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Abstract. In this work we propose a new model for spatial games. We 

present a definition of mobility in terms of the satisfaction an agent has 

with its spatial location. Agents compete for space through a non-

cooperative game by using mixed strategies. We are particularly 

interested in studyig the relation between Nash equilibrium and the 

winner strategy of a given model with mobility, and how the mobility 

can affect the results. The experiments show that mobility is an 

important variable concerning spatial games. When we change 

parameters that affect mobility, it may lead to the success of strategies 

away from Nash equilibrium. 
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1   Introduction 

Over the last years, the role of spatial self-structuring in the study of games has 

drawn a lot of attention. Particularly, games with spatially explicit factors have 

proven to be useful for modelling biological and economic environments (Nowak 

and Sigmund 2000). The purpose of such games is to assess the effects that spatial 

structures have on adaptation strategies of agents, mainly in the study of the 

evolution of altruistic behaviour. Adding a spatial component to the models 

(usually in the form of grids) often displays different features from well-mixed 

populations. For example, the evolution of interspecific mutualism cannot be 

explained by an unstructured population through the iterated continuous 

Prisoner’s Dilemma (Scheuring 2005). 

Most of the games on grids use a straightforward extension of non-spatial games, 

with each cell containing a single agent that interacts with its neighbourhood. If the 

agents interact only with fixed neighbours, there will be no need to recognize and 

remember the opponents (Nowak et al. 1995). This arrangement allows the same 

game to be repeated, and the results influence how the agents populate the cellular 

space. As an example, Nowak and May study the spatial Prisoner’s Dilemma, in 

which a cell is given to the strategy with highest payoff in the neighbourhood, if it 

is greater than the current payoff (Nowak and May 1992). 

A spatial arrangement may lead to different results because it changes the way 

with which agents interact, from well-mixed confronts to local competitions. But 

there is a second characteristic of space that may affect the development of spatial 

models: the mobility. Agents can move in the space, changing their spatial locations 

and making the local relations dynamical. 

The literature of spatial models presents two definitions of mobility. First, 

analytical models using replicator-diffusion equations often call mobility the 

spread of a strategy in the space (Ferrière and Michod 2000). The second 

definition works with the mobility of an individual agent, which can move to an 

empty neighbour cell. Examples of such models can be found in studies of 

cooperation (le Galliard et al. 2003; Epstein 1997), linguistics (Kosmidis et al. 

2005), and evolution of cancer (Mansury et al. 2006). 

In all works that involve numerical simulation, the mobility of an agent is an 

automated action, which always depends on a social opportunity as, for instance, 

an old neighbour has left an empty cell. Moreover, that happens even if the current 



spatial location is favourable to the agent. However, instead of moving to the 

neighbour cell as soon as possible, a “rational” agent would ask: why should I move 

if I am getting good results? That is a common strategy adopted in spatial models 

which do not use games, such as in (Zhang 2004) and (Beltran et al. 2006). In these 

works, the agent compares the current satisfaction with the satisfaction in the new 

spatial location, moving when its satisfaction increases with the change. 

In this work, we explore the question of mobility within the context of non-

cooperative games, more precisely using the chicken game. We propose a new 

spatial model by defining mobility in terms of the satisfaction of an agent with its 

current spatial location. Agents use mixed strategies to compete, and decide to 

move according to their payoffs. An agent does not depend on a social opportunity 

for leaving its spatial location: it can move to a new spatial location even if it is 

already populated with other agents. Agents have complete freedom to move; 

there is no cost or constraint to do so. In this framework, instead of competing with 

their neighbours, the agents compete with each other within the same cell. 

Contrary to what happens in the literature of spatial games, in this work we have a 

clear separation between the concepts of cell and agent. There are many real world 

situations where it is useful to consider agents moving from one cell to another. 

Such cases are common in geographical space, where a cell is usually a container 

that has properties which might be different from its neighbours. Take the case of 

land use change models. Land use change cells differ not only in their locations, but 

also in properties such as topography, water availability, and temperature. In these 

and similar cases, a cell can contain a small community of agents. Agents interact 

with their community (inside the cell) and if dissatisfied, they will try to find a 

more friendly community elsewhere in space. Combining interaction within cells 

and movement between cells allows new insights when modelling games in space. 

