Towards an automatic evaluation of Web applications

Leandro Guarino de Vasconcelos
Universidade Federal de Itajuba
Cx. Postal 50 - 37500-903 - Itajuba-MG
le.guarino@gmail.com

ABSTRACT

Evaluating the usability of computer applications using tra-
ditional laboratory-based tests is costly and time consuming.
For modern Web applications, usually developed, tested and
deployed in “Internet Time”, this approach is simply not
feasible. A more effective way to evaluate the usability of
Web applications consists in gathering information from the
user’s interactions and automatically processing this data in
order to detect usability problems in the execution of pre-
defined tasks. The reported solutions based on this approach
usually fail on providing efficient tools for the definition of
tasks, specially in large and dynamic Web applications. In
order to tackle this problem, we developed USABILICS, a
system targeted for the automatic remote evaluation of usa-
bility based on an interface model. The proposed model
allows the definition of tasks using a simple and intuitive
approach, which can be applied to large and dynamic Web
applications. USABILICS analyzes the execution of tasks
by calculating the similarity among sequence of events pro-
duced by users and those previously captured by evaluators.
Based on this analysis, USABILICS provides an usability
index, as well as recommendations for solving usability pro-
blems detected on the execution of each task.

Categories and Subject Descriptors
H.5.2 [User interfaces|: Evaluation/methodology

General Terms

Human Factors, Design, Measurement

Keywords

Remote usability evaluation, Interface model, Task analysis,
Usability problems, Usability index

INTRODUCTION

The Web has been experiencing a continuous and impres-
sive growth in the last decade. One of the reasons for this

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’12 March 25-29, 2012, Riva del Garda, Italy.

Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

709

Laércio Augusto Baldochi Jr.
Universidade Federal de ltajuba
Cx. Postal 50 - 37500-9083 - Itajuba-MG
baldochi@unifei.edu.br

growth is the availability of tools and facilities for the crea-
tion and publishing of information on the Web. More than
simply facilitating the creation of home pages, these tools
makes it straightforward to build full-fledged Web applica-
tions. As a result, more and more people without a Web de-
velopment background are publishing content on the Web.
In this scenario, usability principles are rarely considered in
the development process, resulting in Web application inter-
faces that tend to present usability problems.

For modern Web applications, usually developed, tested
and deployed in “Internet Time”, regular approaches for the
evaluation of usability, based on laboratory tests, tend not to
be appropriate, as they demand an amount of effort and time
that developers are not willing to spend. An option to tackle
this problem is using remote automatic or semi-automatic
usability evaluation tools. According to Andreasen et al.
[1], these tools allows evaluating a large number of users by
a low cost, as users and evaluators may be separated in time
and space. Paternd & Paganelli [8] showed that automatic
evaluation provides useful information for the identification
of problems in Web interfaces.

Tools developed for providing remote usability evaluation
usually capture log information on the client using addi-
tional applications that run in background, gathering in-
formation about the user’s interaction [6]. The captured
logs are sent to server-side applications, where they may be
processed in different ways. An approach that is effective
towards identifying usability problems consists in analyzing
the captured events according to a task model, which is pre-
viously defined for the application under evaluation. The
comparison between the sequence of events performed by the
end user and the sequence of events defined on the model
may indicate eventual usability problems. WebRemUSINE
[7] and AWUSA [12] are examples of tools that exploits this
approach. These tools, however, use procedures for defining
tasks that do not scale well for large and dynamic Web ap-
plications, in which tens or even hundreds of tasks need to
be defined.

Towards addressing this problem, we developed USABI-
LICS [16], a system that aims at facilitating the remote
evaluation of usability in large and dynamic Web applica-
tions. In order to address the drawbacks of the task models
proposed in the literature, USABILICS provides an inter-
face model that supports the definition of tasks in a simple
and intuitive way. Based on this model, evaluators are able
to define tasks by simply interacting with the application’s
graphical interface, in the same way end users are supposed
to do. Another important aspect of our model is the fact

that it considers the similarity among the possible paths of a
given task, allowing a generic approach for the definition of
similar paths, what reduces considerably the time taken to
define tasks, as a group of similar tasks may be represented
by a single generic task.

The evaluation of usability is performed by comparing the
sequence of events captured during the definition of tasks to
the corresponding sequence gathered from the user intera-
ctions. In order to capture these interactions, USABILICS
provides a tool that executes in the client browser perfor-
ming the logging of events. Logs are periodically compressed
and sent to a server-side application which executes an al-
gorithm that uncompress the logs and, based on our inter-
face model, searches the logs for sequences of events that
may correspond to attempts for accomplishing a pre-defined
task. Whenever a task is identified, its sequence of events
is compared to the sequence recorded for the definition of
the corresponding task. As a result, we provide a metric,
which we called usability indez, that allows evaluating both
the efficiency and the effectiveness of each task of a Web ap-
plication and, as a consequence, allows evaluating the Web
application in its entirety.

