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Hypersonic waverider configurations have been proposed as promising airframes for 
high-speed vehicles because they have the highest known lift-drag (/�') performance. 
Waveriders are aerodynamic configurations whose design is based on known supersonic or 
hypersonic flowfield. Generated by an inverse method from streamlines behind a known 
shock wave, the waverider lower surface is a stream surface of a known inviscid flow around 
a reference body, for instance, behind planar oblique shock wave (Nonweiler, 1959), behind 
conical shock waves around circular or elliptical cones (Rasmussen, 1980, and Kim, 
Rasmussen and Jischke, 1983), behind power-law shocks (Rasmussen and Duncan, 1995, 
Mazhul and Rakchimov, 2004, and Mangin et al., 2006), as well as the flows in converging 
cone ducts (Goonko, Nazhul and Markelov, 2000). 

Waverider-based hypersonic vehicle must operate in a wide range of freestream Mach 
number. When flying at its design Mach number, the entire bow shock is attached to the 
leading edge of the body. The attached shock wave may prevent spillage of high-pressure 
airflow from the lower side of the vehicle to the upper side, resulting in a high-pressure 
differential and enhanced lift. It is the shock attachment that produces de high /�' ratio 
observed in waverider vehicles. 

Nevertheless, at hypersonic flight speeds, the vehicle leading edges should be blunt to 
some extent in order to reduce the heat transfer rate to acceptable levels and to allow for 
internal heat conduction. The use of blunt-nose shapes tends to alleviate the aerodynamic 
heating problem since the heat flux for blunt bodies is far lower than that for sharply pointed 
bodies. Therefore, due mainly to manufacturing problems and the extremely high 
temperatures attained in hypersonic flight, hypersonic vehicles should have blunt nose, 
although probably slendering out at a short distance from the nose. Nonetheless, geometric 
bluntness results in shock-wave detachment. Thus, the loss of shock-wave attachment will 
allow pressure leakage from the lower side of the vehicle to the upper side, thereby degrading 
the aerodynamic performance of waverider vehicles. 

In this scenario, power-law shaped leading edges (\ ∝ [� , 0 < S < 1) may provide the 
required bluntness for heat transfer and manufacturing concerns with less increase in shock-
wave detachment so that the final design more closely approximates the ideal aerodynamic 
performance. This concept is based on work of Mason and Lee (1994) that pointed out, based 
on Newtonian flow analysis, that these shapes exhibit both blunt and sharp aerodynamic 
properties. They suggested the possibility of a difference between shapes that are 
geometrically sharp and shapes that behave aerodynamically as if they were sharp. According 
to them, for values in the range of 0 < S < 1, the slope of the power-law shape is infinite at [ = 
0, a characteristic of a blunt body. However, for 1/2 < S < 1, the radius of curvature at the 
nose approaches zero, a characteristic of a sharp body. 

A great deal of experimental and theoretical works has been carried out previously on 
power-law form representing blunt geometries. Of particular interest are the works by Santos 
and Lewis (2002, 2005a, and 2005b) and by Santos (2005, and 2008a). The major interest in 
these works has gone into considering the power-law shape as possible candidate for blunting 
geometries of hypersonic waverider leading edge. 

Santos and Lewis (2002 and 2005b) have investigated power-law shapes in rarefied 
hypersonic flow through the use of the Direct Simulation Monte Carlo (DSMC) method. They 
found that the stagnation point heating behavior for power-law leading edges with finite 
radius of curvature, S = 1/2, followed that predicted for classical blunt body in that the heating 
rate is inversely proportional to the square root of curvature radius at the stagnation point. For 
those power-law leading edges with zero radii of curvature, S > 1/2, it was found that the 
stagnation point heating is not a function of the curvature radius at the vicinity of the leading 



edges, but agreed with the classical blunt body behavior predicted by the continuum flow far 
from the stagnation point. Results were compared to a corresponding circular cylinder to 
determine which geometry would be better suited as a blunting profile. Their analysis also 
showed that power-law shapes provided smaller total drag than circular cylinder, typically 
used in blunting sharp leading edges for heat transfer considerations. However, circular 
cylinder provided smaller stagnation point heating than power-law shapes under the range of 
conditions investigated. 

