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ABSTRACT. Consistent multi-temporal images are necessary for accurate landscape change detection and temporal signatures analysis. Orbital images have a difficulty

to maintain a temporal information precision due to several interferences that generate missing data. In this paper is developed a program in C++ language for denoising

MODIS temporal signatures considering two-phase scheme for removing impulse and white noise. In the first phase, the median filter is used to identify impulse noise.

In the second phase, the Noise-Adjusted Principal Components (NAPC) transform is applied to eliminate white noise. Because they are two complementary methods,

there is high performance in removing noise. The restored NDVI (Normalized Difference Vegetation Index) signatures showed a significant improvement providing a time

series dataset that can be used to identify and classify the vegetation physiognomic types.

Keywords: NDVI temporal signature, MODIS, digital image processing, noise, MNF.

RESUMO. Imagens multitemporais consistentes são necessárias para uma acurada detecção de mudança e análise de assinaturas temporais. Imagens orbitais

apresentam dificuldades para manter a precisão das informações temporais devido a várias interferências que geram perda de dados. Neste trabalho é desenvolvido um

programa na linguagem C++ considerando duas etapas para a remoção do ruı́do de impulso e branco. Na primeira etapa, um filtro de mediana é usado para identificar

o ruı́do de impulso. Na segunda etapa, a transformação NAPC (Noise-Adjusted Principal Components ) é aplicada para eliminar o ruı́do branco. Por serem os dois

métodos complementares observa-se um alto desempenho na remoção de ruı́do. As assinaturas temporais NDVI (Normalized Difference Vegetation Index ) restauradas

mostraram uma melhoria significativa, fornecendo um conjunto de dados de séries temporais que podem ser usadas para identificar e classificar os tipos fisionômicos

da vegetação.

Palavras-chave: assinatura temporal NDVI, MODIS, processamento digital de imagem, ruı́do, MNF.
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INTRODUCTION

Images acquired on the same area at different times represent
a valuable source of information for a regular monitoring of the
Earth’s surface that enables to describe the land-cover evolution,
vegetation phenology, hazard events, human-induced changes,
among others. Thus, a large number of multitemporal techniques
using images have been developed during the last years. These
techniques differ widely in refinement, robustness and complex-
ity. There are two types of temporal remote sensing data com-
monly employed in large-scale vegetation studies: (a) discrete
snapshots of the same region over time to analyze spatial changes
in land cover; and (b) continuous time series of optical mea-
surements to infer trends and dynamics of vegetation phenology
(Asner, 2004).

The continuous time series of Normalized Difference Vege-
tation Index (NDVI) images are most applied in climate and phe-
nological studies. Several time series analysis have demonstrated
strong relationships between NDVI temporal signature and precip-
itation for different geographic areas and ecosystems (Nicholson
et al., 1990; Grist et al., 1997). Other studies have used temporal
signatures to classify the vegetation based on observation pheno-
logical patterns (Reed et al., 1994).

Then a consistent data acquisition interval among multi-
temporal images is necessary to accurate temporal-series signa-
tures. However temporal precision in orbital images is difficult to
be maintained due to different factors: atmosphere interferences
(aerosols, clouds and shadows effects), bidirectional reflectance
distribution factors, radiometric variation (sensor oscillation, so-
lar illumination angle, among others) or noises, common features
in remote sensing images (Hall et al., 1991; Du et al., 2001; La-
torre et al., 2007). These effects cause serious problems for differ-
ent applications like detection. For this reason, it is necessary for
a perfect multitemporal analysis to remove these noises, clouds
and their shadows effects (Cihlar et al., 1997).

This paper aims to develop a noise elimination method of
temporal signatures combining the Median Filter and Minimum
Noise Fraction (MNF) techniques. This work evaluates the NDVI
MODIS time series over Cerrado vegetation types.

STUDY AREA

Savannas represent a significant global biome covering a vast area
of the African, American, Australian and Asian continents. The
vegetation of savannas can be described as discontinuous upper
layer of trees above a continuous layer of grasses. In Central Brazil
a complex of neotropical savannas is locally known as “Cerrado”.
The strong seasonal distribution of rainfall combined with dys-

trophic soils with high Al and Fe contents as well as fire occur-
rence determined a wide range of adaptive, phenological strate-
gies and biodiversity of these ecosystems (Sarmiento, 1984).

