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Abstract  The estimat ion of the area source pollutant strength is a relevant issue for atmospheric environment. Th is 
characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is 
considered, where the strength of such area source term is assumed unknown. The inverse problem is formulated as a 
non-linear optimization approach, whose objective function is given by the square difference between the measured 
pollutant concentration and the mathematical models, associated with a regularization operator. The forward problem is 
addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. A 
quasi-Newton method is employed for minimizing the object ive function. The second order maximum entropy 
regularizat ion is used, and the regularizat ion parameter is calculated by the L-curve technique. This inverse problem 
methodology is tested with synthetic observational data, producing good inverse solutions. 
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1. Introduction 
A general mathematical theory for dealing with inverse 

problems is due to the Russian mathemat ician Andrei 
Nikolaev ich Tikhonov at 1963, introducing the 
regularizat ion method as a general procedure to solve such 
mathematical problems. The regularization method looks for 
the smoothest (regular) inverse solution, where the data 
model would have the best fitting related to the observation 
data, subject to constrains. The searching for the smoothest 
solution is an additional information (or “a priori” 
informat ion), which  reads the ill-posed inverse problem a 
well-posed one[1]. In the mathemat ical implementation of 
the method, the inverse problem is formulated as an 
optimization problem with constrains (a priori information). 
These constrains can be added to the objective function with 
the help of a regularization parameter: 

{ }][)(min
2

2
ufuA Ω+− αδ              (1) 

being u the unknowns, A(.) the mathemat ical model, δf  the 
observation with δ noise level, Ω(.) the regularization 
operator, and α the regularizat ion parameter. 

This paper is focused on the application of inverse prolem 
methodology for solving a problem with strong interest in  
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meteorology and environmental science: estimat ion of the 
emission rate from the area pollutant sources. The 
identification of the pollution source is calculated here 
obtaining a regularized inverse solution. 

The problem for identifying the minority gas emission rate 
for the system ground-atmosphere is an important issue for 
the bio-geochemical cycle, and it has being intensively 
investigated. This inverse problem has been solved using 
regularized  solutions[2], Bayes estimation[3, 4], and 
variational methods[5] – the latter approach coming from the 
data assimilat ion studies. 

In principle, we have no information about how the area 
pollution source emission rate is spatially distributed.  
Seibert[6] and other researchers have suggested a domain 
decomposition, where each sub-domain has different 
pollutant emission strength. The d irect problem can be 
expressed as forward-time evolution problem, or even as in a 
backward-t ime pollutant diffusion problem. The choice 
between these approaches (forward-t ime or backward-t ime) 
is given by the proposed scheme that has lower 
computational effort. The decision is based on the number of 
sources and number of the measurement points. If the 
number of receptors is less than the number of sources, the 
backward-t ime approach should be adopted; otherwise (if the 
number of receptors is greater than number of sources) the 
forward-time approach is suggested. 

In this study, the direct mathematical model is described 
by a Lagrangian part icle stochastic code. However, here the 
direct model is represented by the source-receptor scheme. 
In such approach, the measured concentration in a given 
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receptor is calculated from the contribution of all sources by 
means of a t ransition matrix. The entries of the transition 
matrix are determined employing the Lagrangian code. 
Therefore, the direct model is represented by a matrix-vector 
product, instead of use the very expensive Monte Carlo 
Lagragian scheme for each iteration of the optimization 
process. This procedure reduces the computational effort 
(complexity) of the inverse analysis. 

The inverse problem is formulated as a constrained 
nonlinear optimization problem and solved by a 
quasi-Newtonian optimization algorithm. The objective 
function is the norm L2 (see equation (1)) of the differences 
between the measured concentration and the concentration 
computed from the mathematical model (Lagrangian code), 
associated to the regularization operator. The regularization 
operator for the objective function (1) is the entropy measure 
of the vector of second-differences of the unknown 
parameters. Th is constrains the class of solution candidates 
into a restricted set of values composed by global smooth 
sub-domains, similar to the second-order polynomial surface. 
This regularizat ion approach has been successfully adopted 
to retrieve the vertical atmospheric profile from satellite 
data[7], and to identify the turbulent eddy diffusivity[8]. 

