IAC-08-C2.1.11

NEURO-FUZZY MODELING FOR FORECASTING FUTURE DYNAMICAL
BEHAVIORS OF VIBRATION TESTING IN SATELLITES QUALIFICATION

Ernesto Araujo
Instituto Nacional de Pesquisas Espaciais (INPE), Sa@ dos Campos, Brazil
ernesto.araujo@lit.inpe.br
Universidade Federal de Sao Paulo (UNIFESP), Sao PauézilB
ernesto.araujo@unifesp.br
Rogerio Marinke
Instituto Nacional de Pesquisas Espaciais (INPE), Saeé dos Campos, Brazil
marinke@terra.com.br

ABSTRACT

A neuro-fuzzy modeling for forecasting the future dynarhimehavior in vibration testing during

satellite qualification is proposed in this paper. Vibratitesting is employed for emulating

vibrations present during the lifetime launching. There different levels of excitation during

vibration testing in order to verify and assure that thelbgte@nd their sub-systems will support
the efforts when in orbit or during the launching. The analysf the dynamical behavior

can help not only to avoid breaks and other damages but alswsafeasible adjustments

in the structure model. The neuro-fuzzy model is used to rdesdhe dynamical behavior

through actual data measured during the qualification otespystems in the Integration and
Testing Laboratory (LIT) at the National Institute of SpaResearch (INPE). The model uses
part of a low amplitude signal for training the neuro-fuzzstem; the remaining set of data
is used to validate the model. Afterward, the dynamical bignais estimated when a new

high amplitude input signal is applied. Results of the dtrted model used in the design of
the satellite and of their sub-systems are confronted withreal behavior presented by the
structure, allowing eventual adjustments. Results shavniuro-fuzzy modeling is a feasible
solution for forecasting dynamic satellite behaviors undistinct exogenous input due to its
capacity of generalization.

INTRODUCTION the sub-systems must be tested and handled
o]8 emulating as closely as possible the space

nvironmental conditions. Different from those

different environmental tests for emUIatininvironmental condition available on earth the
most of the activities and operational condi- . : "
atellite will be exposed to space conditions

tions present at pre-launch, launch and pos}- =" . : . X :
launch operations. uring its lunching and its working life [1],

o b[2]. The interest here addresses the vibration
A satellite is composed of several sub:

systems that interact to each other to form tgstlng.
whole system. In order to reach a fully opera- The estimation of future dynamical behavior
tional status, the total system and, in particulamay be determined by using different tech-

The space qualification process encompasg
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Specimen tem design methodology employed for vibra-
tion control to adaptively adjust the fuzzy
membership functions and dynamically opti-
. mize the linguistic-fuzzy rules was developed
in [10]. A model multilayer perceptron neu-
] l ral network based on backpropagation through
- - time algorithm is developed to minimize the
amies | |orsiencane | geNeral quadratic cost function in forward and
backward pass stages. The problem of op-
timal large-angle single-axis maneuvers of a
flexible spacecraft with simultaneous vibration
Shaker Blewo ~Oynamic suppression of elastic modes is discussed in
[11]. The structure of a five-layer feedforward
1] i network is shown to determine systematically
R Systemof the correct fuzzy logic rules, tune optimally
Foeney convel the parameters of the membership functions,
and performing accurately the fuzzy inference.
An adaptive structure with self-learning active
vibration control system is developed in [12]. A
fuzzy-neural network controller with adaptive

) ) o membership functions is presented. The exper-
niques of system identification. Space systéMgental setup of a two-bay truss structure with

such as satellites, however, are inherently nogztive members is constructed. and the FNN
Ilnear. While conventional identification techqniroller is applied to vibration suppression of
niques are_adequate for models or systems that truss. The paper accomplished in [13] de-
are linear in parameters, for systems that ag@rines some of the techniques which are being
usually non-linear, identification methods usegsnosed to control vibration aboard spacecraft
in linear systems are not appropriated. Due g order to secure the high-quality microgravity
that suitable nonlinear approaches should B@yironment. One of the presented techniques
used. is a model of the element-finite type used by

Different approaches may be employed tQASA for predict microgravity levels for Space
deal with this sort of problem. The effecstation Freedom.

tiveness of using computational/artificial intel- L ,
ligence techniques based on Particle Swarm! € Objective in this paper is to show the fea-