The Cerrado has a typical phenology, with a high dependence
in availability of nutrients and water, associated to the seasonal
climate, water table depth and fire (Coutinho, 1990). Thus, the
savanna region of the Central Brazil shows vegetation patterns at-
tributed for underlying variations in soils and soil-moisture of dif-
ferent geomorphology and lithology. According to the Köeppen
classification the climate in Cerrado domain is Aw type and dry
winters and rainy summers characterize it. Average precipitation
is 1600 mm, mostly concentrated in the wet season (from October
to March) (Adámoli et al., 1987).

The Cerrado biome has special ecological conditions where
savanna vegetation is predominant, interspersed with riparian
forests, patches of semideciduous forest, swamp and/or marshes.
The “Cerrado Sensu Lato” includes physiognomies varying as
“Campo Limpo” (a grassland type), through “Campo Sujo”,
“Campo Cerrado”, and “Cerrado Sensu Stricto” (savannic inter-
mediary formations), to “Cerradão” (a forest type). The principal
characteristic for differentiation is the density of woody individu-
als (trees and shrubs) (Goodland, 1971; Ruggiero et al., 2002).

Moreover, the land cover dynamics in these vegetation types
show an intensification of agriculture systems, wood extraction
and land degradation processes. The peculiar physical conditions
and severe historical anthropogenic pressure have caused exten-
sive natural vegetation losses, increasing soil erosion, burned
area and biological diversity reduction. Thus, the lack of appro-
priate public policies in the land management compromises the
environmental condition.

Braśılia National Park was created in 1961 with approxi-
mately 30,000 hectares located between 15◦34′′S and 15◦48′′S
of latitude and 47◦52′′W and 48◦06′′W of longitude coordinates
(Fig. 1). Soils are usually well drained, strongly acidic, dystrophic
(Oxisols) and with high Al and Fe contents (Haridasan, 2001).
In the Braśılia National Park there are the riparian forest, cerrado
and grassland.

MATERIAL AND METHODOLOGY

MODIS Data

The Moderate Resolution Imaging Spectroradiometer (MODIS) is
an Earth Observing System (EOS) sensor designed to measure
daily biological and physical processes in global scale in order to
understand the dynamics and processes occurring on the Earth’s
surface and in the lower atmosphere (Huete et al., 2002). The
first sensor was mounted on NASA’s Terra platform, which was
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CARVALHO JÚNIOR OA, SILVA NC, CARVALHO APF, COUTO JÚNIOR AF, SILVA CR, SHIMABUKURO YE, GUIMARÃES RF & GOMES RAT 149

Figure 1 – Braśılia National Park localized 10 km far from Brası́lia downtown, in the Federal District, in central Brazil.
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launched on December 18, 1999 and began to provide MODIS
products since 2000. The second sensor was launched on May 4,
2002 onboard the NASA’s Aqua platform.

Beyond the spectral bands, MODIS Science Team developed
data products using specific algorithms planned for EOS/MODIS
to supply the needs of global change research (Justice et al.,
1998). In this work we used the NDVI products, important tool
for monitoring of the Earth’s vegetation. The normalized difference
vegetation index (NDVI) is characterized to be sensitive to chloro-
phyll content. Thus, the MODIS VI product has offered a time
series for a precise monitoring of the seasonal, interannual and
long-term variations of vegetation phenological and biophysical
parameters. For this study the NDVI images were acquired along
2000-2006 time period with 250-m spatial resolution and 16-day
composite interval data.

Elaboration of Images Cube Composed by NDVI
Temporal Series

Representation of this NDVI set can be obtained by building the
cube of temporal series images (Carvalho Júnior et al., 2006,
2008, 2009; Santana et al., 2010). The cube is formed by co-
registered multitemporal images with its three dimensions: x , y
and z (temporal NDVI profile) acquired in the same geographi-
cal area at different times. The header file of the multitemporal
images must contain its respective geographical coordinates and
acquisition dates. Figure 2 shows a cube image with the temporal
spectrum in a perspective view.

Median Filter

Noise is very common in multitemporal images and hinders the
identification and quantification of targets. Consequently, the
noise elimination is necessary to acquire a high-quality spectrum.
For this purpose, the present paper applies the combination of the
two techniques Median Filter and Minimum Noise Fraction (MNF)
for eliminating image noises.

