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Abstract

Multi-particle collision algorithm (MPCA) is applied to design an optimum architecture for a
supervised ANN. The MPCA optimization algorithm emulates a collision process of multiple par-
ticles inspired in processes of a neutron traveling in a nuclear reactor. The procedure to carry out
the automatic configuration for multi-layer perceptron (MLP) neural network is applied to identify
the vertical temperature profiles are obtained from measured satellite radiance data. The MLP-NN
is trained with data provided by the direct model characterized by the Radiative Transfer Equation
(RTE). The MLP-NN results are compared to the ones computed using regularized inverse solu-
tions. In addition to synthetic data (corrupted by noise), real radiation data from the HIRS/2 (High
Resolution Infrared Radiation Sounder) is used as input for the MLP-NN to generate temperature
profiles that are compared with the temperature profiles measured by a radiosonde. The comparison
between the results obtined with automatic process and previous configuration chosen by an expert
is evaluated.

Keywords: Atmospheric temperature profile, artificial neural network, optimized topology, inverse
problem.

1 Introduction

During the last decades, artificial neural networks (ANN) models have been one of the most techniques
commonly used from the Artificial Intelligence, and nowadays, it is under intense research worldwide.
Although there are a lot research in this area, there are still many questions about the ANN models
that need to be better addressed. One of the relevant research topic on ANN models is the optimal or
close optimal architecture. The process of obtaining an appropriated neural network topology to solve
a specific problem is a complex task, and usually requires a great effort from the designer to determine
the best parameters, and it is also necessary a previous knowledge about the problem to be treated.

The process for searching and definition of an optimal architecture for an ANN is very relevant,
demanding an intensive research about computational efficiency of the model [1].

There are many algorithms in the literature for the ANN training aimed the improving of the ability
of generalization and for the control of an adequate architecture specification, such as: Pruning [3]:
makes adjustment of neural network by modifying its structure, the training begin with an oversized
architecture and the weights are eliminated until the capacity of generalization can be increased; Weight

Decay suggested by [3]: the algorithm is similar to the Pruning, where the cost function and weight vector
are modified; Early Stopping proposed by [11]: the scheme performs the early interruption of training,
without changing the ANN architecture; Cross Validation proposed by [9]: it is known to improve the
generalization, where the data set is separated in two data sets, training data and validation data, the
validation set is responsible for evaluating the performance of the models.

The training algorithms based on techniques of multi-objective optimization have been applied for the
learning. This strategy is an alternative to address the problem of finding an optimal architecture and to
present a good capacity of generalization. Reference [10] presents a new learning algorithm to improve
the generalization of the model of Multi-Layer Perceptron (MLP). This algorithm uses the training
techniques of multi-objective optimization, which proposes to control the complexity of neural networks
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using simultaneous minimization of training error and norm of weight vector. The authors argue the
necessity of the use of more than one objective function for dealing with the problem of supervised
learning. Braga [12] presents a new constructive method and pruning approaches to control the design
of Multi-Layer Perceptron without loss in performance. The proposed methods use a multi-objective
approach to guarantee generalization. The pruning methods are able to simplify the network topology
and to identify linear connections between the inputs and outputs of the neural model.

The computational complexity of the architecture of a neural network can be based on the number
of neurons and the number of epochs, as proposed by [1]. This feature is applied to design an ANN, and
it is employed to the problem of recovering atmospheric profiles of gas concentration (or the soil source
term for emission or absorption). The objective function is the summation of square difference (between
the target and the ANN output) and complexity.

This paper proposes a method based on stochastic optimization techniques to identify optimal archi-
tecture for an ANN. A penalty term is used to evaluate the objective function to avoid a very complex
network architectures. The minimization of this function involves the balance between the training error
and generalization error. Multiple Particle Collision Algorithm (MPCA) is the optimization algorithm
used.

The MPCA is a meta-heuristic proposed by Luz [4], and here it is applied for optimization of ANN
models. The parameters to be estimated in the worked ANN are: number of hidden layers, number of
artificial neurons, type of activation function, learning and momentum rates.

An Artificial Neural Network (ANN) is used to solve the inversion using satellite data, designed by
employing the MPCA. The temperature retrievals obtained with automatic configuration are compared
to the ones obtained by Shiguemori et al. [12], where an empirical ANN was used to configure the ANN.

2 Artificial Neural Network

Artificial Neural Networks are computational techniques that present a mathematical model inspired by
the neural structure of biological organisms, acquiring knowledge from the experience.