In order to assess the advantages and disadvantages of a power-law body, computational 
results are obtained for a different scenario of power-law shapes. In the present account, the 
shock-wave structure is investigated for hybrid power-law shapes, i.e., lower and upper 
surfaces with different power-law exponents. In this connection, the purpose of this work is to 
examine computationally the leading-edge shape effects on the shock-wave standoff distance, 
shock-wave thickness and shock-wave shape of hybrid or asymmetric power-law leading 
edges in order to provide information on how well these shapes stand up as possible 
candidates for blunting geometries of hypersonic leading edges. The impact on the shock-
wave structure due to changes on the leading-edge shape will be investigated for a 
combination of power-law exponents of 1/2, 3/5, 2/3 and 3/4 for the upper and lower surface 
shapes. 
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In dimensional form, the body power-law shapes are given by the following expression, 
 �$[\ =  (1) 
 
where S is the power-law exponent and $ is the power-law constant, which is a function of S. 

In the previous work (Santos and Lewis, 2002), the symmetric power-law shapes were 
modeled by assuming a sharp-edged wedge of half angle  with a circular cylinder of radius 5 
inscribed tangent to this wedge. The symmetric power-law shapes, inscribed between the 
wedge and the cylinder, are also tangent to them at the same common point where they have 
the same slope angle. The circular cylinder diameter provides a reference for the amount of 
blunting desired on the leading edges. It was assumed a leading-edge half angle of 10 degrees, 
a circular cylinder diameter of 10-2m and power-law exponents of 1/2, 3/5, 2/3, 7/10, 3/4, and 
4/5. Figure 1(a) illustrates schematically this construction for the set of symmetric power-law 
leading edges previously investigated. 
 

 
Figure 1: Drawing illustrating the (a) symmetric and (b) the asymmetric power-law leading 

edges. 
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 From geometric considerations, the common body height +, Fig. 1(a), at the tangency 
point is equal to 25FRV . The power-law constant $, obtained by matching slope on the 
wedge, circular cylinder and power-law body at the tangency point is given as follows, 
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 As the slope of the power-law shapes is infinite at [ = 0, i.e., the slope angle is 90 
degrees, the asymmetric or hybrid power-law shapes were obtained by combining the upper 
and lower part of the curves, with respect to the symmetry line, shown in Fig. 1(a). In this 
way, for the hybrid power-law shapes, the upper surface was represented by the exponent T of 
1/2, 3/5, 2/3 or 3/4 and the lower surface by the exponent S of 1/2. Figure 1(b) illustrates an 
asymmetric or hybrid power-law leading edge defined by T = 3/4 and S = 1/2. It was assumed 
that the hybrid power-law leading edges are infinitely long but only the length / is considered 
in the simulation since the wake region behind the power-law bodies is not of interest in this 
investigation. 
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 The option of the numerical approach in order to model rarefied non-equilibrium flows 
relies on the extent of flow rarefaction. For near-continuum flows, the boundary conditions of 
slip velocity and temperature jump are enough to take into account for the rarefaction effects. 
These boundary conditions are commonly employed in the Navier-Stokes equations or in the 
viscous shock layer equations. The Navier-Stokes equations can be derived from the 
Boltzmann equation (Cercignani, 1988) under the assumption of small deviation of the 
distribution function from equilibrium. Nevertheless, the Navier-Stokes equations become 
unsuitable for studying rarefied flows where the distribution function becomes considerable 
non-equilibrium. 
 In order to study flows with a significant degree of non-equilibrium, the DSMC method 
(Bird, 1994), pioneered by Bird in the 60’s, has become the standard technique employed. 
The DSMC method simulates real gas flows with various physical processes by means of a 
huge number of modeling particles, each of which is a typical representative of great number 
of real gas molecules. DSMC models the flow as being a collection of discrete particles, each 
one with a position, velocity and internal energy. The state of particles is stored and modified 
with time as the particles move, collide, and undergo boundary interactions in simulated 
physical space. The simulation is always calculated as unsteady flow. However, a steady flow 
solution is obtained as the large time state of the simulation. Therefore, the DSMC method is 
basically an explicit time-marching algorithm. 
 Collisions in the present DSMC code are modeled by using the variable hard sphere 
(VHS) molecular model (Bird, 1981) and the no time counter (NTC) collision sampling 
technique (Bird, 1989). Repartition energy among internal and translational modes is 
controlled by the Borgnakke-Larsen statistical model (Borgnakke and Larsen, 1975). 
Simulations are performed using a non-reacting gas model for a constant freestream gas 
composition consisting of 76.3% of N2 and 23.7% of O2. Energy exchanges between the 
translational and internal modes, rotational and vibrational, are considered. Relaxation 
collision numbers of 5 and 50 were used for the calculations of rotation and vibration, 
respectively. 
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In order to implement the particle-particle collisions, the flowfield is divided into an 
arbitrary number of regions, which are subdivided into computational cells. The cells are 
further subdivided into four subcells, two subcells/cell in each direction. The cell provides a 
convenient reference sampling of the macroscopic gas properties, whereas the collision 
partners are selected from the same subcell for the establishment of the collision rate. As a 
result, the flow resolution is much higher than the cell resolution. The dimensions of the cells 
must be such that the change in flow properties across each cell is small. The linear 
dimensions of the cells should be small in comparison with the distance over which there is a 
significant change in the flow properties. These conditions define that the cell dimensions 
should be of the order of the local mean free path or even smaller (Alexander et al., 1998 and 
2000). 