Turkey (1977) introduced the median filter operation in sig-
nal processing. The method became one of most popular and
simple digital technique used for signal smoothing and entropy
reduction, because of its good denoising power (Astola & Kuos-
manen, 1997) and computational efficiency (Huang et al., 1979).
This nonlinear smoothing technique is known for preserving sig-
nal edges or monotonic changes in trend and for being partic-
ularly effective in removing impulse noise of short duration that
cannot be achieved with linear algorithms (Ataman et al., 1981).
An impulse noise is composed by fewer points whose values are
different from the surrounding regions. Thus, in these respects,

the median smoother is better than the linear filter. Median fil-
ters have been applied to various types of data and have achieved
some very interesting results in areas of digital signal process-
ing, which include image enhancement (Pratt, 2007) and speech
processing (Rabiner et al., 1975).

The median is a particular case of the ith order statistic (or
rank statistic) of a finite set of real numbers. The median filter
performs a window moving over temporal signature and obtains
the median value that is taken as the output. Arranging all the
observations from lowest to highest value, the median value of
a window is the middle one. Considering an order statistic of N
real numbers (x(i) . . . , x(N )), where N is window digital filter,
the minimum is then x(1), the maximum x(N ), and the median
X ((N + 1)/2). Thus, the implementation of a median filter re-
quires a very simple digital nonlinear operation.

Normally in the majority of noise cases, a median filter of
length N = 3 completely eliminates all impulse. However, when
the cloud and shadow are present simultaneously in successive
images, the median filters cannot eliminate impulse noise com-
pletely, i.e., the expected value of the impulse amplitude at the
output is not zero. For this case a larger windows filter can be
used.

However the median filter presents difficulty to eliminating
non-constant signal structures, such as the white noise. Kuhlman
& Wise (1981) investigated the output spectrum of a median filter
for white noise input points with several different distributions.
These authors found that the spectral shape of output is virtu-
ally independent of the input distribution. Nodes & Gallagher Jr.
(1984) observed that the average filter is better than the median
filter for eliminating the Gaussian noise. But, when impulse or
double exponential noise is present, the median filter is better than
the average filter. This is due to the ability of the median filter to
eliminate low probability high power impulses, which cannot be
done with linear systems.

A specific median filter module for time series image process-
ing was developed in C++ language. In this program, the User
establishes a NDVI time series cube. For an accurate filtering it is
required a continuous time series with a same time interval.

Minimum Noise Fraction (MNF) and Noise-Adjusted
Principal Components (NAPC)

Initially the Minimum Noise Fraction (MNF) and Noise-Adjusted
Principal Components (NAPC) were developed for hyperspectral
image processing. However, these methods are also adequate to
eliminate noise interferences of larger amount of data, such as
aerial gamma-ray survey (Dickson & Taylor, 1988).
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Figure 2 – The concept of NDVI time series cube is shown, where a temporal spectrum can be measured for each spatial element in an image.

MNF is a transformation similar to Principal Component
Analysis (PCA) (Green et al., 1988). PCA transformation can be
divided into three steps (Richards, 1984):

(a) Derivation of the variance-covariance matrix (V C M) for
N -band of the time series data;

(b) Computation of orthonormalized eigenvectors of V C M ,
denoted by U , and of its eigenvalues, represented by A;
and

(c) Linear transformation of the data set (x) for the principal
components (Z) from the equation Z = U T (x − m),
where m is the mean of the pixels for each band.

The MNF transform adopts similar arguments to derivate its
components. This method is a linear transformation that max-
imizes the signal-to-noise ratio to order images, considering,
therefore, the image quality (Green et al., 1988). The MNF can
be subdivided into four stages (Fig. 3):

(a) Acquisition of a noise sample and calculation of the
variance-covariance matrix of the noise (V C MN );

(b) Calculation of the noise fraction index (N F I ), by
multiplying the variance-covariance matrix of the noise

(V C MN ) and the inverse variance-covariance matrix
of the data set (V C M−1), so N F I = V C MN ∗
V C M−1;

(c) From N F I compute its orthonormalized eigenvectors
(K ) and implement a linear transformation function Z =
K T (x −m), where x is the individual pixel and m is the
mean of the pixels for each band; and

(d) MNF inversion considering only signal information. Sub-
sequent retransformation results in cleaned images and
spectrum with little signal loss.

Therefore, the MNF calculates a noise fraction index (N F I ),
instead of PCA, which uses a variance-covariance matrix of the
data set (V C M). Consequently, the MNF components will show
steadily increasing image quality, unlike the usual ordering of
principal components.