ANN are parallel distributed systems, composed of neurons or processing units, which calculates
certain mathematical functions, typically nonlinear. These neurons can be divided into one or more
layers interconnected by synaptic weights (connections), which store the knowledge represented in the
model and serve to balance the input received by each network neuron [2].

The artificial neuron model basically consists of a linear combiner followed by an activation function
given by:

yk = ϕ





n
∑

j=1

wkj xj + bk



 (1)

where wkj are the connections weights, bk is a threshold parameter, xj is the input vector and yk is the
output of the kth neuron, the ϕ(·) is the function that provides the activation for the neuron. Neural
networks will solve nonlinear problems, if nonlinear activation functions are used for the hidden and/or
the output layers.

The property of primary significance for a neural network is the ability to learn from the environment,
improving its performance through the learning. A neural network learns from its environment through
an interactive process of adjustments applied to its synaptic weights and bias levels [2]. In the context
of neural networks, the training process can be defined as a set of well defined rules for solving a specific
problem of learning.

The training algorithms are divided into two classes: supervised learning and unsupervised learning.
In the supervised learning, input pattern and the desired output are provided by an external supervisor
to set the parameters of the network, in order to find a connection weight between pairs of input and
provided output. For this type of training, the output is compared with the desired response and the
weights of connections are adjusted by minimizing the error. In the training with unsupervised learning,
only the input patterns are presented to the network: there is no an external supervisor to indicate the
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desired output for input patterns.

2.1 Multilayer Perceptron Network

Multilayer perceptrons have been applied successfully to solve several and difficult problems by training
them with a supervised manner with a highly popular backpropagation algorithm. This algorithm is
based on the error correction learning rule.

The backpropagation learning error consists of two steps through the different layers of the network:
a forward step and a backward step. For the forward step, an activity pattern (input vector) is applied
thought the nodes of the network, and its effect propagates on the entire the network, layer by layer.
Finally, a set of outputs is produced as the actual responde of the network. During the backward step,
the synaptic weights are all adjusted in accordance with an error correction rule. The response of the
network is subtracted from a desired responde to produce an error signal. This way, the error signal
is backward neuron through the network, against the direction of synaptic connections. The scheme is
named the backpropagation error [2].

Figure 1 shows the architecture of a MLP network comprising: an input layer, where the patterns
are presented to the network, an intermediate layer, which works as a recognizer of characteristics that
are storaged in the synaptic weights and account for most of the processing, and an output layer, where
the results are presented.
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Figure 1: Multilayer Neural Network

In order to evaluate the performance of the ANN models, the mean square error is used:

Egen =
1

N

N
∑

k=1

(yk − ŷk)
2

(2)

where N is the number of grid points, yk is the true observational value, and ŷk is the estimation
computed by the neural model.

3 Multiple Particle Collision Algorithm

High-performance computing systems are a reality in several research centers. Some of these systems
are able to provide up to petaflops, enabling the solution of large problems through new algorithms that
can take advantage of these environments.

The Multi Particle Collision Algorithm (MPCA) is a stochastic optimization method developed by [4],
and the algorithm was codified to run in a high-performance computing environments. This version of
the standard PCA [8] uses multiple particles in a collaborative way, organizing a population of candidate
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solutions. The PCA was inspired by the traveling process (with absorption and scattering) of a particle
(neutron) in a nuclear reactor. The use of the PCA was effective for several test functions and real
applications [7].

The PCA starts with a selection of an initial solution (Old-Config), it is modified by a stochastic
perturbation (Perturbation{.}), leading to the construction of a new solution (New-Config). The new
solution is compared (function Fitness{.}), and the new solution can or cannot be accepted. If the new
solution is not accepted, the scheme of scattering (Scaterring{.}) is used. The exploration around closer
positions is guaranteed by using the functions Perturbation{.} and Small-Perturbation{.}. If the new
solution is better than the previous one, this new solution is absorbed. If a worse solution is found, the
particle can be sent to a different location of the search space, it enables the algorithm of escaping a
local minimum [5].

The implementation of the MPCA algorithm is similar to PCA, but it uses a set with N par-
ticles, where a mechanism to share the particle information is necessary. A blackboard strategy is
adopted, where the best-fitness information is shared among all particles in the process. This process
was implemented in Message Passing Interface (MPI), looking for application into a distributed memory
machine [6]. The pseudo-code for the MPCA is presented by Table 1.