The computational domain used for the calculation is made large enough so that body 
disturbances do not reach the upstream and side boundaries, where freestream conditions are 
specified. A schematic view of the computational domain is depicted in Fig. 2. Side I is 
defined by the body surface. Diffuse reflection with complete thermal accommodation is the 
condition applied to this side. Side II is the freestream side through which simulated 
molecules enter and exit. Finally, side III is the downstream outflow boundary. At this 
boundary, the flow is predominantly supersonic and vacuum condition is specified (Guo and 
Liaw, 2001). As a result, it is assumed that at this boundary simulated molecules can only 
exit. 
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Figure 2: Drawing illustrating the computational domain. 
 

The effects of grid resolution and the effects of the number of particles per computational 
cell were investigated in order to determine the number of cells and the number of particles 
required to achieve grid independence solutions. In this fashion, a grid independence study 
was made with three different structured meshes in each coordinate direction. The effect of 
altering the cell size in the ξ-direction was investigated with grids of 60(coarse), 90(standard) 
and 120(fine) cells on the upper and lower surfaces, and 60 cells in the η-direction for the 
leading edges investigated. In analogous manner, an examination was made in the η-direction 
with grids of 30(coarse), 60(standard) and 90(fine) cells, and 90 cells along the upper and 
lower surface, i.e., in the ξ-direction. In addition, each grid was made up of non-uniform cell 
spacing in both directions. The effect (not shown) of changing the cell size in both directions 



on the heat transfer and pressure coefficients was rather insensitive to the range of cell 
spacing considered, indicating that the standard grid, 180x60 cells in the entire domain is 
essentially grid independent. A similar procedure was performed with respect to the number 
of particles. The total number of particles depends on the case investigated. On the average, it 
is around of 350,000 particles. 
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DSMC simulations have been performed for an altitude of 70 km based on the flow 
conditions given by Santos and Lewis (2002) and summarized in Table 1, and the gas 
properties (Bird, 1994) are shown in Table 2. Referring to Tables 1 and 2, 7∞, S∞, ρ∞, Q∞, µ∞, 
and λ∞ stand respectively for temperature, pressure, density, number density, viscosity and 
mean free path, and ;, P, G and ω�account respectively for mole fraction, molecular mass, 
molecular diameter and viscosity index. 

The freestream velocity 9∞ is assumed to be constant at 3.56 km/s. This velocity 
corresponds to a freestream Mach number 0∞ of 12. The translational and vibrational 
temperatures in the freestream are in equilibrium at 220 K. The wall temperature 7 �  is 
assumed constant at 880 K. This temperature is chosen to be representative of the surface 
temperature near the stagnation point and is assumed to be uniform over the entire surface of 
the leading edges. 