USABILICS has been tested in different Web applications.
The obtained results, when compared to laboratory-based
tests, shows that our approach is effective towards identi-
fying tasks that present usability problems, and, most im-
portantly, the extent of these problems. However, simply
pointing out a problem may not be enough when the appli-
cation developer is not experienced in usability evaluation.
To address this problem, we extended USABILICS in order
to provide automatic recommendations that aim at impro-
ving the usability of applications that present low usability
indexes. Experiments performed with the new version of the
system, report that these recommendations were effective
towards raising the usability index of tested applications.

This paper is organized as follows. Section 2 presents
USABILICS in detail, explaining its interface model, the ap-
proaches for task definition and task analysis, and, finally,
presenting how the system compute the usability index for
tasks and applications. Section 3 presents our approach for
implementing automatic recommendations to tackle usabi-
lity problems in Web applications. Section 4 presents a
summary of the literature in the field of remote usability
evaluation, comparing and contrasting USABILICS to other
relevant systems. Lastly, Section 5 brings our concluding re-
marks and discuss future work.

2. THE USABILICS SYSTEM

Our approach for the usability evaluation of Web applica-
tions is based on a three-step procedure: (i) task definition;
(ii) gathering of data produced by users while performing
the defined task; and (iii) task analysis. The definition and
the analysis of tasks are complex issues, specially in large
Web applications. To cope with this problem, we developed
an interface model which abstracts structural patterns we
found on Web Applications. Our model, called COP, is pre-
sented on next section. Following, we detail the steps of our
usability evaluation approach.

2.1 The COP interface model

A Web application is composed of a collection of pages,
which in turn are composed by elements such as hyperlinks,
tables, forms, etc. These elements, specially in dynamic

710

Web applications, are commonly shared among two or more
pages. This pattern is intensified when Content Manage-
ment Systems (CMS) and templates are used. Our approach
to provide usability evaluation for Web interfaces exploits
this pattern in order to facilitate both the definition and the
analysis of tasks.

According to the 4.01 HTML specification, components
of a page may be grouped by the elements DIV and SPAN.
Moreover, the specification defines that the attributes id and
class are identifiers for page elements, and the id attribute
needs to be unique within a page. Considering both these
properties and the pattern we observed in the structure of
Web applications, we proposed the COP model, an interface
model based on three main concepts: Container, Object and
Page. An object is any page element that the user may in-
teract with, such as hyperlinks, text fields, images, buttons,
etc. A container is any page element that contains one or
more objects. Examples of containers are table cells, layout
divisions in a page, lists and forms. Finally, a page is an
interface that contains one or more containers.

In any given page, an object may be unique (using its id) or
similar to other objects in terms of formatting (i.e. border or
font type, color, etc.) and/or in terms of content (i.e.: texts
and images). The same applies to containers: a container
may be identified in a unique way, or it may be classified as
similar to other containers, but only in terms of formatting.
Finally, it is worth noticing that objects and containers may
appear in one or more pages of a Web application. Table 1
abstracts the details of the COP model. The left column of
the table presents the three main concepts of the model and
the right column depicts the options that are applicable to
each concept when defining a task.

Table 1: Concepts of the COP model
Concept Options
Object A single object
Objects with the same content
Objects with the same formatting
Any objects
A single container
Containers with the same formatting
Any containers
A single page
Any pages

Container

Page

The structure of the COP model is presented in Figure
1. Lines that connect the graphical elements represent a
possibility of association among them. A Unique object is an
object that is identified in a unique way. Unique objects, as
well as similar objects in terms of formatting or content may
be kept within a single container, which is also identified in
a unique way (Unique container), or in two or more Similar
containers. Figure 1 also shows that a container may belong
to a unique page or take part in several pages of a Web
application.

Considering the W3C Recommendation for the constru-
ction of hypertext-based documents [9], it is possible to say
that the concepts of the COP model are sufficient to identify
any element of a Web interface. Therefore, we advocate that
our model is adequate for the definition of tasks in Web ap-
plications. Defining a task means specifying an optimal path
for accomplishing the task. An optimal path for a given task

Page Page P age

Unigque Similar Sln'ular
cantainer cantainer cnntalner

Slmllar
n:-rrnat

Slmllar

Unique
d f.:n:lntent

object

Figure 1: The COP model

is the sequence that presents the smaller number of events
to perform the task. Exploiting this model, USABILICS
provide a simple and very intuitive way to define a task: it
simply captures the interaction of the developer while she
performs the task.

