mechanical 
and/or hydrological discontinuities that exist inside the material [18]. In Brazil, there are no ongoing 
studies evaluating the scars caused by mass movements for the purpose of map validation. However, 
susceptibility maps are of extreme importance because they are the basis for the generation of landslide 
hazard maps [6]. 

The present study aimed to map the areas that are susceptible to landslides in places occupied by 
Eucalyptus plantations in different developmental stages in the state of São Paulo using geographic 
information systems (GIS) and spatial inference techniques, and to compare these areas with the areas 
occupied by other land uses and land covers. 

2. Materials and Methods 

The state of São Paulo, located between 53°10′28″ and 43°52′0″W and 19°40′41″ and 25°07′42″S, 
has an area of 248,209 km2. For the present study, the municipalities of the state that contained areas 
with Eucalyptus plantations in terrain with undulating topography were selected (Figure 1).  

Figure 1. Location of study areas in the state of São Paulo. 

 

The western part of the state of São Paulo is located on a 600 km long plateau. The Serra do Mar, 
with abrupt scarps, is located between this plateau and the coastal plain. The Serra da Mantiqueira, also 
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showing scarps in some places, is located in the northeastern part of the state, on the border with the 
state of Minas Gerais (Figure 2). The climate is varied: tropical in the northern region, tropical with 
altitude near the Serra do Mar and Serra da Mantiqueira and sub-tropical in the south. The average 
annual temperature is approximately 20 °C, and the average rainfall is 1,500 mm/year. 

Figure 2. Slope of the state of São Paulo. 

 
2.1. Data Collection 

Initially, a database incorporating all of the information relevant to the study was created, including 
geological, geomorphological, soil, topographic and climatic data as well as the satellite images used 
for mapping areas with Eucalyptus plantations. The data were collected for the entire state and, 
subsequently, only the selected areas were evaluated. 

SPRING (Geo-Referenced Information Processing) software [23] was used for this study because it 
offers a database option, a series of image processing functions, thematic data manipulation, numerical 
terrain modeling, storage and retrieval of spatial data with attribute tables, modeling and the use of 
networks and spatial analyses. SPRING, developed by the National Institute of Space Research, is 
public domain and can be acquired free of charge at www.dpi.inpe.br/spring. 

Geological data at a 1:750,000 scale were obtained from the Brazilian Geological Survey, available 
on the website of the CPRM (Research and Mineral Resources Company: www.cprm.gov.br). A 
geomorphological map, at a 1:1,000,000 scale, was acquired from the IPT (Technology Research 
Institute) [24]. A soil map at a 1:500,000 scale was acquired from the IAC (Agronomic Institute of 
Campinas) [25]. Topographical data were obtained from the Topodata website (www.dsr.inpe.br/topodata), 
where the original data from the SRTM (Shuttle Radar Topography Mission) were processed within 
the scope of Topodata [26] for the derivation of geomorphometrical variables, including slope (zenith 
angle) and vertical and horizontal curvatures. 

Serra da Mantiqueira 

Serra do Mar 
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Historical climate data were obtained from the IAC (www.ciiagro.sp.gov.br) and INMET (National 
Institute of Meteorology) [27], which together have represented 103 sites in the state of São Paulo for a 
period of approximately 25 years. The monthly average rainfall data from all sites were entered into 
the database and, subsequently, two distinct periods were defined: a rainy season (December, January 
and February) and a dry season (June, July and August), and the average rainfall for each period was 
calculated. The individual data were spatialized for the whole state by means of interpolation 
(weighted average) and then were sliced into classes (every 50 mm), thereby generating two thematic 
maps: one for the rainy season and the other for the dry season. 

To identify the different developmental stages of Eucalyptus plantations, Landsat TM 5 satellite 
images [28] for three years (2006, 2007 and 2008, one image per year) were used (Table 1). The 
images were geo-referenced using the Geocover images available on the INPE Image Processing 
Division website (www.dpi.inpe.br/geocover) as the basis and were then inserted into the database. 
The average image registration error was less than 1 pixel, that is, less than 30 m. 