We are particularly interested to study the relation between the Nash equilibrium 

and the winner strategy of a given spatial model with mobility, and how the 

definition of mobility can affect the results. In a nutshell, we try to answer the 

following questions: is Nash equilibrium the best strategy in a competition for 

space where the agents can move according to the results of the games? If not, in 

which cases, and how can it help to define the best strategy? Also, how does the 

proposed definition of mobility may affect the results? 



2. Related Works 

2.1 Non-cooperative Games and Nash Equilibrium 

A game with n players is said to be non-cooperative when we have, for each player: 

a) a finite set of pure strategies (actions); 

b) a payoff function, that maps all n-tuples with the individual pure strategies 

to real numbers. 

One mixed strategy is a collection of non-negative numbers adding up to 1, 

corresponding to probabilities of using each of the pure strategies. The mixed 

strategy defines the tendencies of a player. Each time it plays, it will choose 

randomly one of its pure strategies, based on the probabilities defined by the 

mixed strategy. 

For example, let us take the chicken game. Two players have the choice to escalate 

(E) or not to escalate (~E) a brawl. If none of them escalates, nothing happens. If 

only one escalates, the other player runs away, and the winner receives 1 from the 

coward player. But, if both decide to escalate, each player pays 10 due to medical 

care. This game is said to be symmetric, because both players employ the same 

pure strategies and payoffs, as shown in Table 1. Given that this game has only two 

pure strategies, we denote by sx, 0 ≤ x ≤ 1, the mixed strategy of escalating with 

probability x. 

Table 1. Game payoffs, in pairs (A, B) 

 B escalates B does not 

escalate 

A escalates (–10, –10) (+1, –1) 

A does not 

escalate 

(–1, +1) (0, 0) 

 

Nash proved that, given any non-cooperative game of n players, there is always an 

equilibrium point. This point is a set of mixed strategies for each player that, if a 

player individually changes its mixed strategy, the best result it may get will be the 



same as in the equilibrium (Nash 1951). No player has incentive to deviate one-

sidedly from its strategy as long as the other players remain in the equilibrium. 

This is known as the Nash equilibrium. 

For example, let A and B be two players of the chicken game, with strategies sa and 

sb, respectively. The expected payoff of player A is –10sasb + sa – sb. If A knew 

exactly the value of sb, it would be possible to calculate the best action for it. If sb is 

greater than 10%, the best choice for A is never to shoot (a = 0), implying in a 

payoff of –pb. If pb is less than 10%, A should always shoot (pa = 1), because its 

payoff would be 1–11pb. But, if pb is exactly 10%, all strategies for A lead to the 

same payoff (–0.1). Therefore, if pa is also fixed at 10%, no other strategy could 

augment its payoff against A by changing its own mixed strategy. Applying the 

same reasoning for B, we arrive to the conclusion that when both players follow 

s0.1 the game is at Nash equilibrium. 

But this idea of equilibrium may cause controversy in some games. Most game 

theorists agree on s0.1 as the rational solution for this game, but the argument is 

somewhat tenuous (Sigmund 1993). In the chicken game, although deviating from 

the equilibrium does not increase the utility of the player, it does not decrease as 

well, as long as the other player stays in the equilibrium. Therefore, it is not a strict 

equilibrium. 

A clear explanation can be found when it is played not only by two players, but 

within a population. Maynard Smith viewed this game in a population-dynamical 

setting (Maynard Smith 1982). In his model, a large number of players meet 

randomly in contests where they have to decide whether to escalate or not. If the 

estimated overall probability is greater than 0.1, it is better not to escalate. If it is 

less than 0.1, it is better to escalate. But if it is exactly 0.1, then there is no better 

strategy than s0.1. In this sense, self-regulation leads to s0.1 – self-regulation not 

between two players, but within a population. Nash has also proposed a similar 

interpretation for the equilibrium points, the mass-action (Nash 1950), which was 

forgotten for decades in his unpublished thesis. In this work, we will study how 

this non-strict equilibrium behaves in a spatial context with the agents’ mobility 

based on the results of the games. 