NAPC transform is mathematically equivalent to MNF trans-
form, but the former transform can be implemented using standard
principal components algorithm, without the need for matrix in-
version and eigenanalysis of a nonsymmetric matrix (Lee et al.,
1990). NAPC transform consists of a sequence of two-cascaded
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Figure 3 – MNF transformation procedures in the temporal NDVI cube. The NDVI filtered cube can be converted in MNF space, where the signal is separated from
noise. The subsequent retransformation from signal set results in cleaned images and spectrum with little signal loss.

principal component transforms: noise and transformed data set.
In detail, the NAPC transform consists of the following stages
(Roger, 1994):

(a) From V C MN compute its orthonormalized eigenvector
matrix (En) and the diagonal matrix of its eigenvalues
(An), then ET

n V C MN E = An ;

(b) Construct a renormalization matrix F = E A−1/2
n , for

which FT V C MN F = I and FT F = A−1/2
n , where

I is the identity matrix;

(c) Transform the data covariance matrix (V C M) by
F to give the noise-adjusted data covariance matrix,
V C Mad j = FT V C M F ;

(d) From V C Mad j , compute its eigenvector matrix (G); and

(e) Linear transformation of the dataset (x) for the NAPC com-
ponents (Z) by following equation Z = H T (x − m),
where H is described by H = FG = E A−1/2

n G.

The application of NAPC transform requires knowledge of the
noise covariance matrix of the data. Thus, the key problem is to
find out which kind of noise we want to eliminate (Carvalho Júnior
et al., 2002). The noise reference can be obtained from externally
or internally of the images.

External noise reference is obtained from the dark references
during the flight and used to evaluate the instrumental noise. This
procedure is not applied for time series images being adequate
for multispectral and hyperspectral images.

Internal noise reference is obtained from the images by using
the statistic techniques that enables to discriminate noise frac-
tion from signal. Maximum Autocorrelation Factor (MAF) can be
used to this purpose (Switzer & Green, 1984). Spatial covariance
(V C MD) is defined as the covariance matrix between the origi-
nal image, represented by I (x), and the same image I (x + D)

shifted by an mount D. The noise covariance matrix (V C MN )

can be to estimate using the following equation:

V C MN = 1/2V C MD (1)

where

V C MD = (I (x)− I (x + D))(I (x)− I (x + D))−1 (2)

In this algorithm was used a D equal to 1. The V C MD can
be calculated considering shifts from one of eight neighbor direc-
tions or by the average of two to eight directions given by the User,
according to Equation (3).

V C MD = MV C M = (6V C Mi )/n (3)

where, MV C M is an average spatial covariance of directions
selected; i is the direction of nearest neighbors (1-8); and n is the
number of the direction chosen by the User. Thus, the V C MD

matrix is obtained and applied in the steps of the NAPC transform.
However, noise removal is only performed with the inversing

N APC transform. During the inversion is necessary to elim-
inate noisy bands using only signal bands. This procedure re-
duces noise in the original data space. For the inversion opera-
tion is need to use as input both N APC images as statistical file
containing the mean of the original bands (M) and matrix H T .
Smoothed images (SI ) are obtained by the following expression:

SIi = N APCi (H T )−1 + Mi (4)

In order to apply MNF method, it is necessary to separate
noise in three types, according to its variance and correlation char-
acteristics: (a) uncorrelated noise with equal variance in all bands
(white noise), (b) high correlation noise, and (c) noise with struc-
ture of unknown covariance.

The uncorrelated noise presents a spherical distribution
around the data mean. In this case, MNF provides an optimal or-
dering of image quality and its elimination. The existence of high
correlation noise as a Y i(x) function allows the concentration of
noise in a single MNF component.

Revista Brasileira de Geof́ısica, Vol. 30(2), 2012
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However, MNF from two-cascaded principal component
transformation is not efficient for elimination of noise with un-
known covariance structure, such as cloud and shadow. This
noise is confined into a single band, although it can be extended
for two or three channels. Complementarily the median filter is
extremely efficient in this noise elimination.

RESULTS

Software

Specific software for denoising MODIS temporal signatures were
developed in C++ language. The program has the following
modules: (a) median filter, (b) NAPC transform, and (c) Inverse
NAPC transform. In this program and the User establishes an im-
ages set at different times. The procedure requires input images
the following characteristics: (a) co-registered multitemporal im-
ages with its three dimensions x , y and z (reflectance profile);
(b) resized images with the same dimension (line and column);
and (c) preferably images with radiometric normalization that
minimizes radiometric differences among multitemporal spectra
caused by inconsistencies of acquisition conditions rather than
changes in surface reflectance.