The freestream Knudsen number .Q � , defined as the ratio of the molecular mean free 
path λ in the freestream gas to a characteristic dimension of the flowfield, corresponds to 
0.0903, where the characteristic dimension was defined as being the diameter of the reference 
circular cylinder (see Fig. 1). The freestream Reynolds number 5H �  by unit meter is 21,455. 
 

Table 1: Freestream Conditions 
 
$OWLWXGH�

(km) 
7∞ 
(K) 

S∞ 
(N/m2) 

ρ∞ x 105 

(kg/m3) 
Q∞ x 10-21 

(m-3) 
µ∞ x 105 

(Ns/m2) 
λ∞ x 103 

(m) 
9∞ 

(m/s) 
70 220.0 5.582 8.753 1.8209 1.455 0.903 3560 

 
Table 2: Gas Properties 

 
 ;� P (kg) G (m) ω�
O2 0.237 5.312 x 10-26 4.01 x 10-10 0.77 
N2 0.763 4.65 x 10-26 4.11 x 10-10 0.74 
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 The problem of predicting the shape and location of detached shock waves has been 
stimulated by the necessity for blunt noses and leading edges configurations designed for 
hypersonic flight in order to cope with the aerodynamic heating. In addition, the ability to 
predict the shape and location of shock waves is of primary importance in analysis of 
aerodynamic interference. Furthermore, the knowledge of the shock-wave displacement is 
especially important in waveriders (Nonweiler, 1959), since these hypersonic configurations 
usually rely on shock-wave attachment at the leading edges to achieve their high lift-to-drag 
ratio at high-lift coefficient. 



 In the present account, the shock-wave structure, defined by shape, thickness and 
detachment of the shock wave, is predicted by employing a procedure based on the physics of 
the particles (Santos, 2008a). In this respect, the flow is assumed to consist of three distinct 
classes of molecules; class I molecules denote those molecules from freestream that have not 
been affected by the presence of the leading edge; class II molecules designate those 
molecules that, at some time in their past history, have struck and been reflected from the 
body surface; and finally, class III molecules define those molecules that have been indirectly 
affected by the presence of the body. Figure 3(a) illustrates the definition for the molecular 
classes. 
 In this manner, it is assumed that the class I molecule changes to class III molecule when 
it collides with class II or class III molecule. Class I or class III molecule is progressively 
transformed into class II molecule when it interacts with the body surface. Also, a class II 
molecule remains class II regardless of subsequent collisions and interactions. Hence, the 
transition from class I molecules to class III molecules may represent the shock wave, and the 
transition from class III to class II may define the boundary layer. 
 A typical distribution of class III molecules along the stagnation streamline for blunt 
leading edges is displayed in Fig. 3(b) along with the definition used to determine the 
thickness, displacement and shape of the shock wave. In this figure, ; is the distance [ along 
the stagnation streamline (see Fig. 2), normalized by the freestream mean free path λ∞, and I� � �  
is the number of molecules for class III to the total amount of molecules inside each cell. 
 

 
Figure 3: (a) Drawing illustrating the classification of molecules and (b) Schematic of shock-

wave structure. 
 