Table 1. Path/row and dates of passage of the Landsat/TM5 satellite. 

Orbits/Points 
Dates of Passage 

2006 2007 2008 
218/76 21 July  25 August 12 September 
219/76 14 September 16 August 18 August 
220/76 9 May 20 August 10 September 
220/77 5 September 20 June 25 August 
221/77 12 September 29 July 28 May 

In Brazil, the majority of Eucalyptus plantations are made from clones that have been genetically 
improved for the climate and edaphic conditions of the planting location. The Eucalyptus cultivation 
cycle lasts an average of 7 years, and 3 rotations are possible with the same clone. The year 2008 was 
adopted as the mapping basis, whereas the other two years (2006 and 2007) were used for a temporal 
study of the plantations. Thus, it was possible to identify three development stages: adult Eucalyptus, 
young Eucalyptus and new Eucalyptus and/or exposed soil (Figure 3). These three stages were selected 
due to the limitations to the identification of targets via remote sensing. The map was generated 
through automatic image classification, and manual editing was used to correct some areas with 
mistakes in classification. The procedure adopted for this study was that adopted by Kronka et al. [29], 
where areas of reforestation throughout the state of São Paulo were mapped using satellite images. The 
areas occupied by Eucalyptus plantations in 16 selected municipalities are presented in Table 2 as well 
as their percentages of the municipalities’ areas. 

The presence or absence of vegetation is one of the factors that define the stability of slopes. In 
general, the less vegetation cover that is present on a slope, the greater its susceptibility to mass 
movements. Vegetation protects the soil from factors that can accelerate landslides by intercepting 
rainwater, reducing its kinetic energy and promoting the infiltration of water into the soil. Soil without 
vegetation becomes more susceptible to soil compaction due to the impact of raindrops and the 
consequent increase in runoff, which also leads to erosion. The volume of material removed and 
transported by rainwater is related to the density of vegetation cover and the steepness of the hillside, 
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so that with the removal of vegetation, these processes become more intense, especially in locations 
with steeper slopes [30]. 

Figure 3. The different stages of the Eucalyptus cycle in remote sensing images.  
(a) Color composition RGB 543 year 2006; (b) year 2007; (c) year 2008; (d) cycles of 
Eucalyptus mapped. 

 
 

Table 2. Quantification of areas with Eucalyptus in the studied municipalities. 

Municipality Area Occupied by Eucalyptus (ha) % of Municipality Area 
Angatuba 19,427 18.86 
Areias 1,336 4.27 
Biritiba Mirim 5,236 16.53 
Botucatu 20,414 13.74 
Capão Bonito 32,110 19.59 
Itapetininga 15,034 8.38 
Itararé 11,641 11.62 
Itatinga 33,776 34.45 
Mogi das Cruzes 6,841 9.36 
Paraibuna 12,216 14.93 
Redenção da Serra 3,393 10.92 
Salesópolis 10,090 23.47 
Santa Branca 5,014 18.06 
São Luís do Paraitinga 5,988 9.55 
Silveiras 3,300 7.89 
Taubaté 3,694 5.89 
TOTAL 188,795 14.75 

a) b)

c) d)
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In two of the successional stages of Eucalyptus, the early one observed in the plantations and the 
one at the stage called “young”, approximately 2 to 3 years of age, there is a large quantity of leaf 
biomass, but the soil is still vulnerable, due to the absence of understory or the complete blockage of 
sunlight. In the adult phase of Eucalyptus, the quantity of leaf biomass decreases, allowing sunlight to 
reach the ground and the understory to develop, which reduces the soil’s vulnerability. 

For the other land uses and land cover classes present in the state, the map generated by  
Vieira et al. [31] was used. This map included other projects developed at INPE (National Institute for 
Space Research) such as the CANASAT (www.dsr.inpe.br/mapdsr) for sugarcane mapping  
purposes (in this study, the sugarcane was reclassified as agriculture) and SOS Mata Atlântica 
(www.sosmatatlantica.org.br), where all of the remnants of natural forest of the Mata Atlantica were 
mapped. Therefore, the final map of the state of São Paulo includes the following classes: forest, pasture, 
urban area, agriculture, adult Eucalyptus, young Eucalyptus and new Eucalyptus and/or exposed soil. 