2.2 Spatial Games 

Recently, new models with different neighbourhood topologies have been 

proposed to study games in the space. The proposals include variations of grids, 



graphs, and some in between structures (Biely et al. 2007; Cassar 2007; Duran and 

Mulet 2005; Soares and Martinez 2006; Vainstein and Arenzon 2001; Vukov and 

Szabò 2005; Wu et al. 2006). Ohtsuki and Nowak have shown that, in the limit of 

weak selection, models with different topologies can be described only by 

changing the payoff matrix (Ohtsuki and Nowak 2006). Although these models 

have different topologies, agents have the same characteristics: they are fixed in 

the space, have only a pure strategy, play with neighbours, and may spread their 

strategies to the neighbourhood according to the result of the games. 

Commonly, the result of the game is only used for defining a new spatial 

arrangement, but it by itself does not have a future effect in the model. Feldman 

and Nagel propose a model where cells are not updated by a new strategy at the 

end of the turn. Instead, each cell must pay a fee each turn to stay in the model, and 

a neighbour strategy will replace it only if its savings end (Feldman and Nagel 

1993). Epstein studies the evolution of cooperation in a model where agents may 

be removed from the model if they reach zero or less wealth, since the payoff 

matrix has negative entries (Epstein 1997). 

Beltran and others propose a model where agents move in a lattice trying to 

minimize their dissatisfaction. The satisfaction is a function of the difference 

between the real distances it keeps from the other agents and the ideal distances it 

wants to keep from them (Beltran et al. 2006). Zhang studies a segregation model, 

where agents may exchange their spatial locations according to a definition of 

satisfiability (Zhang 2004). In both models, only one agent can be within a cell in 

each time step. 

3. The proposed model 

The model takes place in a cellular space. A cellular space is an environment with 

cells connected by neighbourhood relations. The simplest example of a cellular 

space is a grid, with square cells having four touching neighbours. The objective of 

using the term cellular space instead of graph is to distinguish the meaning of a 

neighbourhood: instead of connecting individuals, as in typical spatial games, a 

cellular space simply connects cells, defining a spatial proximity relation. 

The cellular space is always populated with individuals called agents. Each agent 

belongs to a single cell, which has enough space for it to live. Initially, each cell 

contains a set of agents, which have to compete for the space through a non-

cooperative game. Whenever an agent is playing a non-cooperative game, we call it 



a player, but one agent has other characteristics besides those of players in the 

sense of a non-cooperative game (pure and mixed strategies), as it will be seen 

below. 

The basic assumption of our model is that when an agent arrives at a cell (as well 

as in the beginning of the model), it is satisfied with its cell, and thus no agent will 

move unless it is dissatisfied. Two agents within the same cell may play a non-

cooperative game competing for it, and the result of each game affects directly 

their individual satisfaction with the current cell. This is the only memory an agent 

has, and it is called local satisfaction. The local satisfaction starts with a positive 

value when an agent arrives at a cell. Whenever it reaches zero or less, the agent 

randomly picks a neighbour cell and moves to it, looking for a better cell to 

compete for. Given that, the movement of agents in a cellular space can be 

characterized as a random walk.  

Each agent also has a global satisfaction, starting with a positive value significantly 

greater than the local satisfaction. As the local satisfaction, it is affected by the 

payoffs of the games. All agents have the same global satisfaction at the beginning 

of the model. An agent that got dissatisfied many times and its global satisfaction 

reaches zero or less leaves the model. In the models we propose in this work, the 

global satisfaction does not affect the agents’s behaviour. 

To create a metric for measuring satisfaction, we say the satisfaction of an agent is 

measured by its capital. Local satisfaction represents the limit of capital one can 

dispend for a cell. Global satisfaction corresponds to the initial capital assigned to 

an agent, thus it leaves the model when its money ends. 

All agents are identical if we consider only the satisfaction, but they differ in one 

characteristic: the mixed strategy. We divide the agents in groups of equal size. 

Two agents within a group share the mixed strategy, but they cannot communicate 

nor identify each other. Although the agents compete individually, they represent a 

strategy that is going to be studied in a spatial context. To represent the fittest 

agents along the model execution, the agent with higher global satisfaction in a cell 

will be its owner, because, at least at first sight, it has more chance of surviving 

than any other in that cell. If two agents have the same amount of money in a given 

cell, the agent that stands there for a longer time is its owner. In the first turn of the 

model, we divide the owners equally among each group. 



The model has a finite number of turns, each one with two steps. The first step sets 

up and carries out the games. Supposing the game has two players, we randomly 

choose pairs of agents in each cell, and then carry out the game with each pair. 