Defining tasks in such a way that they can be evaluated
in an automatic or semi-automatic fashion is challenging
because a task may be accomplished using different paths.
Therefore, the definition of tasks in large applications may
be exhaustive and the problem tends to be aggravated in
dynamic Web applications, where a lot of elements are usu-
ally shared among different pages. As an example, consider
the definition of the task Buying a product in an e-commer-
ce Web site that has 10,000 products for sale. Individually
specifying all the possible paths to perform this task is vir-
tually impossible. The COP model was tailored to deal with
problems like this. Our approach allows the automatic def-
inition of alternative paths as it considers the similarities
among objets and containers, resulting in a significant redu-
ction of time and effort for the definition of tasks, specially
in large and dynamic Web applications. For this reason, the
USABILICS system is able to define a single optimal path
for the task Buying a product that will work fine for buy-
ing any of the 10,000 products of the application we just
presented.

2.2 Task definition

Defining tasks is the starting point for evaluating the usa-
bility of a Web application in our system. USABILICS pro-
vides a tool which aims at making the definition of tasks
easier. Similar to Google Analytics [4] and WELFIT [11],
this tool is a server-side application that allows users to
subscribe themselves as evaluators of specific Web applica-
tions. For each subscribed application, USABILICS pro-
vides a Javascript code which needs to be inserted in the
pages targeted to be evaluated.

In order to define the optimal path for a task, the evalu-
ator logs in the server-side application and fills in the name
and a description for the task she wishes to define. Fol-
lowing, the selected application is loaded in a new window,
making it possible to start recording the task. Upon fini-
shing the task, the evaluator closes this window, stopping
the recording process. Therefore, the evaluator defines a
task by simply using the application, in the same way end
users are supposed to do. During the task definition, when

711

the evaluator performs an action, such as clicking a button,
she is prompted with options that allows the specialization
or the generalization of the event, as follows:

e consider only this object;

e consider objects with same content;

e consider objects with same formatting;
e consider ANY objects.

For containers and pages, similar options are prompted to
the evaluator, as depicted in Table 1. Therefore, if we con-
sider as an example the event Putting a product in the shop-
ping cart, in an e-commerce application in which all dis-
played products shows a standardized Buy button, when the
evaluator clicks this button and is prompted for her choices,
she may chose Consider objects with same content, Consider
containers with same formatting and Consider ANY pages.
Using these generalization options, the defined task will be
applicable to any product of the e-commerce application.

For a detailed explanation regarding the definition of tasks,
refer to [16].

2.3 Automatic data gathering

Similarly to WELFIT [11] and WAUTT [10], USABILICS
provides a Javascript application that runs attached to the
pages of the applications that are targeted to be evaluated.
This application captures mouse movements, scrollbar move-
ments, resizing of windows and several other events related
to the interaction with components of application’s interface,
as well as events generated by the pages of the application,
such as load and unload. However, differently from WELFIT
and WAUT, we also capture CSS attributes from the ele-
ments of the interface with which the user interacts, as the
positioning, the colors, the fonts and other features related
to the formatting of elements directly interfere in the way
users interact with these elements. Moreover, we use CSS
attributes together with the COP model in the analysis of
tasks, when comparing objects and containers that present
similar formatting, allowing to treat them generically. We
also capture a timestamp associated to each event in order
to check for interruptions during the execution of tasks.

More recently, with the increasing popularity of technolo-
gies such as AJAX, there is a trend for the development
of rich Web interfaces, which allows loading content asyn-
chronously. In order to address both regular and rich in-
terfaces, our approach supports a fine granularity for the
gathering of data, aiming at making it easier to find usabi-
lity problems. Therefore, USABILICS gathers, for instance,
the dimensions of the window of the Web browser for each
captured event, as the user may resize the window causing
a modification in the placement of elements, what may hide
a given element and, as a result, delay the accomplishment
of a task.

In order to identify problems associated to the usage of
specific browsers, including problems associated to the usa-
ge of plugins, USABILICS gathers detailed information re-
garding the browser and its plugins. The information about
plugins are important, since the absence of a needed plugin
may prevent a video or an animation to be displayed, affe-
cting the behavior of the user while she tries to accomplish
a task.

USABILICS’ client side tool was optimized to consume
low CPU resources and to have a small footprint on memo-
ry. This measure aimed at making the tool lightweight, so
that it remains almost imperceptible for the user while she
performs a task. The collected data is compressed and sent
to a server application, which pre-process the information
and stores it in a database.