Due to the different scales associated with the various datasets considered in this work, the results 
refer to a scale compatible with the smallest scale of the input data, i.e., 1:1,000,000 which is 
equivalent to a 500 m pixel. 

2.2. Generation of Weighted Maps 

Before producing the susceptibility maps, the thematic maps related to landslide susceptibility must 
be weighted. The weights vary from 0 to 1, where 0 indicates classes with no relationship to landslide 
occurrence and 1 indicates classes with a high relationship to landslides. This weighting transforms the 
thematic maps onto a numerical grid, in which each class of map receives a weight (from 0 to 1). Table 3 
displays the susceptibility values for all classes present in the different themes addressed in this study. 

For the geological data, the work of Crepani et al. [32], which evaluated the relationships of 
different types of rock with landslides, was considered as the basis for the weighting. Igneous rocks 
had the lowest landslide probabilities, and intermediate metamorphic and sedimentary rocks had a 
lower resistance to weathering, i.e., a greater landslide probability. 

The geomorphological units presented in the study area were defined by Ponçano et al. [24], and the 
assigned weights were based on the terrain, dissection and slope shapes present for each 
geomorphological class. For the different soil types, the weights were based on the premise that soils 
with a higher amount of sand tend to be more susceptible than soils with more clay. These weights 
were also based on the study of Crepani et al. [32]. 

The topography was addressed through horizontal and vertical curvatures and the slope. The 
horizontal curvature refers to the divergent/convergent character of flows of matter on the ground 
when analyzed on a horizontal projection (Figure 4). This curvature is related to the processes of 
migration and accumulation of water, minerals and organic matter in soil caused by gravity, and plays 
an important role in the resulting water balance and pedogenesis process [33].  

Concave areas are more susceptible to landslides than convex areas, receiving the highest weights in 
the susceptibility table. Terrain with convergent profiles presents a higher risk of sliding incidents than 
divergent profiles, thus receiving higher susceptibility weights [7] (Table 3). The slope map  
was divided into 5 classes in accordance with those suggested by Binda and Bertotti [34] and  
Kanungo et al. [14], with weights attributed to each slope class. 
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Table 3. Collected data and their weights in relation to landslide susceptibility. 

Theme  Weight Theme  Weight 
Geology Type of rocks  Soil Class Acronym  
 Igneous  Haplic Cambisols CX 0.8 
Rhyolite, granite,  0.37 Melanic Gleisol GM 1.0 
dacite   Yellow Latosol LA 0.4 
Granodiorite, quartz,  0.40 Red Latosol LV 0.4 
diorite   Red-yellow Latosol LVA 0.4 
Migmatite, gneiss  0.43 Red Nitosol NV 0.7 
Phonolite, syenite  0.47 Mesic Organosol OU 1.0 
 Metamorphics  Red-yellow Argisol PVA 0.7 
Mylonites, quartz  0.57 Lithic Neosol RL 1.0 
muscovite, biotite   Quartzarenic Neosol RQ 1.0 
Staurolite schist,  0.67 Urban URB 1.0 
schists garnetiferous      
Phyllite, metasiltstone  0.70 Slope Class  
Marble  0.77 Higher than Mountainous 1.0 
Quartz sandstone  0.80 45°   
Conglomerate  0.83 20 to 45° Heavy undulation 0.8 
Siltstones, mudstones  0.90 8 to 20° Undulation 0.5 
Shales  0.93 3 to 8° Smooth undulation 0.3 
Limestone, dolomite  0.97 0 to 3° Plane 0.2 
 Sedimentary     
Sediments  1.0 Vertical Curvature   
Unconsolidated:   Very Convex 0.5 
alluvium, colluvium   Convex 0.3 
   Flat 0.2 
Rainfall Intensity (mm/month)  Concave 0.8 
0–50 0.37 Very Concave 1.0 
50–75 0.40   
75–100 0.43 Horizontal Curvature  
100–125 0.47 Very Divergent 0.5 
125–150 0.50 Divergent 0.3 
150–175 0.53 Flat 0.2  
175–200 0.57 Convergent 0.8 
200–225 0.60 Very Convergent 1.0 
225–250 0.63   
250–275 0.67 Land use 
275–300 0.70 Agriculture 0.8 
300–325 0.73 Urban Area 1.0 
  Adult Eucalyptus 0.5 
  Young Eucalyptus 0.7 
  New Eucalyptus /soil exposed 1.0 
  Forest 0.4 
  Pasture 0.7 
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Table 3. Cont. 