Cells with an odd number of agents have one random idle agent, and no agent will 

play more than once in each turn. The same logic can be applied to games with 

more than two players. 

The second step defines the dynamical part of the model. Once each agent already 

knows its payoff, it updates its local and global satisfactions with the payoff. Then, 

it checks if any satisfaction has reached zero or less to perform a movement or 

leave the model. The model runs until it reaches a stable state, which happens 

when there is at most one agent in each cell, or when their satisfaction stops to 

decrease. Whenever the model arrives at one of these situations, we say that it is at 

equilibrium. 

There are two differences between the general model proposed here and the ones 

proposed in the literature. First, and most importantly, the model separates agents 

from space. The agents compete for space but they are not equivalent to the space 

itself. Neighbourhood relations point to where an agent can go, trying to find a 

better cell to fight for. Second, an agent plays with a random opponent inside the 

same cell and, as agents can move, the chance of two agents meet more than once 

can be very small. Given that, we only allow mixed strategies, and no meta-

strategies such as Tit-For-Tat (Axelrod 1980) or Pavlov (Nowak and Sigmund 

1993), because this model is not a repeated game. 

A model of games on cellular space can be formalized as a 9-tuple: 

M = (C, n, S, p, A, s, k, g, l),  

where 

C is the cellular space in which the games take place, 

n is the number of players involved in the non-cooperative game, 

S is the set of actions (pure strategies) each player can take, 

p: X → ℜ, X={(x1, …, xn)| xi ∈ S}, is the payoff function, 

A is the set of groups of agents, 



s: A× S → [0,1], ∀ a∈Α, Σb ∈ S s(a, b) = 1, represents the mixed strategies, 

k ∈ Ν, is initial number of agents of each given group, 

g ∈ ℜ, is the global satisfaction threshold, 

l ∈ ℜ, is the local satisfaction threshold. 

 

Therefore, given sx, we have s (sx, E) = x and s (sx, ~E) = 1 – x. An agent using a 

mixed strategy commits to a randomization device. Each time the agent plays, it 

chooses a pure strategy based on the probabilities specified by the mixed strategy. 

As an example of model, the following denotes the traditional chicken game: 

Mc = (Cc, 2, {E, ~E}, u, {sa, sb}, s, 1, ∞, ∞). 

The cellular space Cc has a single cell containing two agents, each one coming from 

a different group, one from sa 
and the other from sb. They have the same set of 

possible actions, “escalate” and “not escalate,” and the same payoff matrix u 

(shown in Table 1), but they do not have to follow the same mixed strategy. Both 

agents always stay in the only cell and never leave the model. 

In this work, we are particularly interested in applying the chicken game within 

this general model. The expected payoff of this game is almost always negative, 

only in the case where both players never escalate the expected payoff is 0. 

Therefore this game fits in with the requirement of reducing their satisfaction to 

make them move. C is always a squared grid with 20 x 20 cells, such that the 

possible movements of an individual are at most to four neighbours (up, down, left 

and right). Cells on the edges have only three alternatives for movement, and cells 

on the corner have only two. 

4. A first experiment 

 As first experiment, we divide the agents equally in the following three groups: 

a) Always use the pure strategy seemingly more profitable, escalate, because it 

is the only way to earn something, and the opponent will have a payoff at 

most as bad as its; 



b) Choose randomly a pure strategy in each game (escalate with chance of 

50%); 

c) Follow Nash equilibrium, escalating with chance equal to 10%. 

Initially, there are three agents of each strategy competing in each cell, summing-

up nine agents by cell. Each agent starts the model with $200 and, inferring that 

loosing $10 twice without earning any money is enough to turn an agent 

dissatisfied, we chose $20 to be the local satisfaction. Therefore we have 

M0 = (C, 2, {E, ~E}, u, {s0.1, s0.5, s1.0}, s, 1200, 200, 20), 

where s0.1 follows Nash equilibrium, s0.5 plays by using a coin toss, and s1.0 

always escalates. 

This model is stochastic, and we are interested in the convergence more than in 

showing numerical results. Clearly, M0 always converges to the state where there is 

at most one agent in each cell, but when we say convergence, we aim at verifying 

whether the results obtained by each strategy in the simulations are similar. 