The use of maximum entropy princip le to reconstructing 
sources of inert  atmospheric tracers from measurements have 
been independently introduced by[9] – see also[10] and[11] 
– an application of the Bocquet’s scheme for reconstruction 
of the Chernobyl accident source term is described by 
Davoine and Bocquet[12], for both papers the forward model 
is given by an Eulerian approach. 

In a prev ious study on higher entropy regularizat ion, it  
was shown that Morosov’s discrepancy principle was really 
efficient for the problem of determin ing the regularization 
parameter[13]. Here, another method to select the 
regularizat ion parameter is explored. 

The next section is a brief presentation of the formulat ion 
of the direct problem. This is followed by a description of the 
proposed inversion method, and a discussion of the 
numerical examples. The method is tested over a 
two-dimensional domain, using synthetic data corrupted 
with Gaussian white noise. 

2. LAMBDA: the Lagrangian Stochastic 
Model 

The Lagrangian part icle model LAMBDA was developed 
to study the transport process and pollutant diffusion, 
starting from the Brownian random walk modeling[14, 15]. 
In the LAMBDA code, fu ll-uncoupled particle movements 
are assumed. Therefore, each particle trajectory can be 
described by the generalized three dimensional form of the 
Langevin equation for velocity[16]: 

)(),,(),, tdWtbdttadu jijii uxu(x +=     (2a) 

and 
dtd )( uUx += ,                (2b) 

where 3,2,1, =ji , and x is the displacement vector, U is the 
mean wind velocity vector, u is the Lagrangian velocity 
vector, ai(x,u,t) is a deterministic  term and bij(x,u,t)dWj(t) is 
a stochastic term, and the quantity dWj(t) is the incremental 
Wiener process. 

The deterministic (d rift) coefficient ai(x,u,t) is computed 
using a particular solution of the Fokker- Planck equation 
associated to the Langevin equation. The diffusion 
coefficient bij(x,u,t) is obtained from the Lagrangian 
structure function in the inertial subrange, (τK << ∆t << τL), 
where τK  is the Kolmogorov time scale and τL is the 
Lagrangian de-correlation time scale. These parameters can 
be obtained employing the Taylor statistical theory on 
turbulence[17]. 

Backward  integration can also be applied. This is just to 
identify which particle arriving in a sensor-j is coming from a 
source-i. 

The drift coefficient ai(x,u,t ), for forward and backward  
integration is given by 
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and 
0iϕ →   when  ∞→u .        (3c) 

where cv=1 for forward integration and cv=–1 for backward 
integration, PE=P(x,u,t) is the non-conditional PDF of the 
Eu lerian velocity fluctuations, and Bij = (1/2)bikbjk. Of course, 
for backward integration, the t ime considered is t’=–t, and 
velocity U’=–U being U the mean wind speed. The 
horizontal PDFs are considered Gaussians, and for the 
vertical coordinate the truncated Gram-Charlier type-C of 
third order is employed[15]. 

The diffusion coefficients, bij(x,u,t), for both forward and 
backward integration are given by 

1/22
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               (4) 

where δij is the Kronecker delta, σi
2 and τLi are velocity 

variance at each component and the Lagrangian time 
scale[17], respectively. With the coordinates and the mass of 
each particle, the concentration is computed – see equations 
(5) and (6). 

The inverse problem here is to identify the source term S(t).  
As mentioned, a  source-receptor approach is employed for 
reducing the computer t ime, instead of running the direct 
model (equation (2)) for each iterat ion. This approach 
displays an explicit relation between the pollutant 
concentration of the i-th receptor related the j-th sourcers: 

1
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i ij j
j

C M S
=

= ∑                   (5) 

where the matrix  Mij is the transition matrix, and each 
matrix entry given by 
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where VR,i and VS,j are the volume for the i-th receptor and 
j-th source, respectively; NS,j  and NR,i are the number of 
particle realised by the j-th source and i-th sensor, 
respectively; NR,i,j and Ns,i,j are the number of particle 
released by the j-th source and detected by the i-th receptor.  