 In a rarefied flow, the shock wave has a finite region that depends on the transport 
properties of the gas, and it can no longer be considered as a discontinuity obeying the 
classical Rankine-Hugoniot relations. In this context, the shock-wave standoff distance ∆ is 
defined as being the distance between the shock wave center and the nose of the leading edge 
along the stagnation streamline. As shown in Fig. 3(b), the center of the shock wave is 
defined by the station that corresponds to the maximum value for I� � � . The shock-wave 
thickness δ is defined by the distance between the stations that correspond to the mean value 
for I� � � . Finally, the shock-wave shape (shock wave “location”) is determined by the coordinate 
points given by the maximum value in the I� � �  distribution along the lines departing from the 
body surface, i.e., η-direction as shown in Fig. 2. 
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The purpose of this section is to discuss and to compare differences in the displacement, 
thickness and shape of the shock wave due to variations on the leading-edge shape. Before 
proceeding with the analysis of the shock-wave structure, it is desirable to highlight the major 
features of the results related to the molecular class distribution. 
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 The distribution of molecules for classes I, II and III along the stagnation streamline is 
displayed in Figs. 4, 5 and 6 for power-law exponent T of 3/5, 2/3, and 3/4, respectively. In 
this set of plots, I� , I� �  and I� � �  are the ratios of the number of molecules for class I, II and III, 
respectively, to the total amount of molecules inside each cell along the stagnation line. ; 
represents the upstream length [ along the stagnation line normalized by λ∞. In addition, S and 
T refer to the power-law exponents of the lower- and upper-surface shapes, respectively. For 
comparison purpose, the distribution of molecules for classes I, II and III for the symmetric 
leading edges (T = S) is also displayed in this group of figures. In this way, empty and filled 
symbols in this set of plots correspond to the symmetric and asymmetric leading edges, 
respectively. Finally, the flow direction is from left to right as defined by Fig. 2. 
 Looking first at Figs. 4(a) and 4(b), it is clearly seen that changes on the leading-edge 
shape affects the shock-wave structure, as would be expected. As the upper-surface power-
law exponent T changes from 1/2 to 3/5, the presence of the leading edge is felt slightly less 
upstream. This behavior is observed by the location of the maximum value for I� � �  in Fig. 4(a). 
This is explained by the fact that the leading edge defined by T = 3/5 is sharper than that 
defined by T = 1/2. Conversely, as the lower-surface power-law exponent S changes from 3/5 
to 1/2, Fig. 4(b), the leading edge becomes slightly blunter and the presence of the leading 
edge is felt more upstream with respect to the stagnation point. As a result, changes on the 
shape of the leading edge will affect the displacement, thickness and shape of the shock wave 
in a different manner. 
 Turning next to Figs. 5 and 6, it may be recognized that the sharper the leading edge 
becomes, i.e., by increasing the power-law exponent T, the smaller the upstream disturbance 
along the stagnation line. 
 

 
Figure 4: Distribution of molecules for classes I, II and III along the stagnation streamline for 

leading edge defined by power-law exponents of S = 1/2 and T = 3/5. (a) Comparison with 
symmetric leading edge defined by S = T = 1/2 and (b) S = T = 3/5. 
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 Of great significance in Figs. 4, 5, and 6 is the behavior of the class I molecules for sharp 
and blunt leading edges. It should be observed that molecules from freestream, represented by 
class I molecules, basically do not reach the nose of the leading edges even after the 
establishment of the steady state. This is shown in Fig. 4(a), for the S = T = 1/2 case, which 
represent a blunt leading edge case. In contrast, molecules from freestream collide with the 
nose of the leading edge for that case illustrated in Fig. 6(b), S = T = 3/4 case, which 
represents a sharp leading edge. This is explained by the fact that density increases much 
more at the vicinity of the stagnation region for blunt leading edges (Santos and Lewis, 2002), 
and reaches its maximum value in the stagnation point. In this connection, the buildup of 
particle density near the nose of the leading edge acts as a shield for the molecules coming 
from the undisturbed stream. It is very encouraging to observe that the asymmetric power-law 
leading edges basically follow the same trend as those symmetric leading edges. 
 

 
Figure 5: Distribution of molecules for classes I, II and III along the stagnation streamline for 

leading edge defined by power-law exponents of S = 1/2 and T = 2/3. (a) Comparison with 
symmetric leading edge defined by S = T = 1/2 and (b) S = T = 2/3. 

 

 
Figure 6: Distribution of molecules for classes I, II and III along the stagnation streamline for 

leading edge defined by power-law exponents of S = 1/2 and T = 3/4. (a) Comparison with 
symmetric leading edge defined by S = T = 1/2 and (b) S = T = 3/4. 
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 The shock-wave standoff distance ∆ can be obtained from Figs. 4, 5 and 6 for the cases 
shown. Based on the shock displacement definition presented in Fig. 3(b), the calculated 
shock-wave standoff distance ∆, normalized by the freestream mean free path λ∞, is tabulated 
in Table 3 for the cases investigated. 
 