Optimization and Fuzzy Logic modeling used!Pility of employing a nonlinear identification

to space system qualification are demonstratiifnnique denominated neuro-fuzzy modeling

in [3], [4], [5], [6]. The proposed approachfor forecasting the future behavior of vibration
is based on computational/artificial intelligenc8YSt€ms. The vibration testing is one of the
techniques inspired by biological neural moddfSks carried out to verify the structure of
of human beings. These techniques, related sate_lllte and their sub-systems in order to
the field of Artificial Neural Networks (ANN), @PPropriately support the launcher lift-off and
are mainly characterized by its ability to leani® guarantee useful life when in orbit (Fig. 1).
through experiences, to adapt to adverse cdA€vices are exposed to the similar environ-
ditions, and to be tolerant to noise [7], [8] [9]_mental conditions that will be demanded from
The use of ANN in vibration systems andlopunch|ng to its working life.
space sector is found in literature in diverse The neuro-fuzzy model to describe the dy-
approaches. For instance, the neuro-fuzzy sysmical behavior is obtained through actual

Signal of
_ Performance

Fig. 1
OUTLINE FOR VIBRATION TESTING.
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data measured during the qualification of spadata, knowledge representation through fuzzy
systems in Integration and Testing Laboratomyules [16], and the ability to deal with imperfect
(LIT) at the National Institute of Space Redata, as well. The neuro-fuzzy model may as-
searches (INPE). The problem is composed s@ime the fuzzy Takagi-Sugeno (TS) model [17]
two parts. In the first one, the model useand approach used in many problems of diverse
part of signals of low amplitude for trainingareas. The T-S models may be represented by
the neuro-fuzzy system and then it is validatetie following general form:

with the remaining set of data. Afterward, this &) L

proposed neuro-fuzzy model is employed to RS” i IF <aiis A3 >AND...

estimate a distinct dynamical behavior when a AND <z, is A7, > (1)

new input signal of high amplitude is applied THEN y; = f() -

to the space system. Results of the structurphe <|F statements defines the premise part

model used in the design of the satellite and @at is featured as linguistic terms in the propo-
their sub-systems are confronted with the regjtion form, < z; is A{ >, while the <THEN

behavior presented by the structure. functions> constitutes the consequent part of
the j-th rule of the fuzzy system. The vector
NEURO-FUZZY SYSTEM x = [x1,...,x;]T represents the-th input

_ _ _ vector of the premisey i = 1,...,m, and
The model used in this work is the well sy the dimensionality of the premise space.

tablished hybrid system denominated AdaptiVene terms A7 are linguistic labels of fuzzy

Neuro-Fuzzy Inference System (ANFIS) [14]gats. Thej-thl rule output,y; = f(xi, wi), is

Used in a synergetic manner the fuzzy systemgajly function of the consequent input vector,
allows to deal with imprecise, uncertain ang _ XJI T W = [le ..., wi T, that
vague in information while the Artificial Neural composje the gbnsequent pérarﬁetéjr set. One of
Networks can learn with examples and produgge advantage of the TS model does not contain

output for inputs no present in the period Ofiefyzzification interface because it process and
training due to its capacity of generalizing [15]n,oduces crisp data.
One of the main characteristics of fuzzy mO(ﬁ The firing strength of thej-th rule, RsY)

els is related to its capacity to mimic huma’?epresents its activation level and may, for

reasoning allowing knowledge representatiqsiance, be chosen as the algebraic product:
in the form fuzzy conditional rules and fuzzy

sets theory. Fuzzy sets also is appropriate to;(z) = WAjl(Xl)WAj2<X2) Wi (Xm) - (2)
deal with uncertainty, imprecise measures and _

incomplete information. Nevertheless, it does” Neuro-fuzzy model equivalent to the
not allow learning by examples. In turn, artifi-1akagi-Sugeno system is depicted in Fig. 2.

cial neural network are low-level computational

algorithms presenting learning capacity. Thi Layert Layers
approach is effective in the processing of nt Layer2  Layers L
merical data and presents distributed comput . 3 Layers
tional characteristic allowing that each node i .. [az] Wi i
the network to adjust its connections to obtai Y
the best possible input-output mapping afte E] SO
learning from data. When combining neure "~ RV