2.4 Task analysis

According to ISO 9241-11 [5], usability refers to the extent
to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction
in a specified context of use. This definition is related to five
concepts: (1) user: person that interacts with the system;
(2) context of use: users, tasks, equipments (hardware, soft-
ware, materials), physical and social environment in which
the system is used; (3) effectiveness: entails the accuracy and
the completeness with which users achieve specified goals;
(4) efficiency: the relation between effectiveness and the
amount of resources needed to accomplish the goals; and
(5) satisfaction: measures the freedom from discomfort, and
positive attitudes towards the use of the product. Our ap-
proach addresses concepts 2, 3 and 4. USABILICS performs
task analysis comparing the sequence of events recorded for
a given task and the correspondent sequence captured from
the end user interactions. The similarity between these se-
quences provides a metric of efficiency. The percentage of
completeness of a task provides a metric of effectiveness.
The context of use is inferred based on the gathered data
about the operational system, the browser and the speed of
the connection.

In order to compare two sequences of events, USABILICS
calculates the similarity of each subsequence identified in the
end user interaction. The identification of the set of sub-
sequences that match a given task is performed comparing
the generalization options defined in the COP model applied
both to events produced by the end user interaction and to
events recorded during the definition of the correspondent
task.

For the definition of a task, events such as mouseover,
mouseout, mousemove, among others, are not considered, as
they do not correspond to decisions of the end user. How-
ever, these same events need to be captured during the end
user interaction, as they are important to detect usability
problems. Therefore, considering that (i) the set of the col-
lected information that needs to be compared is slightly dif-
ferent, and (ii) the comparison process takes into account
the generalization options of the COP model, we used four
main factors to calculate the similarity between two events:
the event type, the object in which the event was targeted,
the container of this object, and the page in which the event
occurred. Those factors are important, for instance, to com-
pare an event mouseover related to the end user interaction
and a click event found in the task definition. Besides not
being identical, these events are similar, as positioning the
mouse over an object may indicate that the user was con-
sidering clicking on the object. This example shows that
providing a binary answer (true or false) for a comparison
between two events is not appropriate.

Therefore, when comparing an event performed by the end
user and the corresponding event defined by the evaluator,
we produce a similarity value between 0 and 1. Our ap-
proach to calculate this value is based on the importance of

712

each COP model concept associated to the event. Therefore,
we apply weights for these concepts as follows: 0.1 for the
page, 0.3 for the container and 0.5 for the object. We also
apply 0.1 for the correctness in the type of event. Therefore,
if the event is performed in the correct page, we compute 0.1,
if it is performed in the right container, we sum 0.3, if it is
performed in the right object, we sum 0.5, and if the type of
event is correct — a click, for example — we sum 0.1. In this
case, the result is 1 — the event was correctly accomplished.
It is worth noticing that weights related to containers and
objects have larger values because it is important to make
a clear distinction between events performed close to target
objects (considered similar to the defined events) and those
performed in other containers or in objects placed far from
the target (considered non-similar to defined events).

USABILICS checks the sequence of events for the task
and, for each event considered similar, increments the com-
pleteness counter. In this way, it is possible to determine
whether a task has been successfully completed, and, other-
wise, calculate the percentage of completeness. Generalizing
the similarity between events, we get a measure of similarity
between the sequence of events defined in the task and the
sequence of events produced by the end user. This similarity
of sequences is given by the following formula:

sim(Si,S7) = (SS/QFE) « PC

where, Si is the sequence of events resulting from the end
user interaction; Sj is the sequence of events defined for the
task; SS is the sum of the similarity values of events in Si
and Sj; QF is the quantity of events in Si; and PC is the
percentage of completeness of the task.

By exploiting the similarity among sequences, we pro-
posed an usability index, which is given by the following
formula:

UsabilityIndex = (> sim(S4, S7))/Q1

where QI is the number of times task / was performed by
end users.

The proposed index is an important tool for Web deve-
lopers, as it indicates in a clear and summarized way the
usability of a task. The redesign of an interface, for example,
may benefit from this index, as developers may compare the
index of tasks before and after the redesign, ensuring that
updates do not harm the usability of the application.

In order to validate our approach, we tested USABILICS
in Web applications from different domains, such as e-com-
merce, e-learning and personal blogs [16]. In total, seven
different applications have been used in our experiment.
After defining tasks, we collected the corresponding data
from these sites for more than six months. We then chose
specific tasks — those that presented a larger number of sub-
sequences and, therefore, may be considered more difficult
to be performed — in order to compare the index computed
for these tasks and the results of laboratory-based usability
tests.

The tests were performed using 14 participants, from dif-
ferent ages (19 to 42 years-old), different professions and
having different computer skills. It was found compatibility
between the results of the tests and the corresponding index
for 100% of the compared tasks. Following, we present the
results observed for two different tasks.