In median filter module, the User defines the temporal im-
ages and the window size. The result obtained by filtering is again
processed by MNF transformation. As input in MNF transforma-
tion is requesting the temporal image and the selection of direc-
tions used in the MAF calculation. Considering a window size
3×3 pixels the User can choose from the surrounding central
pixel the directions that will be used to estimate the spatial co-
variance (V C MD) by pressing the directional buttons (Fig. 4).
Therefore, the autocorrelation estimation adopts 1 pixel as dis-
tance. The V C MD is calculated considering the average of di-
rections chosen.

Figure 4 – User interface containing the directions window for the spatial co-
variance calculation.

The final processing required is inverse MNF transform,
which uses as input the images and statistical data generated by
MNF transformation. This procedure involves noisy elimination

of the MNF bands in order to reduce noise in the original data
space. The selection process of band signal can be done interac-
tively, where the User before performing the inversion can see the
result for a spectrum image.

Noise Removal

The sequential procedures of the median filter and MNF transform
enabled to eliminate different kinds of noise from the time series.

The first stage of the median filter is performed to segregate
isolated noises originated by cloud, shadow and instruments. In
NDVI spectra, the median filter keeps undisturbed the constant
neighborhoods and edges, while eliminates isolated noise.

Edges are abrupt changes where the set of points that in-
crease or decrease surrounded on both sides by constant neigh-
borhoods. In NDVI spectrum of the natural vegetation, the edges
do not appear prominence, only when there are burning events or
anthropic alterations. Normally the vegetation time series present
a sinusoidal pattern with gradual variation from composition ratio
between nonphotosynthetic vegetation (NPV) and photosynthetic
vegetation (PV) along the year.

The filtering over isolated noise induces occasional forma-
tion of the narrow plateau composed by two points consecutive
with same values. Rarely, the evidence of remained noise given
by noise predominance in window filter is noted. In this case a
filter with larger size windows can be applied.

The second stage is the MNF transformation that is used to
eliminate uncorrelated noise with equal variance in all bands as
the narrow plateau. This transformation must be always used on
bands free of impulse interference. The resulting spectra show a
smoother form, with removal of the narrow plateau and remained
noise (Fig. 5).

Thus, the combined techniques enabled to develop a fast and
accurate method for multitemporal image correction. Besides, the
method generates continuous spectra for each pixel.

The procedure is adequate not only in temporal signatures
correction, but also in spatial correction by improving visual im-
age quality. Despite the proposed method not acting in the spa-
tial dimension, being restricted in temporal dimension, the results
obtained in the present investigation also indicated important con-
tribution in image correction (Fig. 6).

Vegetation Signatures

All MODIS temporal vegetation signatures oscillate in an approx-
imately sinusoidal pattern, for the period of one-year (Fig. 7).
These interannual cycles of greenness correlate with vegetation
phenological cycle and large-scale precipitation patterns. The
NDVI signatures of the vegetation types present a high linear cor-
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Figure 5 – Spectra results of different stages: (a) primary spectrum, (b) median filter with a window width of 3 × 3 pixels and (c) median filter plus MNF transform.

Figure 6 – Two images of same date, one corresponding to the original image (a) and other the corrected image from the use of Median
Filter and MNF combined transform (b). In this case, where there are extensive areas with noise, the use of the spatial filter does not get
results as consistent as the temporal correction.

relation due to the similar sinusoidal pattern. The main differences
among vegetation types are in the intensity and range values.

The Figure 7 shows the typical temporal signatures for the
grassland, savanna and forest types. The NDVI signatures of the

forest type present the highest values for every year. Moreover, the
forest type describes the lowest ranges produced by subtraction
between the maximum and minimum values. The grassland type
shows a distinct behavior with lesser values and highest ranges.

Revista Brasileira de Geof́ısica, Vol. 30(2), 2012
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Figure 7 – Typical temporal signatures for the grassland, savanna and forest types.

The savanna vegetation type presents an intermediary behavior
between grassland and forest types. Thus, NDVI signatures ap-
pear to be very useful to discriminate among these vegetation
classes. This will be subject for further research work.

CONCLUSIONS

The sequential procedure of Median Filter and MNF enabled to
eliminate different kinds of noise from the image. This procedure
uses a continuous time series with same time interval. Median
Filter segregates impulse noises and MNF transform considered
the uncorrelated noises with equal variance in all bands and the
high correlation noise. The combined techniques method enabled
to reduce the noise by a smoothing process. Thus, the method
provides the necessary information to support vegetation classi-
fication based on temporal signatures.
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