Theme  Weight 
Geomorphology Class  
Reliefs of Aggradation/Continentals Flood plain 0.10 

Relief of degradation in dissected 
plateaus/hill relief 

Tabular Landforms 0.31 
Broad Hills 0.32 
Medium Hills 0.36 
Small Hills with Local Ridges 0.34 
Parallel Small Hills 0.35 
Small Isolated Hills 0.33 

Relief of degradation in dissected 
plateaus/Relief of hills with smoothed 
hillside 

Elongated Hills 0.42 

Relief of degradation in dissected 
plateaus/Small hill relief 

Low Small Hills 0.51 
Elongated Parallel Small Hills 
Alongados Paralelos 

0.54 

Elongated Small Hills and Ridges 0.53 

Relief of degradation in dissected 
plateaus/hill relief 

Side slopes 0.64 
Parallel hills 0.65 
Hills with Restricted Mountains 0.66 

Relief of degradation in dissected 
plateaus/Mountainous relief 

Elongated Mountains 0.71 
Mountains with deep valleys 0.73 

Residual relief supported by individual 
lithologies/Sustained by massive basaltic 
plateaus 

Basaltic tables 0.81 

Transitional relief/Scarp Scarp 1.00 
Scarp with Ridges 1.00 

Figure 4. Vertical and horizontal curvatures and their terrain combinations. 

 

The volume of material removed and transported by rainwater is related to the density of vegetation 
cover and the slope declivity, and with vegetation removal, these processes become more intense, 
especially in areas with steep slopes [30]. The weights assigned to each land use class depend on the 
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type of vegetation coverage. The young stage of Eucalyptus plantations, approximately 3 to 4 years 
old, has a large amount of leaf biomass, but the soil is still susceptible due to the absence of an 
understory resulting from the complete blocking of sunlight. However, in the adult stage, the amount 
of leaf biomass decreases, allowing sunlight to reach the soil and the understory to develop, which 
decreases the soil’s susceptibility. 

The climatic thematic maps for the rainy and dry seasons were weighted using the criteria of 
Crepani et al. [32]. The landslide hazard increases substantially during the rainy season because rain is 
an erosive agent and a landside trigger. Thus, the greater the rainfall intensity, the higher the weight. 

2.3. Generation of Susceptibility Maps 

The eight themes of geology, land use and land cover, geomorphology, soil, slope, vertical and 
horizontal curvatures and rainfall intensity, were combined to generate a final susceptibility map using 
the fuzzy gamma operator. 

The fuzzy operator was introduced by Zadeh [35] and allows a more realistic treatment of imprecise 
and subjective data that are part of analyses of physical environments. Fuzzy logic is able to model real 
problems where uncertainties and inaccuracies are present [36]. 

Inaccuracy limits, called fuzzy sets, admit partial pertinence and are mathematically defined, as if Z 
denoted an object space; however, the set A in Z is the set of ordered pairs (Equation (1)) [36]. 

A = (z, F
AMF (z)) for all z ∈  Z (1) 

The pertinence function MFF 
A  (z) is known as “the degree of membership of Z in A”. The fuzzy 

membership value must lie in the range from 0 to 1 and reflects the degree of certainty of membership. 
The fuzzy theory employs the idea of member functions and expresses the degree of membership with 
respect to some attribute, in this case landslide susceptibility. 