Xy

networks and fuzzy systems it is possible t

obtain hybrid models with the capacities of Fig. 2
learning, adaptation, optimization, being ro- ANEIS STRUCTURE.
bust, dealing with large amounts of numerical
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This example has two inputs, y, one out- and momentum constant are among the most
put / and two rules. The ANFIS structure igmportant factors determining the convergence
composed by the following elements: of the backpropagation [15], [19].
1) Input Layer The parameters of membership functions are
Computes the degree of relevancy of thestimate by means of the backpropagation algo-
inputsz,y with relation of the subgroups fuzzyrithm. The algorithm backpropagation provides
that form the partition of: andy, or either, the a supervised learning. This approach attempts
process of fuzzification. to find out iteratively the low differentiates
2) Membership Layer between the desired outputs and actual mea-
Computes the degree of activation of eactured outputs obtained by the neural network,
rule, with that degree the consequence of tisecond a minimum error. The error signal is
rule is being taken care of. The function foback-forwarded then of the output layer for
this layer is al-normthat uses the probabilisticeach element of the previous intermediate layer
form. In this, the outputs of the neurons givethat it contributes directly to the formation

by eq. (3) are equivalent to (2): of the output. However, each element of the
intermediate layer just receives a portion of

Wi = fia, (21) - g (02) - 145 (23) () the signal of error total, proportional just to

3) Rule and Norm Layer the relative contribution of each element in the

Layer 3 is the degree of relevance of ead®@rmation of the original output. This process
rule, already normalized. Each pointcalcu- repeats, layer after layer, until each element
lates the reason for the firing strength of rulef the network receives an error signal that
j for the sum of the firing strength of all thedescribes its relative contribution for the total
rules. The outputs of points this layer referringrror. Based on the error, the weights of the
to Fig. 2 are: connections are updated for each element al-

lowing the neural network to converge all the
(4) patterns of the training group [18].
In each iteration of the learning method the

4) Layer consequent parameters of the premises are fixed. This out-

Layer 4 contains the function of activation oput is calculated from the linear combination
the neurons, consequence part of the rulé3.( of the parameters of the consequent part.

It is calculated by the product of the normalized The parameters of the consequences are iden-
firing strength §;Vi = 1,2, 3) and the value of tified by the method Least Mean Square-LMS,
the consequence of the rule. The output valuegich it carries through the adjustment of the

1171 = wl(wl + Wo + w3)
Wy = wa(wy + wa + w3).

of each point of this layer are given by: coefficients that will be used in the synaptic
Hy =, - C, weights du_ring the stage of backpropagation.
Hy = iy - C. (5) The error signals backward propagated to adapt
the parameters of the premises, by means of the
5) Output layer descending gradient [18].

It computes the necessary output of the net-

work as given by:
g y PROBLEM FORMULATION

F=H+ ®) The qualification of space systems in Brazil
Learning on a neural network consists a6 accomplished by the Integration and Test-
adjusting values in the synaptic connectionsig Laboratory (LIT) at the National Institute
It can be made by means of a system spef Space Researches (INPE). Space systems
cialist or through an algorithm of learningare submitted to extensive ground testing to
[18]. The initial weights, the learning constanénsure their successful operation. The nature

4



of environmental simulation is able to emu o ’ ‘inputand outputsign‘als ofvibration‘tests ’ |
late flights or other environmental conditions s || ouut1 pre<onditioning  input 1 pfe-conditioning
There are standards that settle environmen s °r— : R, | vy
criteria, testing requirements, and test metho = | | o~ oWV 2T
to ensure that system can reach post-laun ° *° % ° % 0 1@ W i e =
requirements.

Vibrations caused by the operation of launc T
vehicle engines can be transmitted to the satt ~ i f A AN
lite mechanically and acoustically. During the . >° * * * ' ™ ™ i B =

lift-off space systems suffer vibration transmit

T T
output 2 dualification input 2 qualification
i i ™~

input 2 [g]

0.20- R ,,,,,%,,,,,,,,%,,, ATA V - ]