For the task Correcting an assignment in an e-learning ap-
plication, USABILICS computed an index of 0.1348 (13.5%).
Analyzing the laboratory-based tests, it was found that 60%
of the users were not able to perform the task using the opti-
mal path and 40% of the users were not able to accomplish
the task at all. Therefore, the low usability index is correct
— this task actually presents serious usability problems. In
the other hand, the task Commenting a post in a blog appli-
cation presented an usability index of 0.7993 (79.9%). The
outcome of the laboratory-based tests showed that 100% of
the end users were able to perform the task using the opti-
mal path, however it was found wrong actions related to
mouse movements and scrolling, what confirms the results
of the calculated index.

3. AUTOMATIC RECOMMENDATIONS

The usability index is a valuable information for Web de-
velopers, as it points out the tasks that present usability
problems, and, most importantly, the extent of these pro-
blems. However, for developers who are not experienced
in usability evaluation, pointing out a problem may not be
enough, as these developers may not be able to perform the
improvements required for solving the problem. In order to
address the needs of these developers, we extended USA-
BILICS so that it suggests measures to tackle the pointed
problems.

As pointed out by Vermeeren et al. [17], when comparing
the sequences of events that compose a task it is possible to
find out three different situations which indicate the occur-
rence of wrong actions: (i) an action does not belong in the
correct sequence of actions, (ii) an action is omitted from
the sequence, (iii) an action within the sequence is replaced
by another action. Therefore, we extended USABILICS for
identifying these three types of wrong actions. Additional
functionalities have been added to the system in order to
keep detailed information concerning aborted interactions
and to register the time taken to perform each subsequence
of a given task. With these extensions, it is possible to
identify the subsequences of a task in which end users have
trouble. Moreover, it is possible to identify objects and con-
tainers associated to each problem and, therefore, provide
detailed recommendations in order to suppress or, at least,
minimize the problem.

Towards identifying relations among wrong actions and
concepts of the COP model, we performed experiments with
two Web applications: (I) an e-learning system and (II)
a Web site for publishing information technology articles.
During 52 days we monitored four tasks, two from each ap-
plication. As a result, we gathered from application I a
total of 1,019 attempts to perform tasks, which resulted on
258,802 log entries, and from application II, a total of 1,605
attempts and 474,437 log entries. Following, we detail the
tasks defined in applications I and II.

Tasks defined for application I:

1. Correcting a student’s assignment

(a) Select the option Correct in main menu

(b) Select a course for correcting assignments and
click on the link Correct

(c) Choose a student’s assignment and click on the
link Correct

(d) Assign a grade and fill up a comment

(e) Click on the button Correct to send the grade and
the comment to the student

2. Sending a mail message for a group of students
(a) Select the option Students information in main
menu
(b) Select a classroom

(c) Check the target students (the ones that will re-
ceive the message)

(d) Fill up the text fields subject and message
(e) Click on the button Send email

Tasks defined for application II:
1. Sign up to receive articles

(a) Click on the link Sign up to receive articles
(b) Fill up the text fields name and email address
(¢) Click on the button Sign up

2. Sending a comment to the author(s) of an article

(a) Select the option Comment in main menu

(b) Fill up the text fields name, email address, subject
and message

(c¢) Click on the button Send email

Comparing the captured tasks to the corresponding de-
fined tasks, we observed a correlation between low usability
indexes and the presence of wrong actions. USABILICS
identified patterns of wrong actions associated to hyperlink
clicks, to the opening of new pages, to the scrolling in pages
and to the interaction with forms. These patterns were clas-
sified in six categories:

1. Clicks in links that do not belong to the optimal path of
the task;

2. Opening of pages that do not belong to the optimal path
of the task, before accessing a link;

3. Opening of pages that do not belong to the optimal path
of the task, before accessing a form;

4. Excessive scrolling before filling a form;
5. Excessive scrolling before accessing a link;

6. Large time interval between requesting a page and the
page load event.

Whenever one of these patterns is found, we identify the
interface element which is most likely involved with the cor-
responding problem. Following, we provide a recommenda-
tion that usually requires an update on the identified object.
The proposed recommendations are enumerated from R1 to
R7, in such a way that, R1 is the recommendation for pat-
tern 1, R2 is for pattern 2, and so forth.

R1. Highlight the link X from other links on page P. Use

icons.

R2. Change the location of the link X on page P. Put it on
a page that is frequently accessed by users.

R3. Change the location of the form F on page P. Put it on
a page that is frequently accessed by users.

R4. Bring the form F to the top of page P. Identify the form
with an adequate title.

R5. Highlight the link X on page P. Try to put the link on
the top of the page.

R6. Optimize the loading of page P.