Table 3: Dimensionless shock-wave standoff distance ∆�λ∞ along the stagnation line for 
symmetric and asymmetric power-law leading edges. 

 
� T�= 1/2 T�= 3/5 T�= 2/3� T�= 3/4�

S = 1/2 0.678 0.576 0.523 0.483 
S = 3/5  0.459   
S = 2/3   0.343  
S = 3/4    0.231 

 
 It is apparent from the results on Table 3 that there is a discrete shock standoff distance 
for the cases investigated. As would be expected, the shock standoff distance increases with 
decreasing the power-law exponent for the symmetric leading-edge shape; since the leading 
edge becomes blunt with decreasing the power-law exponent S. It is also seen that, the shock 
standoff distance along the stagnation line decreased with increasing the power-law exponent 
of the upper surface as compared to the exponent of the lower surface. By increasing the 
upper-surface power-law exponent, the leading edge becomes a sharp leading edge. 
 It should be remarked that shock standoff distance becomes important in hypersonic 
vehicles such as waveriders, which depend on leading-edge shock attachment to achieve their 
high /�' ratio at high lift coefficient. In this connection, symmetric power-law leading edge 
seems to be more appropriate, since it presents reduced shock wave detachment distances as 
compared to that of asymmetric or hybrid power-law leading edge. Nevertheless, it should be 
mentioned in this context that a smaller shock detachment distance is associated with a higher 
heat load to the nose of the body. 
 As a base of comparison, the heat transfer coefficient & � �  at the stagnation point 
corresponds approximately to 0.605, 0.672, 0.703, and 0.739 (Santos, 2008b) for leading-edge 
shapes given by power-law exponent T of 1/2, 3/5, 2/3 and 3/4, respectively. Nonetheless, the 
heat transfer coefficient at the stagnation point for symmetric power-law leading edges 
(Santos and Lewis, 2002) with exponents (S = T) of 3/5, 2/3 and 3/4 is 0.730, 0.785 and 0.858, 
respectively. Consequently, it is firmly established that the hybrid power-law leading edges 
investigated present a smaller heat transfer coefficient at the stagnation point than their 
corresponding symmetric power-law leading edges. 
 
���� 6KRFN�:DYH�7KLFNQHVV�
 
 According to the definition for shock-wave thickness illustrated in Fig. 2(b), the shock 
wave thickness δ along the stagnation streamline can be calculated from Figs. 3 and 4 for the 
leading edges cases displayed. As a result of the calculation, Table 4 tabulates the shock-wave 
thickness δ, normalized by the freestream mean free path λ∞, for all cases investigated. In a 
similar way, the values presented are for the shock-wave thickness along the symmetry line 
and the stagnation line. 
 It is evident from Table 4 that, in general, the shock-wave thickness follows the same 
trend presented by the shock-wave standoff distance along the stagnation line in that it 



decreases with increasing the power-law exponent of the upper surface as compared to the 
exponent of the lower surface. 
 

Table 4: Dimensionless shock wave thickness δ�λ∞ along the stagnation line for symmetric 
and asymmetric power-law leading edges. 

 
� T�= 1/2 T�= 3/5 T�= 2/3� T�= 3/4�

S = 1/2 1.586 1.352 1.247 1.147 
S = 3/5  1.110   
S = 2/3   0.887  
S = 3/4    0.642 

 
���� 6KRFN�:DYH�6KDSH�
 
 The shock-wave shape, defined by the shock wave center location, is obtained by 
calculating the position that corresponds to the maximum I for class III molecules in the η-
direction along the body surface (see Fig. 2(b)). 
 Comparison of the shock-wave shape on symmetric and asymmetric power-law leading 
edges is illustrated in Figs. 7, 8, and 9 for upper-surface power-law exponents of 3/5, 2/3 and 
3/4, respectively. In an effort to emphasize points of interest, a magnified view of the shock-
wave shapes at the vicinity of the leading-edge nose is shown in this group of figures. Also, in 
this set of plots, the dimensionless length ; and height < are the Cartesian coordinates [ and \ 
normalized by λ∞. 
 