[
output 2 qualificatiol

ted for the useful load demands that tests a g **| | *retaetion

accomplished in agreement with the chara oo ma i |
teristics of each specimen. Resulting shocl frequency

induce vibrations that correspond for 10 times

the value of originating from acceleration the Fig. 3

A) PRECONDITIONING: INPUT z OUTPUT B) ACCEPTANCE INPUT z
OUTPUT C) PREECONDITIONING 2 ACCEPTANCE OUTPUT

gravitational force of the Earth.
The vibration testing is one of the tasks
carried out to verify the structure of the satellite
and their sub-systems in order to support the
lift-off of the rocket appropriately (Fig. 1). De-auacy of a design and demonstrate that ad-
vices are exposed to the similar environmentgfiuate margins exist in the final product to
conditions that will be demanded from the liftassure that required specifications are met.
off to the useful life when in orbit. Results Acceptance testing is used to prove that
of the structural model used in the desigAroduction units are as high in quality as was
of the satellite and of their sub-systems af@e qualification model. Amplitudes applied in
confronted with the real behavior presented Hjcceptance testing are somewhat greater than
the structure, allowing eventual adjustments.the average signal level expected in service, but
Their consequences are, for instance, witewer than the level used in qualification test.
chafing, loosening of fasteners, intermittent Good acceptance amplitude, with levels
electrical contacts, touching and shorting of
electrical parts, seal deformation, compone~*
fatigue, optical misalignment, cracking anc oo
rupturing, loosening of particles of parts ths
may become lodged in circuits or mechanism
and excessive electrical noise. 0.05
Vibration test standard are classified as deve | ,\ o
opment, qualification, acceptance, pre-launcs o T e 5 ©
validation, or other specific tests. Random Vv £ oos! c ,
bration test is defined in which all frequencie
are present at all times in various combinatior
of intensity. The spectra are defined in term oo 3
of acceleration spectral density and are defin " B
over a relevant frequency range. The vibratic ~ © o6 o1 o5 oz o3 03 oz
levels are deliberately chosen to be greater th.... e
the expected levels in service (Fig. 3). Fig. 4
Conditioning testing is used to prove to the OUTPUT (0) AND INPUT (.) CORRELATIONS
customer the ruggedness and structural ade-

Correlation: input 2 x input 1
T T

0.06 -




Sagnals Inpant and Output - Lo SmplHsds
i Fi

than the level used in preliminary analyses.
The performance parameter measurements
should establish a baseline that can be used to
assure that there are no data trends established
in successive tests which indicate a constant
degradation of performance within specifica-
tion limits that could result in unacceptable
performance in flight. It is demanded therefore,
that studies are accomplished in the intention of
obtaining models capable to reduce the effects
of this vibration and to guarantee that the space
mission has their project requirements met.

uos

o

1 - idemificaticn
2 = Valldation

Fig. 5 EXPERIMENTAL RESULTS

DATA FOR IDENTIFICATION AND VALIDATION .

The type and the amount of membership
functions that compose the models are the
parameters modified to check which better
slightly over those expected in service wouléhodel represents the dynamics of the system.
be sufficiently severe to detect and eliminatghe learning method is also modified during
causes of infant mortality, but would not behe simulations. The method backprogation ap-
severe as to encroach on the service life ofproach is used in its original form and in the
reliable design. Prior to the application of théybrid form, such that, the filter least mean
randomly conditioning signal of higher amplisquare is used as auxiliary mechanism. The
tude, a preliminary lower level excitation mayearning method in the hybrid form (backprop-
be necessary for equalization and preliminaggation with LMS) provides the best results.
analysis. The data used for system identification is

Close examination of a preliminary lowershown in Fig. 5. The process of identification
level can be very useful in finding out the imis accomplished by using two structures. In the
portant dynamical behaviors of the specimefirst, the system presents one input associated
This analysis can assist, for instance, to deteéo low amplitude signals. In the second, it is
mine critical frequencies in which mechanicalitilized as input the low amplitude signals and
resonance and other effects occur or in whidignal variation. Several combinations of data
malfunction, deterioration of performance arget were tested. For the current application,
exhibited. Thus, the advantage of forecastinge data selected is the most appropriate. To
future dynamical behavior is useful to minivalidate the model it is used all the data set of
mize and avoid damages when a high leviw and high amplitude.
of excitation signal is employed in condition- The root mean square error is used as mea-
ing testing. Besides, the upper displacemestire of precision of the model. The closer of
achieved by estimation techniques can help umit value, the better are the results supplied
determining notching levels used to limit andby the model. The stop criterion used 380
protect satellites. epochs for the model with one input and0