3.1 Rationale for recommendations

In order to examine the rationale behind the recommen-
dations produced by USABILICS, we refer again to the eva-
luation of tasks in our experiment. For task 1 in application
I, it was found that only 16% of end users that started the
task were able to accomplish it, resulting in a very low usa-
bility index (0.1033). USABILICS pointed out that 36%
of end users have aborted the task in subsequence (b) and
the same percentage have aborted in subsequence (c). In
both cases, the system identified that the wrong actions per-
formed by users were related to scrolling, what indicates that
users might have been experiencing difficulties on finding an
interaction element. Therefore, the system chose recommen-
dation R5: Highlight the link “Correct” on page “index.php”.
Try to put the link on the top of the page. For task 2 in ap-
plication I, the system identified that end users have taken
on average 11 seconds to click on the link that starts the
task, pointing out that the link Students information is not
highlighted from other links, therefore recommendation R1
have been given. Moreover, in subsequence (b) of this task,
it was noticed excessive scrolling associated to the filling of
a form. As a result, recommendation R4 was also displayed
for this task. The usability index for this task was 0.3757.
Only 35% of end users were able to accomplish the task.

The computed usability index for task 1 in application II
was 0.5359. For this task, the completion rate was 100%,
however, it was found wrong actions related to clicking and
scrolling in subsequence (a) and to scrolling in (b). Based
on this findings, R5 — Highlight the link “Sign up to receive
articles“ on page “article20.php”. Try to put the link on the
top of the page — and R4 — Bring the form “SignUp” to the
top of page “article20.php”. Identify the form with an ad-
equate title — were recommended. Only 50% of end users
were able to accomplish task 2 in application II. As a re-
sult, this task presented an usability index of 0.3217. The
low value of the index is also due to the large amount of
wrong actions found on subsequence (b) of the task — mostly
related to the filling of a form. About 47% of the wrong
actions were related to scrolling and 31% were associated
to clicking on non-target objects. Based on these findings,
the systems recommendations were R1 — Highlight the link
“Comment® from other links on “index.php“. Use icons —
and R4 — Bring the form “CommentForm® to the top of page
“index.php ?area=comment®. Identify the form with and ad-
equate title.

3.2 Validating the recommendations

In order to verify the quality of the provided recommen-
dations, we asked developers to update the tested applica-
tions according to the suggestions provided by USABILICS.
After the updates, we performed the same experiments. The
obtained results in this second round of tests are as follows.
For task 1 in application I, the usability index has risen to

0.4679 and the wrong actions previously found did not ap-
pear at this time. However, the system identified a new
problem related to the loading of the page that shows the
list of courses taught by a given teacher, and recommended
R6. For task 2 in application I, the updates were also ef-
fective: the new usability index was 0.5759. The system
pointed out that wrong actions related to scrolling reduced
99% as a result of the recommendation R4. Similarly, the
implementation of recommendation R1 also solved the pro-
blem related to the wrong actions performed before the click
on the link “Students information”. Actually, the amount of
wrong actions detected in this subsequence of the task has
reduced 62%.

The usability index for task 1 in application II has in-
creased to 0.6807. The performed update reduced 88% the
number of wrong actions. Besides the good results in terms
of both the usability index and the quantity of wrong acti-
ons, we observed that the number of registration of new
users has increased after the update. In our opinion, this re-
flects the fact that the redesign has been an important factor
in order to attract more users to the Web site. Task 2 in
application II has also presented improvements after the up-
date: the usability index has risen to 0.6180 and the wrong
actions associated to clicking in non-target links were not
detected anymore. Moreover, the average time for starting
the task has reduced in 3 seconds, validating, therefore, the
effectiveness of the recommendation R1. Updates related
to the positioning of the commentary form, as suggested in
recommendation R4, were also effective towards reducing
the wrong actions associated to scrolling. With the imple-
mented improvements, the mean time to accomplish the task
has dropped 25%. In spite of these good results, about 20%
of the users were not able to fully accomplish the task, what
explains the usability index of 0.6180.

4. RELATED WORK

Remote and automatic or semi-automatic usability eva-
luation is an important tool in order to support the develop-
ment of modern Web applications. According to Ivory and
Hearst [6] the automation of usability evaluation increases
the coverage of evaluated features and, at the same time,
reduces the cost of the evaluation process, as (i) the time
needed to perform usability evaluation decreases significan-
tly, and (ii) the need for expert evaluators is reduced or even
eliminated. Tullis et al. [13] emphasizes the advantages
of remote usability testing, when compared to laboratory-
based testing. According to them, both lab and remote tests
capture very similar information about the usability of a site.
However, remote evaluation is much more cost-effective than
lab tests.