3. Inverse Model 
In order to set up the inverse analysis, it is assumed that 

the concentration obtained with a mathemat ic model is given 
by CMod(r,Q), where Q=[Q1(t), Q2(t), … , Qn(t)]T is the 
vector emission rate, and Qn(t) represents the emission rate 
of the n-th source and CExp(r) are data from measurement 
concentrations. The solution of an inverse problem is a 
function Q hat min imizes the following objective function: 

( ) )()(, QQQ Ω+= αα RF               (7) 
with Ω  begin  a regularization function and α a positive 
parameter, i.e. a Lagrange mult iplier. Each source emission 
lies in the interval: Qi ∈[li , ui]. The lower bound li and the 
upper bound ui are chosen to allow the inversion to lie within 
some physical limits. The least square difference between 
experimental data and the computed values is represented by  
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The regularization operator can be expressed by an 
entropic scheme[7, 8, 13] 
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and Q(m) represents the m-th derivative or difference among 
the unknown function or parameter vector. The application 
of derivative or difference operators is associated with 
whether we are dealing with continuous function or a 
discrete one. The function S(m) attain its global maximum 
when all k(r) are the same, i.e., a uniform distribution, in 
contrast, the lowest entropy value kmin=0 is reached when the 
probability d istribution from the k(r) is a  Dirac delta. This 
scheme is based on Jaynes’ criterion of inference[18], called 
maximum entropy principle (MaxEn-0). 

Many schemes have been proposed to find the value of the 
regularizat ion parameter. This parameter provides a fine 
balance between the square difference and the regularization 
terms. Some of these techniques are: Morozov’s discrepancy 
principle[19, 20], the L-curve[21], and the generalized cross 
validation[20]. 

3.1. Optimization Algorithm 

The optimization problem is iterat ively solved by the 
deterministic method: quasi-Newtonian optimizer routine 
E04UCF[22], from the NAG Fortran Library. This routine is 
designed to minimize an arbit rary smooth function subject to 
constraints (simple bounds, linear and nonlinear constraints), 
using a sequential programming  method. For the n-th 
iteration, the calcu lation proceeds as follows: 

1. So lve the direct prob lem for Sn and compute the 
objective function J(Sn). 

2. Compute by fin ite differences the gradient ∇J(Sn). 
3. Compute a positive-defin ite quasi-Newton 

approximation to the Hessian Hn: 
1 1

1
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where 
1n n nb −= −S S  

1( ) ( )n n nu J J −= ∇ −∇S S . 
4. Compute the search direction dn as a solution of the 

following quadratic programming subproblem: 

Minimize 1( ) ( ) ( )
2

Tn n n T n nJ ∇ + S d d H d , subjected to: 

n n n
q q q ql p d u p− ≤ ≤ −  

5. Set, Sn+1 = Sn + βndn where the step length βn minimizes 
J(Sn + βndn). 

6. Test the convergence; stop or return to Step 1. 

4. Numerical Experiment 
For testing the procedure to estimate the emission rate 

procedure, the area pollutant sources are considered as 
placed in a box vo lume, where the horizontal domain and 
vertical height are given by: (1500 m × 1000 m) ×1000 m. 
There are two embedded regions R1 and R2 into a 
computational domain, with the fo llowing  horizontal domain 
(600 m × 600 m) for each reg ion, and 1 m of height, and they 
are realising contaminants with two different emission rates. 
Figure 1 shows the computational scenario in  a 
two-dimensional project ion (x,y): the six sensors are placed 
at 10 m height and spread horizontally with the coordinates 
presented in Table 1. The domain is divided into 
sub-domains with 200 m × 200 m ×1 m. The emission rates 
for each sub-domain (SAi) are as follows, 