Reliable methods will afford the opportunityepochs for the model with two inputs. For the
of identifying crossover frequencies and agdearning parameters:)( initial step-size, )
proximate future displacement to be performedx of decrement (step-size decrease rate), and
by the electro-dynamical vibrator used durin@ii) tax of increase (step-size increase rate)
the tests where the actual input level is greatare selected, respectively, the valu@s], 0.09
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TABLE 1 TABLE 2

NEURO-FUZZY MODELS WITH ONE INPUT. NEURO-FUZZY MODELS WITH TWO INPUTS

Amount of Bell Gaussian Amount of Bell Gaussian
membership  Amplitude Amplitude membership  Amplitude Amplitude
functions Low High Low High functions Low High Low High
2 0.0098 0.0476 0.0097 0.0563 2 0.0113 0.0500 0.0113 0.0500
3 0.0096 0.0561 0.0098 0.0628 3 0.0115 0.0645 0.0115 0.0645
4 0.0097 0.0502 0.0097 0.0586 4 0.0409 0.0576 0.0409 0.0576
5 0.0099 0.0427 0.0097 0.0536 5 0.0789 0.2946 0.0789 0.2946
6 0.0096 0.0651 0.0097 0.0575 6 0.0117 0.0796 0.0117 0.0796

*Learning method backpropagation with LMS filter. *Learning method backpropagation.

and1.1. After analyzing the data shown in thdwo input is given by:
Table 1 and Table 2, the model that supplied . |F 4, is PS ANDz,, is PS

the best results satisfying the RMSE criterion THEN y, = is PS
is selected. Ry : IF z, is PS AND z,, is PL
The eq. (7) and eq. (9), respectively, represent THEN y, = is PL
the models with one and two inputs. The learn- g, . |F z, is PL AND z,, is PS
ing method backpropagation with LMS filter THEN y; = is PS
provides the best results for the models with p, . |F 2, is PL AND z,, is PL
one input. However, for the models with two THEN y; = is PL
inputs the learning method backpropagation (9)
provides better results. wherex; is low amplitude signal and is its
The model with one input is given by: variation (varLow). The Gaussian membership
. ' function (10) is used. The RMSE is show in
Ry IF 2, is NZ THEN y, = Is NZ the Fig. 6(d). The control surface of the neuro-
Ry:IF 218 P THEN y, = Is P fuzzy model is show in the Fig. 6(c).

Rz :IF 1 is PS THEN y3 = is PS
R3:IF z1is PM THEN y3 = is PM

Cmei)2
Ry:IF 21 is PL AND z,, is PL pings () = exp {_lw} (10)
(7) L 2 oi?
where z; is concerned the low amplitude sig-
nal. The linguistic terms for one input ANFIS
CONCLUSION

model are: NZ (near zero), P (positive), PS
(positive small), PM (positive medium), and An alternative for forecasting the dynamic
PL (positive large). The Bell membership funcbehavior of vibration systems in satellite qual-
tions given by eq. (8) provide the best resullfication is proposed in this work.

for the . The neuro-fuzzy model is used for identifica-
1 tion and modeling of non-linear system. Neuro-
po, (i) = 7 —¢ (8) fuzzy is an hybrid model characterized as being

1+ |

o C|2b robust, dealing with uncertain, imprecise mea-

sures and is able to learn with experience, i.e.,
The fuzzy sets of model are shown in Fig. 6(ayata.

The accuracy of the model when validated The analysis of the dynamic behavior can

with signals of low and high amplitude ishelp to avoid breaks and other damages and
respectively, shown in Fig. 6(e) and Fig. 6(f)ito allow feasible adjustments in the structure

In turn, the RMSE is show in Fig. 6(b). model. Results show that the models have good

The eliciting neuro-fuzzy model containingcapacity of generalization. These results were
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improved when used the variation of the signalome cases accuracy of 99% and 95%.

of _Iow_ amplitude as input. The _criterion for Future works can be carried through using
validation of the models adopted is Root Meagers intelligent techniques, as Particle Swarm
Square Error. The RMSE values indicated IBptimization (PSO) in order to compare the

BE 106X 10° ‘ Root Mean ‘Square Error'
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(c) Fuzzy surface for the two inputs model. (d) RMSE for model with two inputs.
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Fig. 6
NONLINEAR ANFIS MODELING WITH ONE INPUT (LOW AMPLITUDE) AND WITH TWO INPUTS (LOW AMPLITUDE AND ITS VARIATION ).



answers produced for these techniques in the
solution of the considered problem.
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