The most used approach for performing remote usability
evaluation is based on capturing the end user interaction
using logs. WELFIT [11], UsaProxy [2], WAUTER ([3] and
WebRemUSINE [7] are examples of tools that exploit this
approach. WELFIT employs a graph-based algorithm for
identifying patterns on the events performed by the end user
in a single page. As a result, it presents a chart that summa-
rizes the most important actions that have been performed.
Comparing to our system, this tool do not consider paths
connecting different pages and do not provide specific infor-
mation concerning usability problems.

UsaProxy is a proxy-based system in which the capture
of events depends on the configuration of the user’s browser

and the usage of a proxy-server. As USABILICS, this sys-
tem performs the analysis of tasks, however, it identifies
elements during the definition of tasks solely based on the
id attribute of the HTML language. Therefore, it is not
capable of treating elements generically, as it is the case in
USABILICS.

WAUTER also performs task analysis in its evaluation
process. For defining tasks, WAUTER exploits a specif task
modeling notation and uses pre-defined heuristics for com-
paring the actions performed by end users to these tasks.
Differently from USABILICS, the approach for the defini-
tion of tasks in WAUTER is complex and time consuming.
WAUTER also presents limitations for the definition of al-
ternative paths for a given taks, specially when dynamic
Web applications are considered.

WebRemUSINE, as USABILICS, relies on a task model
to perform the analysis of tasks. However, for defining tasks
in WebRemUSINE, evaluators need to use a special editor
and a table for mapping entries in the log to defined tasks.
Moreover, end users need to specify which task they are
performing in order to associate the resulting logs to the
correct task. Therefore, WebRemUSINE is not pervasive
to end users and requires a lot of effort from evaluators.
USABILICS, on the other hand, aims at providing usability
evaluation without burdening evaluators and end users.

The literature also reports on systems that perform re-
mote usability evaluation without gathering log data. User-
Zoom [15] and UserTesting.com [14] are examples of such
systems. Towards evaluating an application, these tools pro-
vide a set of questions that end users are supposed to answer
during their interaction with the application. This approach
usually requires the support of expert evaluators in order to
analyze the collected answers. Another drawback is that it
requires an extra effort from the end users.

5. CONCLUSIONS AND FUTURE WORK

The literature reports on several tools for the remote and
automatic or semi-automatic evaluation of Web applications.
These tools, however, present limitations, specially for the
evaluation of large and dynamic applications. In order to
tackle the limitations of these tools, we developed USABI-
LICS. The main goal of our system was performing usability
evaluation without burdening both the application developer
and the end user. Towards this goal, we proposed COP, an
interface model that supports the generalization of similar
tasks. Based on COP, we developed a tool that allows the
definition of tasks in a simple and intuitive way, by simply
interacting with the application’s graphical interface. This
same tool is used for gathering the end user interactions,
generating logs that, finally, are compared to the previously
defined tasks. This comparison provides a metric for the ef-
ficiency and for the effectiveness of each evaluated task. We
called this metric the usability index.

In order to validate our system, we selected tasks from
two different applications and evaluated them using USABI-
LICS. Following, we applied laboratory-based tests to the
same tasks. We noticed an agreement between the results of
the lab tests and the values of the usability indexes [16]. Des-
pite the good results, developers that participated in these
experiments pointed out that USABILICS could be more
effective if it provided recommendations in order to solve
the detected usability problems. Towards answering this
request, we extended USABILICS providing recommenda-

715

tions which detail actions to be performed to tackle specific
usability problems. The experiments performed showed the
effectiveness of our recommendations in order to raise the
usability index of the evaluated applications.

We envision, however, some features that need to be im-
proved in USABILICS. The approach used for defining tasks,
for example, needs to be extended. As of today, our system
supports the definition of tasks composed of linear paths,
where the beginning and the end of a task is clearly defined.
There are, however, tasks that do not present a linear se-
quence of events. Consider, as an example, the task adding
a product to a shopping cart, in an e-commerce application.
The end user may perform a linear sequence of steps in order
to select a product and then add and remove the product to
and from the cart several times. Just because the user is not
sure about buying the product, it does not mean that she is
performing a wrong action. USABILICS is currently unable
to detect this kind of behavior. Therefore, as a future work,
we plan to support the definition and analysis of complex
and non-linear tasks. Besides supporting the repetition of
sequences, we plan to support the definition of tasks that
may be composed by subsequences of events which can be
performed in any order. This is important, for instance, in
order to consider the several correct possibilities of filling a
form.

We also plan to exploit the interaction patterns and the
usage context in order to identify user profiles. Based on
these profiles, we plan to use a design patterns approach
in order to apply successful solutions to applications that
present similar user profiles.