Table 1: MPCA: pseudo-code for the algorithm.
Generate an initial solution: Old-Config
Best-Fitness = Fitness{Old-Config}
Update Blackboard
For n = 0 to # of particles

For n = 0 to # iterations
Update Blackboard
Perturbation{.}

If Fitness{New-Config} > Fitness{Old-Config}
If Fitness{New-Config} > Best-Fitness

Best-Fitness = Fitness{New-Config}
End If
Old-Config = New-Config
Exploration{.}

Else
Scattering{.}

End If
End For

End For

4 Configuring the MLP-NN by MPCA

An ANN architecture is not previously known. Usually, the best architecture is empirically determined.
However, the problem of identification of an optimized ANN architecture can be formulated as a search
in the space of solutions, where each point represents a possible architecture. If a performance value
is associated with each point or solution, in such a way that this value is based on some optimality
criterion (complexity), it is possible to construct a hyper-surface, where the highest point (or the lowest)
is equivalent to the best architecture. Therefore, the problem can be treated as an optimization problem,
and the goal is to find the optimum value in this surface, which represents the best combination of
variables [1].

This paper uses an stochastic method called MPCA. The method is enable to make the balance of the
behavior between global search (exploration) and local search (exploitation), this balance is essential to
prevent that the search will not be stop in a local optimum, enabling the searching for global optimum [4].
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The optimization problem is formulated by an objective function and a set of restrictions that need to
be satisfied. The objective function used in this article is a combination of two factors: square difference
between the target values and the ANN output, and a penalty factor. The latter factor is expressed
by [1]:

fobj = penalty ×

(

ρ1 × Etrain + ρ2 × Egen

ρ1 + ρ2

)

(3)

where ρ1 = 1 and ρ2 = 0.1 are factors that modify the relevance allowed to the training and generalization
error. There is great flexibility in the evaluation of the objective function, because the training error
is directly related to the network memory capacity and generalization error refers to the ability of the
ANN to identify the patterns that are similar to ones used in training. The function fobj consists of the
sum of squared errors for training and generalization multiplied by the penalty, who is responsible by
the complexity of neural network architecture in question. The minimum value of fobj corresponds to a
simple architecture that displays consistent behavior in the solution space combined with low training
error and generalization. Thus, it is a simple architecture, where the total weights and bias time of
learning can be reduced [?].

The MPCA is employed to evolve: (i) the number of neurons in the intermediate (hidden) layer,
(ii) the learning rate parameter η, (iii) momentum constant α. Allowed values for these parameters are
shown in Table 2

Table 2: Parameters to define a network architecture.
Parameter Value
Neuron in the hidden layer | 1 | . . . | 32 |
Learning ratio: η | 0.0 | . . . | 1.0 |
Momentum constant: α | 0.1 | . . . | 0.9 |

The MPCA is used to generate a set of candidate solutions that correspond to an ANN architecture.
For each solution, the ANN is activated, and the training process starts until the stopping criterion is
satisfied (error minimum or total epochs). With the values obtained by ANN, the MPCA calculates the
objective function, up dating the parameters for the ANN. This process is repeated until an optimal
value for the objective function is found.

5 Neural Network for Atmospheric Profile Retrieval

Regularized inverse solution deals with the problem of retrieving vertical temperature profiles from
remote sensing data, where the integral radiative transfer equation leads to the inverse solution of a
highly ill-conditioned Fredholm integral equation of the first kind. For this paper, the inverse solution
is computed by using a MLP-NN.

5.1 Data for training

The experimental data is simulated by adding a random perturbation to the exact solution of the direct
problem, given by:

Ĩ = Iexact + Iexactσµ (4)

where σ is the standard deviation of the noise and µ is a random variable taken from a Gaussian
distribution, with zero mean and unitary variance. All numerical experiments were carried out using
σ=0.05.

The direct problem is described by the radiative transfer equation (RTE). It is described using
the linear integro-differential Boltzamnn equation [13]. However, depending on the range of satellite
observation – infrared, in our case – the RTE can be simplified. The Schwarzchild’s equation is a RTE
version where the scattering phenomenon can be neglected, having a local thermodynamic equilibrium.
This means that the atmosphere behaves as a black body, following the Plank’s law, relating the radiances
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with the body temperature. The calculation of radiance values from associated temperatures is expressed
by [13]:

Iλ(0) = Bλ(Ts)ℑλ(ps) +

∫ 0

ps

Bλ[T (p)]
∂ℑλ(p)

∂p
dp (5)

where, Iλ is the value of the spectral radiance, subscript s denotes surface; p is the considered pressure;
ℑ is the transmittance for a given atmospheric layer that is a function of the wavelength and the
concentration of absorbent gas, which usually decreases exponentially with the height. In pressure
coordinate, the transmittance may be expressed by:

ℑλ(p) = exp

[

−
1

g

∫ p

p0

kν(p)q(p)dp

]

(6)

where kν is the absorption coefficient, q is the ratio of gas mixture, g is the acceleration of the local
gravity, and p0 is the pressure on the top of the atmosphere; B is the Planck’s function (Eq. 7), which
is a function of the temperature T and wavelength λ:

Bλ(T ) =
2hc2/λ5

[ehc/kBλT − 1]
(7)

with h being the Planck’s constant; c is the light speed; and kB is the Boltzmann’s constant. Equation
(5) is discretized using central finite differences:

Ii = Bi,s(Ts)ℑi,s +

Np
∑

j=1

(

Bi,j + Bi,j−1

2

)

[ℑi,j −ℑi,j−1] (8)

where i = 1, ..., Nλ, Ii ≡ Iλi
, Nλ is the number of satellite channels, Bi,j = Bλi

(Tj), ℑi,j = ℑλi
(pj),

and Np is the number of atmospheric layers considered. It is assumed that each atmospheric layer has
a characteristic (constant) temperature Tj to be computed.

A training set is built up from Eq. (4) and it is called SDB1 (Synthetic Dataset 1). Another dataset
is used: the TIGR database - with 861 profiles, from which only 324 are chosen for the learning step. In
addition, a third dataset is considered combining the both previous database (SBD1+TIGR).

Figure 2 [12] shows the layers used for comparasion, where the error of temperature profiles is
computed for each layer, with Layer-1 [1000 hPa, 500 hpa]; Layer-2 [500 hPa, 250 hpa]; Layer-3 [250 hPa,
85 hpa]; Layer-4 [85 hPa, 20 hpa]. This feature is important because the main i nterest for metheorological
purposes are the layers below p = 100 hPa, where 1 hPa = 100 Pa.

6 Estimation Using Real Satellite Radiance Data

Inversion dealing real satellite radiance data, from the High Resolution Radiation Sounder (HIRS-2) of
the NOAA-14 satellite, have been performed to evaluate the accuracy of the multilayer perceptron neural
network. HIRS-2 is one of the three sounding instruments from the TIROS-TOVS (Operational Vertical
Sounder) satellite system. Results for ANN designed by MPCA are compared to in situ radiosonde
measurements and results obtained by Shiguemori [12], who obtained an empirical ANN configuration.

The number of observations corresponds to a fraction of the number of temperatures to be estimated.
For instance, in the example presented hereafter, 40 temperature values are estimated from 7 radiance
measurements.

The results presented in this section take in consideration the average of 10 experiments with seeds
generate different random numbers and experimental data generated artificially. The parameters used
are: 4 particles; 4 processors; 500 iterations. The stopping criterion used was the maximum number
of evaluations of the objective function. The algorithms are implemented in Fortran 90, and computer
tests were conducted under Linux operating system. The best network architecture found corresponds
to the network parameters configuration shown in the Table 3.

Figure 3 shows the results obtained with the two architecture configurations determined by MPCA
and by empirical configuration (performed by an expert). As it can be seen, the results are in a good
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Figure 2: Layers of atmospheric profile

Table 3: Configuration Architecture
Parameter ANN MLP - MPCA ANN - Empirical
Hidden Layers 1 1
Neuron in 1 hidden layer 1 7
Learning rate η 0.0054 0.4
Constant momentum α 0.136 0.6
Activation function Logistic Logistic
Mean Square Error 0.000014 0.5170

agreement. The procedure of an automatic method to identify a good configuration for the ANN does
not require the supervision of an expert. It is possible to notice a reasonable agreement between ANN’s
retrievals and the radiosonde measurements.

7 Conclusions

This paper deals with an automatic scheme to identify the ANN architecture. The problem is formulated
as an optimization process. The stochastic technique MPCA was employed to address the solution of
the optimization problem.

The scheme to identify an automatic ANN configuration was applied to atmospheric temperature
profile identification. The results are shown in figure 3, where the good performance to determine an
appropriate ANN is verified.

The automatic method to identify a configuration for the ANN does not require the help of an expert.
This special issue allows the application of ANN technique for a larger community. Additionally, some
solution can be found that could never be tested by a human being.
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[5] Luz E. F. P., “Meta-heuŕısticas paralelas na solução de problemas inversos”. D.Sc. thesis on Applied

Computing – Instituto Nacional de Pesquisas Espaciais, March-2012.

[6] Sambatti S. B. M., “Diferentes estratégias de paralelização de um algoritmo genético epidêmico
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