 
Figure 7: Shock-wave shapes on power-law leading edge defined by S = 1/2 and T = 3/5: (a) 
shock-wave on the total leading edge and (b) magnified view at the vicinity of the leading-

edge nose. 
 
 It is seen from this set of plots that increasing the upper-surface power-law exponent 
causes the expected asymmetry in the shock wave patterns with respect to the leading-edge 
centerline. As a result of the geometric asymmetry, the net buildup of particle density 
decreases in the upper side and it increases in the lower side (Santos, 2008b) with increasing 
the power-law exponent T. Consequently, the presence of the leading edge, propagated by 
random motion of the molecules, is communicated to a larger distance away from the body on 
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the upper side than that on the lower side. Hence, the shock wave center locates more away of 
the body surface on the upper side and closer to the body surface on the lower side. 
 

 
Figure 8: Shock-wave shapes on power-law leading edge defined by S = 1/2 and T = 2/3: (a) 
shock-wave on the total leading edge and (b) magnified view at the vicinity of the leading-

edge nose. 
 

 
Figure 9: Shock-wave shapes on power-law leading edge defined by S = 1/2 and T = 3/4: (a) 
shock-wave on the total leading edge and (b) magnified view at the vicinity of the leading-

edge nose. 
 
��� &21&/8',1*�5(0$5.6�
 
 This study applies the Direct Simulation Monte Carlo method to investigate the shock-
wave structure for a family of asymmetric or hybrid power-law shaped leading edges. The 
calculations have provided information concerning the nature of the shock-wave detachment 
distance, shock-wave thickness and shock-wave shape resulting from variations on the upper-
surface power-law exponent for the idealized situation of two-dimensional hypersonic 
rarefied flow. 
 The analysis showed that the shock-wave structure was affected by changes on the 
leading-edge geometry. It was found that the shock-wave standoff and the shock-wave 
thickness decreased with increasing the upper-surface power-law exponent for the cases 
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investigated. As expected, it was also verified that the shock-wave center located more away 
of the body surface on the upper side than that on the lower side of the leading edges due to 
the leading-edge asymmetry. 
 
5()(5(1&(6�
 
Alexander, F. J., Garcia, A. L., & Alder, B. J., 1998, Cell size dependence of transport 

coefficient in stochastic particle algorithms. 3K\VLFV�RI�)OXLGV, vol. 10, n. 6, pp. 1540-1542. 
 
Alexander, F. J., Garcia, A. L., & Alder, B. J., 2000, Erratum: Cell size dependence of 

transport coefficient is stochastic particle algorithms. 3K\VLFV�RI�)OXLGV, vol. 12, n. 3, pp. 
731-731. 

 
Bird, G. A., 1981, Monte Carlo simulation in an engineering context. In Sam S. Fisher, ed.,�

3URJUHVV�LQ�$VWURQDXWLFV�DQG�$HURQDXWLFV��5DUHILHG�JDV�'\QDPLFV, vol. 74, part I, pp. 239-
255, AIAA, New York. 

 
Bird, G. A., 1989, Perception of numerical method in rarefied gasdynamics. In E. P. Muntz, 

and D. P. Weaver and D. H. Capbell, eds., 5DUHILHG� JDV� '\QDPLFV�� 7KHRUHWLFDO� DQG�
&RPSXWDWLRQDO� 7HFKQLTXHV, vol. 118, pp. 374-395, Progress in Astronautics and 
Aeronautics, AIAA, New York. 

 
Bird, G. A., 1994, 0ROHFXODU�*DV�'\QDPLFV�DQG�WKH�'LUHFW�6LPXODWLRQ�RI�*DV�)ORZV. Oxford 

University Press, Oxford, England, UK. 
 
Borgnakke, C. & Larsen, P. S., 1975, Statistical collision model for Monte Carlo simulation 

of polyatomic gas mixture.  -RXUQDO�RI�FRPSXWDWLRQDO�3K\VLFV, vol. 18, n. 4, pp. 405-420. 
 