R1 = SA2 = SA3 = SA4 = SA7 = SA9 = 10 gm-3s-1 , 
R2 = SA12 = SA13 = SA14 = SA17 = SA18 = SA19 = 20 gm-3s-1 . 
For other sub-domians: S=0. The dispersion problem is 

modelled by the LAMBDA backward-time code, where data 
from the Copenhagen experiment are used, for the period 
(12:33 h – 12:53 h, 19/October/1978)[23, 24] It is assumed a 
logarithmic vertical profile fo r the wind field  


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

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z
zuzU

κ
              (11) 
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being U(z) the main stream, u* the fiction velocity, κ the von 
Kármán constant, z the height above the ground, and z0=0.06 
m the roughness. The wind speed was measured at 10 m, 120 
m, and 200 m. The numerical value for u* was obtained from 
the best fitting with the measured wind speed – see Table 2 – 
and the equation (11).  

Table 1.  Position of sensors in physical domain 

Sensor-number x  (m) y  (m) 

1 400 500 

2 600 300 

3 800 700 

4 1000 500 

5 1200 300 

6 1400 700 

For this experiment the wind direction had an angle 
θ=180°, and the boundary layer height is h=1120 m[24]. The 
turbulence parameterizat ion follows Degrazia et al.[17], for 
computing the wind variance (σi

2) and the Lagrangian 
decorrelation time scale ([TL]i). These two turbulent 
parameters are considered constant for the whole boundary 
layer, and their numerical values were calcu lated at a z=10 m 
level. Th is characterises a stationary and vertically 
homogeneous atmosphere. 

The sensor’s dimension, where the fictit ious particles have 
arrived, was de 0.1 m × 0.1 m × 0.1 m, centred in the 
computational cells (presented in Table 1). Next, the reverse 
trajectories are calculated for 1000 particles per sensor. 

The parameters for numerical simulations were 1800 
time-steps with ∆t = 1 s, meaning 30 min for the whole 
simulation. After 10 min, the concentration was computed 
for each 2 min, for the remaining 20 min  of simulation. The 
mean concentration is found using the following expression: 

10 25

, , ,
,1 1

1( , )
10

Mod
j j i PVF i j n

PES jn i

tC x y S N
N= =

 ∆
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  
∑ ∑   (12) 

where (xj,yj) is the position of each sensor (the number of 
sensors is 6), NPES,j=1000 is the number of part icles arriving 
at each sensor. NPVS,I,j,n is the quantity of fictit ious particles in 
the i-th volume source, at the n-th instant. 

Table 2.  Measured wind speed for the Copenhagen experiment[24] 

z (m) U (ms-1) 

10 2.6 

120 5.7 

200 5.7 

The inverse approach is tested using synthetic measured 
concentration data They are emulated as: 

]1)[,(),( ηµ+= jj
Mod

jj
Exp yxCyxC .       (13) 

where μ is a random number associated to the Gaussian 
distribution with zero mean and unitary standard deviation, 
and η is the level of the noise (Gaussian white noise). In our 
tests, η=0.05 (Experiment-1) and η=0.1 (experiment-2) were 
used. 

The optimization method is used to find the min imum for 
the functional: 

( ) ( )
26

1
, ( )Mod Exp

j j
j

F C Cα α
=
 = − + Ω ∑S S S    (14) 

where the vector S=[SA1, SA2,…, SA25 ]T represents the 
emission rate from 25 sub-domains, presented in Figure 1. 
However, some sub-domains are considered with null 
emission rate. Therefore, the number of the unknown 
parameters to  be estimated by the inverse method decreases 
to 12: S=[SA2, SA4, SA7, SA8, SA9, SA12, SA13, SA14, SA17 , SA18, 
SA19]T.  Another  a priori information is smoothness of the 
inverse solution (regularization operator). As mentioned 
before in Sect ion 1, the second order maximum entropy is 
applied (equation (9c), m=2). 

Two numerical experiments are performed, using two 
different noise levels in the synthetic observational data: 5% 
and 10% of noise. 