We run the model 50 times to verify convergence and, although there are three 

stochastic components in the model (movement, escalating, and confronts), the 

simulation results have a low standard deviation. Also because of randomness, the 

simulations have different number of turns until they end. 

Figure 1 shows the results of one realization, and Figure 2 shows the spatial 

distribution of the owners along a simulation. Clearly, the number of agents and 

the total amount of money of each group decrease along the simulation, and the 

more ambitious a strategy is, sharper is the fall of the money and the number of 

agents following that strategy. Figure 1(c) also points out the mean value and the 

standard deviation of the experiments, plotted as arrows on the right side. There 

are some empty cells at the end of the simulation, which happens because, when 

there are only two agents in a cell, both might escalate, lose $10, reach the 

threshold, and decide to leave the cell. 



 

                  (top) Number of agents                               (bottom) Money by groups 



 

           (top) Owners by groups                            (bottom) Owners in the first 15 turns 

Figure 1. Results of the first experiment 



 

Figure 2. Example of a run of the first experiment 

The results show the group following equilibrium has achieved most of the cells, 

despite the early misfortune shown in Figure 1(d). There are, nevertheless, some 

agents of other strategies at the end of the model. Equilibrium agents got the best 

results at the end, but they did not reached the majority by their own victories, it 

was indeed because the other strategies have lost their money faster. It is possible 

to see clearly that more aggressive agents destroy themselves rapidly and, 

therefore, following equilibrium yields a better chance of surviving. But, when 

there is a few aggressive agents in the model, they can avoid themselves and 

conquer some cells, justifying the growing number of cells conquered by s0.5 at the 

end of the simulation. As the non-equilibrium strategies lose money faster than 

equilibrium, the initial money has a clear impact on the model, and agents 

following the equilibrium get more advantage of its increase. Simulations with 

higher values of initial money have shown that the difference between the number 

of cells of s0.1 and s0.5 becomes even larger. 

Figure 3 shows the number of agents of each strategy that move during the first 

150 turns of the model. More aggressive agents reach the threshold more 

frequently, until they start to leave the model. After the 30th turn, the number of 

movements decreases until the model stabilizes. 



 

Figure 3. Movements of each group in the first 150 turns 

5. Model variations 

In M0, Nash equilibrium is the best strategy for the competition against the other 

two chosen strategies. This section describes three other experiments, in order to 

verify whether the equilibrium strategy fares better also in other arrangements. In 

the first variation, we assign an infinite amount of money to each agent. In the 

second one, an extra amount of money is assigned to both agents after they play a 

game. We analyse how the model behaves when money is less constrained in both 

experiments. In the last experiment, we use eleven strategies instead of only three. 

5.1. Infinite amount of money 

The initial amount of money can be large enough to keep all the agents alive until 

the end of the simulation. With it, the model will never converge to a stable state, 

because the agents will move indefinitely. We have the following model: 

Minf = (C, 2, {E, ~E}, u, {s0.1, s0.5, s1.0}, s, 1200, ∞, 20). 

As we can see in Figure 4(a), this model has a continuous repetition of the 

instability previously shown in the first 30 steps of Figure 3. This instability is 

favourable to s0.1, which owns more than 85% of the cells, from the 30th turn until 



the end of the simulation, as we can see in Figure 4(b). The Figure also shows the 

mean and standard deviation of each strategy. 

 

             (a) Movements of each group                         (b) Owners by groups 

Figure 4. Model with infinite money 

Supposing a non-spatial environment, with agents meeting each other with equal 

probability, we can calculate the expected payoff of each strategy, deduce the 



number of movements, and compare it with the mean number of movements of the 

simulation. The expected payoff of an agent is the mean expected payoff against 

each group. The number of turns necessary for an agent of a given group to reach 

the threshold for moving is straight from this value, since the local satisfaction is 

$20. Then, as there are 1200 agents of each group, the mean number of agents that 

would move each turn can be calculated. Table 2 shows these values, and in the 

lower part there is the difference between the expected movements in a non-

spatial model and the mean value of the movements in the experiments with 

infinite money. Clearly this value is less than in a non-spatial environment because 

each cell with an odd number of agents has one idle agent. Agents in the space also 

reduce the expectations of a non-spatial environment because an agent that leaves 

a cell may find itself in a new one that happens to be more convenient. But this 

reduction is not equal for each strategy: as more an agent escalates, it can realize 

an unfavourable arrangement earlier, leaving the cell faster than the other 

strategies. It justifies why the decrease is proportional to the probability of 

escalating. 