6. ACKNOWLEDGMENTS

The authors would like to thank the Brazilian agencies
FAPEMIG, CAPES and CNPq for the financial support.

7. BIOGRAPHIES

Leandro Guarino de Vasconcelos is a master student
in Computer Science at Universidade Federal de Itajuba
(UNIFEI). He is an assistant professor of information tech-
nology at Faculdade de Tecnologia de Guaratinguetd. He
pursues a specialization in interactive media at Senac, SP.
He is also a systems analyst at Faculdade de Engenharia
de Guaratinguetd, UNESP. His research focuses on human-
computer interaction and usability.

Laércio Augusto Baldochi Jr. is an assistant professor
of Computer Science at Universidade Federal de Itajuba,
where he leads the Usability and Interactive Media Lab. He
is an advisor in the Computer Science Master’s Program of
UNIFEI. He received his PhD in Computer Science from
Universidade de Sdo Paulo. His research interests include
ubiquitous computing, hypermedia systems, semantic Web
and human-computer interaction.

8. REFERENCES

[1] M. S. Andreasen, H. V. Nielsen, S. O. Schrgder, and
J. Stage. What happened to remote usability testing?:
an empirical study of three methods. In Proceedings of
the SIGCHI conference on Human factors in
computing systems, CHI ’07, pages 1405-1414. ACM,
2007.

R. Atterer. Logging usage of ajax applications with
the usaproxy HTTP proxy. In Proceedings of the

2]

WWW 2006 Workshop on Logging Traces of Web
Activity: The Mechanics of Data Collection, 2006.

S. Balbo, S. Goschnick, D. Tong, and C. Paris.
Leading web usability evaluations to WAUTER. In
Proceedings of the Eleventh Australasian World Wide
Web Conference, 2005.

Google. Google analytics.
http://www.google.com/analytics, 2011.

ISO/IEC. 9241-11 Ergonomic requirements for office
work with visual display terminals (VDT)s - Part 11
Guidance on usability. Technical report, ISO, 1998.
M. Y. Ivory and M. A. Hearst. The state of the art in
automating usability evaluation of user interfaces.
ACM Comput. Surv., 33:470-516, 2001.

L. Paganelli and F. Paterno. Intelligent analysis of
user interactions with web applications. In Proceedings
of the Tth international conference on Intelligent user
interfaces, IUI 02, pages 111-118. ACM, 2002.

F. Paterno and L. Paganelli. Remote automatic
evaluation of web sites based on task models and
browser monitoring. In CHI 01 extended abstracts on
Human factors in computing systems, CHI EA ’01,
pages 283-284. ACM, 2001.

D. Raggett, A. L. Hors, and I. Jacobs. The global
structure of an HTML document.
http://www.w3.org/TR/1999/
REC-htm1401-19991224/struct/global.html, 1999.
A. Rivolli, D. A. Marinho, and L. T. E. Pansanato.
Wautt: a tool for tracking the user interaction in
interactive web applications (in portuguese). In
Companion Proceedings of the XIV Brazilian
Symposium on Multimedia and the Web, WebMedia
’08, pages 179-181. ACM, 2008.

716

(11]

(12]

(13]

(14]

(15]

(16]

(17]

V. F. Santana and M. C. C. Baranauskas.
Summarizing observational client-side data to reveal
web usage patterns. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC 10, pages
1219-1223. ACM, 2010.

T. Tiedtke, C. Martin, and N. Gerth. AWUSA: A tool
for automated website usability analysis. In
PreProceedings of the 9 th International Workshop on
the Design, Specification and Verification of
Interactive Systems, pages 251-266, 2002.

T. Tullis, S. Fleischman, M. McNulty, C. Cianchette,
and M. Bergel. An empirical comparison of lab and
remote usability testing of web sites. In Usability
Professionals Association Conference, 2002.
UserTesting.com. Usertesting.com: Low cost usability
testing. http://wuw.usertesting.com/, 2011.
UserZoom. Userzoom: zooming in on the user
experience. http://wuw.userzoom.com/, 2011.

L. A. Vasconcelos and L. A. Baldochi. USABILICS:
remote usability evaluation and metrics based on task
analysis (in portuguese). In Proceedings of the 10th
Brazilian Symposyum on Human Factors in Computer
Systems € 5th Latin American Conference on
Human-Computer Interaction, pages 303-312, 2011.
A. P. Vermeeren, J. Attema, E. Akar, H. de Ridder,
A. J. von Doorn, . Erbug, A. E. Berkman, and M. C.
Maguire. Usability problem reports for comparative
studies: Consistency and inspectability. Human
Computer Interaction, 23(4):329-380, 2008.