 
(a) 

 
(b) 

Figure 1.  (a) Sub-domains representation, in a 2D projection (x,y), with 
different emission rates, and black points (●) represent the sensor position at 
10m height. (b) The gray-scale represents the emission rate 
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There are several methods to compute the regularizat ion 
parameter (Section 3). Here, a numerical experimentation 
was employed. The value found was α=10-6 for 
Experiment-1, and α=10-5 for Experiment-2[9]. 

Results for Experiment-2 are presented in Table 4 and 
Figure 3. The error between the exact values and estimated 
by the inversions calculated by following form: 

12

1

1
12

estimated exact
i i

S exact
i i

S S
E

S=

 −
 =
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 

∑ .        (15) 

Table 3.  The values of emission rate estimation, using the Q-N method, 
with the data from Experiment-1 

 Sexact (gm-3s-1) Sestimated (gm-3s-1) 

2AS  10 9.82 

3AS  10 9.63 

4AS  10 11.26 

7AS  10 8.76 

8AS  10 11.06 

9AS  10 15.51 

12AS  20 20.12 

13AS  20 19.25 

14AS  20 11.52 

17AS  20 17.88 

18AS  20 23.82 

19AS  20 23.44 

In the Experiment-1, a global error around 2% is found 
from to inverse solution – see Table 3. For the reg ion-1, the 
error in the estimat ion is 10%, and for region-2 the error is 
3%. The biggest error estimation are verified for 
sub-domains A9 and A14, with error o f 55% and 42%, 
respectively. 

Table 4 shows the estimated emission rate for each 

sub-domain. The global estimat ion error enhances to 6.7%. 
The error for region-1 from the inverse analysis decreases to 
1%, but the error for reg ion-2 increases to 11%. The worse 
estimation is related to reg ion-2, where the sub-domains A12 
and A14 present approximately 6% of error. 

Table 4.  The values of emission rate estimation, using the Q-N method, 
with the data from Experiment-2 

 Sexact (gm-3s-1) Sestimated (gm-3s-1) 

2AS  10 8.97 

3AS  10 9.97 

4AS  10 12.53 

7AS  10 7.99 

8AS  10 10.15 

9AS  10 11.56 

12AS  20 13.85 

13AS  20 22.65 

14AS  20 14.14 

17AS  20 19.99 

18AS  20 21.17 

19AS  20 24.90 

The error fo r the inverse solution for experiment-2 is 
greater than experiment-1, as expected, since the level of 
noise in the measured data is higher in experiment-2.  The 
results suggest that the inversion approach is effective, and 
the entropy regularization of second order is also 
appropriated. 

One feature to point out is the use of source-receptor 
strategy. Indeed, this scheme allows a reduction of the 
computational complexity to compute the forward problem. 
As the inverse analysis is formulated as a non-linear 
optimization problem, this implies an iterative p rocess 
requiring to execute several (thousands) times the forward 
problem. 
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Figure 2.  Representation of the of emission rate estimation in the domain 
with data from Experiment-1 

 
Figure 3.  Representation of the of emission rate estimation in the domain 
with data from Experiment-2 

5. Conclusions 
The methodology proposed for estimat ing the emission 

rate term and localizat ion of the source/sink was effective to 
produce good estimat ions for pollutant emission rate with 
second order maximum entropy. Good results were obtained 
even for a high level of noise, showing that the inverse model 
is robust related to the noise in experimental data. The 
determination of the regularization parameter by L-curve 
allowed finding an appropriated value for regularization 
operator, following the procedure presented by Hansen[21]. 
The source-receptor scheme is employed in the inverse 
analysis, in order to reduce the computational effort. 

Future works will include the application of the 
methodology to real gas fluxes with  different types of soil 
covering. Further we will employ other entropic 
regularizat ion operators[25], and different optimization 
schemes for the minimizing functional (1), using stochastic 
schemes and/or approaches from art ificial intelligence 
(neural networks, or fuzzy systems). 
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