Table 2. Impact of the escalating probability in the movement 

 s0.1 s0.5 s1.0 

Against s0.1 –0.10 –0.10 –0.10 

Against s0.5 –0.90 –2.50 –4.50 

Against s1.0 –1.90 –5.50 –10.00 

Mean –0.97 –2.70 –4.87 

Turns before an agent moves 20.61 7.40 4.10 

Expected movements by turn 58.22 162.16 292.68 

Movements with infinite 

money 

47.25 123.20 196.13 

Difference 10.97 38.96 96.55 

Decrease (%) 18.84 24.02 32.98 



5.2. Extra gain  

The second variation still concerns the reduction of the number of agents along the 

model. But instead of increasing the initial amount of money, as in Minf, we give an 

extra gain of capital to both agents at the end of each game, with the objective of 

keeping them alive. We describe a model with extra gain k as: 

Mgk = (C, 2, {E, ~E}, u + k, {s0.1, s0.5, s1.0}, s, 1200, 200, 20). 

As we increase all the payoffs by a constant value, the expected payoff of each 

agent also increases with this value, and thus the equilibrium point does not 

change (Nash 1950). We explore six models with different values of extra gain to 

verify how it affects the results. They are: Mg+0.1, Mg+0.2, Mg+0.4, Mg+0.8, Mg+1.6, and 

Mg+3.2. 

Figure 5 shows the number of agents in the six models at the end of the 3000th 

turn. After that, the models have only some minor changes. The total number of 

agents that survive rises with the extra gain, but agents with a higher escalating 

probability have a lower tax of increase. Note that, contrary to the variation of 

infinite money, some agents are still being removed from the model, as they reach 

the global threshold. 

 

Figure 5. Agents of each group in the model with extra gain after turn 3000 



As the extra gain increases, agents that escalate less often stop reaching the 

threshold for moving and start to stand still, because they gain more money than 

lose. Figure 6 shows the owners in the six models. The first strategy to lose 

mobility is s0.1. Because of it, from gain Mg+0.2 until Mg+0.8, it loses the majority to s0.5. 

After the gain +0.4, s0.5 also starts to lose mobility, then cells, and finally in the 

model Mg+1.6, it already has lost most of the cells again to s0.1. A bigger increase of 

extra gain does not lead s1.0 to reach the majority, because its agents have a major 

disadvantage of self-destruction. With higher extra gain, the model becomes a set 

of local competitions without mobility, and therefore Nash equilibrium is the best 

strategy. Using the results we can infer that Nash equilibrium is the best strategy in 

the models without mobility, but there is an interval of extra gain that can affect 

the agents’s mobility, allowing other strategies to surpass Nash equilibrium. It 

happens because the Nash equilibrium of this game is not strict. If there is only an 

agent of s0.5 or s1.0 within a cell of only s0.1 agents, then it can exploit the other 

agents, not by increasing its own payoff, but indeed by reducing the expected 

payoff of its opponents. 



 

Figure 6. Owners by group with six values of extra gain 

5.3. Eleven strategies 

The third variation of the model explores a richer arrangement, trying to find out 

the best strategy for the first model. This model has agents following eleven 

distinct mixed strategies: s0.0, s0.1, …, s1.0. The other parameters are the same as in 

M0. Therefore we have the following model:  

M11 = (C, 2, {E, ~E}, u, {s0.0, s0.1, …, s1.0}, s, 1200, 200, 20). 

Figure 7 depicts the result of one experiment. In Figure 7(a) we can see that all 

strategies start with a similar number of cells, but quickly the ownership changes. 



In Figure 7(b) we can see that successful strategies in the first turns do not 

necessarily end the model with a high number of cells, as also shown in M0. Some 

strategies are noteworthy. Agents that never escalate (s0.0) quickly owns half the 

number of cells, shown in the peak of Figure 7(b). However, as the model evolves, 

they lose most of them and, when the model finishes, they place at the 7th position. 

Equilibrium agents are quite successful, but they finish the model in the third 

position. The second place belongs to s0.3, and the strategy that achieves the best 

result is s0.2. 