The fuzzy gamma operator consists of the product of the fuzzy algebraic sum and the fuzzy product. 
Equation (2) represents this operator. 
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where γ is a parameter within the range (0,1). The first term of the equation is named the fuzzy sum 
and the second term is the fuzzy product. When γ = 0, the fuzzy combination is equal to the product 
and when γ = 1, it is equal to the sum.  

For Bonham-Carter [37], the values in the range from 0 to 0.35 show a “diminutive” character, i.e., 
they are always less than or equal to the smallest input fuzzy member; the values in the range from 0.8 to 
1.0 have an “increasing” character, in which the output value will be equal to or greater than the value 
of the largest fuzzy member input values, and the range from 0.35 to 0.8 does not have an “increasing” 
or “diminutive” character. 

Susceptibility maps were generated with values of gamma equal to 0.7 and 0.8 for each season 
(rainy and dry). These input values do not have a diminutive or increasing character and were used in 
works from Lee [38], Pradhan et al. [39] and Pradhan [40]. After the generation of maps, they were 
divided into susceptibility classes, as shown in Table 4. 
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Table 4. Ranges adopted in the slicing process. 

Susceptibility Class Range  
Very Low 0–0.2  
Low 0.2–0.4  
Moderate 0.4–0.6  
High 0.6–0.8  
Very High 0.8–1.0  

Susceptibility maps were intersected with the land use map so that areas of Eucalyptus could be 
evaluated and compared with other uses. For comparison, uncertainty maps were generated both for 
the dry season and for the rainy season, highlighting areas that maintained the classes in the two maps 
(gamma values of 0.7 and 0.8) and the areas that switched classes between maps, generating areas of 
uncertainty, in accordance with the suggestion by Meirelles et al. [41]. 

3. Results and Discussion 

The land use and land cover map of the studied municipalities is presented below (Figure 5). 
Approximately 33.3% of the total area is occupied by agriculture (4,266 km2), 28.2% by pasture  
(3,608 km2), 19.9% by forest (2,554 km2), 7% by adult Eucalyptus (897 km2), 4.4% by young 
Eucalyptus (568 km2), 3.3% by new Eucalyptus and/or exposed soil (423 km2), 2% by surface water 
(257 km2) and 1.6% by urban areas (212 km2). These results show that almost 50% of the studied 
municipalities have some type of cropland (including reforestation of Eucalyptus for commercial 
purposes). 

Figure 5. Land use and land cover map for the studied municipalities. 

 

The maps generated for the dry period for gamma values equal to 0.7 and 0.8 are presented in 
Figure 6. In the map generated with a gamma value equal to 0.7, the results show that 34% and 60% of 
the area was classified with very low and low susceptibility, respectively, whereas 5% of the study 
area had moderate susceptibility. In the map generated with a gamma value equal to 0.8, only 5% of 
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Agriculture and pasture were the land use types with more area susceptible to landslides, which was 
shown on all of the generated maps. 

Eucalyptus in its initial stage or at harvest time (new Eucalyptus/exposed soil) is associated with the 
most exposed soil. Therefore, these areas are more susceptible to landslides, and this development 
stage presents the greatest susceptibility. Generally, the areas occupied by Eucalyptus plantations are 
associated with low values of susceptibility. 

The fuzzy gamma technique map overlay proved satisfactory but requires prior user experience to 
assign weights to the different classes that are present within each of the used themes (geology, 
geomorphology, etc.). This technique is recommended for working with environmental data, where the 
information is imprecise and there are strict limits between one class and another. The variance of the 
values of gamma allows the user to work with the error in the data during the map overlay process, 
generating pessimistic (γ = 0.7) and optimistic (γ = 0.8) scenarios with lower and higher gamma 
values, respectively, and in the rainy season, increasing the area’s susceptibility to landslides. 

The maps generated by this study could be used to assess which factor or set of factors contributes 
to an increased susceptibility to mass movements in the area of study. 
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