Cercignani, C., 1988, 7KH�%ROW]PDQQ�(TXDWLRQ� DQG� ,WV� $SSOLFDWLRQV, Springer-Verlag, New 

York, NY. 
 
Goonko, Y. P., Mazhul, I. I., & Markelov, G. N., 2000, Convergent-flow-derived waveriders. 

-RXUQDO�RI�$LUFUDIW, vol. 37, n. 4, pp. 647-654. 
 
Guo, K. & Liaw, G.-S., 2001, A review: boundary conditions for the DSMC method. In 

3URFHHGLQJV� RI� WKH� ��WK� $,$$� 7KHUPRSK\VLFV� &RQIHUHQFH, AIAA Paper 2001-2953, 
Anaheim, CA. 

 
Kim, B. S., Rasmussen, M. L., & Jischke, M. C., 1983, Optimization of waverider 

configurations generated from axisymmetric conical flows. -RXUQDO� RI� 6SDFHFUDIW� DQG�
5RFNHWV, vol. 20, n. 5, pp. 461-469. 

 
Mangin, B., Benay, R., Chanetz, B., & Chpoun, A., 2006, Optimization of viscous waveriders 

derived from axisymmetric power-law blunt body flows. -RXUQDO� RI� 6SDFHFUDIW� DQG�
5RFNHWV, vol. 43, n. 5, pp. 990-998. 

 
Mason, W. H. & Lee, J., 1994, Aerodynamically blunt and sharp bodies. -RXUQDO� RI�

6SDFHFUDIW�DQG�5RFNHWV, vol. 31, n. 3, pp. 378-382. 
 



Mazhul, I. I., & Rackchimov, R. D., 2004, Hypersonic power-law shaped waveriders in off-
design regimes. -RXUQDO�RI�$LUFUDIW, vol. 41, n. 4, pp. 839-845. 

 
Nonweiler, T. R. F., 1959, Aerodynamic problems of manned space vehicles. -RXUQDO�RI�WKH�

5R\DO�$HURQDXWLFDO�6RFLHW\, vol. 63, Sept, pp. 521-528. 
 
Rasmussen, M. L., 1980, Waverider configurations derived from inclined circular and elliptic 

cones. -RXUQDO�RI�6SDFHFUDIW�DQG�5RFNHWV, vol. 17, n. 6, pp. 537-545. 
 
Rasmussen, M. L., & Ducan, B., 1995, Hypersonic waveriders generated from power-law 

shocks. AIAA Paper 95-6160. 
 
Santos, W. F. N., & Lewis, M. J., 2002, Power-law shaped leading edges in rarefied 

hypersonic flow. -RXUQDO�RI�6SDFHFUDIW�DQG�5RFNHWV, vol. 39, n. 6, pp. 917-925. 
 
Santos, W. F. N., & Lewis, M. J., 2005a, Calculation of shock wave structure over power-law 

bodies in hypersonic flow. -RXUQDO�RI�6SDFHFUDIW�DQG�5RFNHWV, vol. 42, n. 2, pp. 213-222. 
 
Santos, W. F. N., & Lewis, M. J., 2005b, Aerothermodynamic performance analysis of 

hypersonic flow on power-law leading Edges. -RXUQDO�RI�6SDFHFUDIW�DQG�5RFNHWV, vol. 42, 
n. 4, pp. 588-597. 

 
Santos, W. F. N., 2005, “Leading-edge bluntness effects on aerodynamic heating and drag of 

power law body in low-density hypersonic flow. -RXUQDO� RI� WKH� 6RFLHW\� RI� 0HFKDQLFDO�
6FLHQFHV�DQG�(QJLQHHULQJ, vol. 27, n. 3, pp. 236-241. 

 
Santos, W. F. N., 2008a, “Physical and computational aspects of shock waves over power-law 

leading edges. 3K\VLFV�RI�)OXLGV, vol. 20, n. 1, pp. 1070631-11. 
 
Santos, W. F. N., 2008b, “Direct simulation of hybrid power-law leading edge in hypersonic 

flow. 9,,,�6\PSRVLXP�RQ�&RPSXWDWLRQDO�0HFKDQLFV, Belo Horizonte, MG, Brazil. 
 