 



            (a) Owners in the first 15 turns                              (b) Owners along the 

simulation 

Figure 7. Results of a single run with eleven strategies 

Figure 8 summarizes the cells each group owns. The red line points out the 

maximum number of cells each group has achieved among all turns of all 

simulations. The blue line shows the cells owned by each strategy at the end of the 

simulations, with mean and standard deviation. The strategy s0.0 has reached a 

maximum of 366 cells, and this value was omitted to give more emphasis to the 

other strategies. Note that the final ownership is similar to a gamma distribution. 

Also, there is no conflict in identifying the place of each group using the standard 

deviation as error, unless for groups from s0.7 to s1.0, which have achieved almost 

no cells. 

 

Figure 8. Summary of the eleven strategies at the end of the simulations 

We can roughly divide the simulation in three stages. In the first stage, from the 1st 

to the 5th turn, the aggressive strategies (s0.5 to s1.0) dominate the model and share 

the majority due to their initiative. The second stage emerges rapidly because they 

destroy themselves, making the purely cooperative strategy (s0.0) arise until it 

reaches the majority around turn 20. Finally, in the third stage, when most of the 

aggressive agents have already left the model, the more successful strategies 

slowly but ceaselessly conquer the cells dominated by s0.0 agents. But, in the end, 



some cooperative agents still remain. They can only survive due to the possibility 

of having empty cells, as described in the results of M0. The behaviour of such an 

agent consists in waiting until the simulation ends or someone forces it to leave the 

cell. Although this strategy can be considered naïve, the results show that this 

cooperative behaviour is nevertheless better than all the four more defective 

strategies (s0.7 to s1.0), and it almost draws with s0.6. 

The individual development of each strategy in all simulations is shown in 

Figure 9. The groups from s0.8 to s1.0 have a development similar to s0.7. We can see 

that each strategy has similar results in all simulations. In the right part of each 

graphic, there is a vertical arrow showing the maximum and minimum number of 

agents of each strategy at the end of the simulations. Note that, in all strategies but 

s0.0, the higher and lower points of the arrow match the maximum and minimum 

number of cells achieved by those strategies. Although there is an average of only 3 

cells owned by s0.0 at the end of the simulations, there are 12 agents in these cells, 

thus 4 times the number of cells owned by the group. Strategy s0.0 is the only one 

that supports more agents than cells, something that may happen only within a 

purely cooperative behaviour, because agents of other strategies end up by 

escalating sometime as the simulation progresses. Therefore, when we talk about 

surviving instead of owning, this strategy gains one more position, surpassing s0.6 

and almost drawing with s0.5. Thus, there is not much difference between never 

escalating and acting without any strategy (s0.5), but it is better acting 

cooperatively than to adopt a tendency to escalate more often than not to escalate. 



Figure 9. Ownership of strategies along all simulations 

The majority achieved by s0.2 and the second place achieved by s0.3 can be 

explained by the result of Minf, which states that, as an agent escalates more, it can 

realise a threatening arrangement earlier. The counterpart of escalating more is 

the higher destruction of agents within the same group. Nash equilibrium is the 

base for a stable relation, and it can be used as a starting point for the best 

strategy. In this model, the best strategy uses the equilibrium, but it adds some risk 

to get more mobility. The winning strategy mixes both characteristics; its agents 

are not exploited by threatening agents and can conquer cells from s0.0 faster than 

equilibrium agents. 

6. Conclusions 

The results of the experiments show that changing parameters of the model that 

affect the mobility of the agents can lead to the success of strategies away from 

Nash equilibrium. The results show that risky agents take more advantage of the 

space, because they realize unfavourable arrangements earlier. But it may have a 

drawback of destructing players within the same strategy, which leads the strategy 

to be penalized as a whole. Therefore there exists a new equilibrium between 

these two factors. The evidence for this conjecture is shown in the results of M11, 

presented in Section 5. In this model, there are eleven different strategies 

competing for space through a game with s0.1 as equilibrium strategy, and the more 

successful strategy was s0.2, winning each of the 50 runs. Although we do not 

expect the agents to be rational within this environment, Nash equilibrium is a 

good basis for the best strategy. 

In all the models but the last one, there is not any grouping of agents at the end of 

the simulation because, if that occurs, the simulation has not ended yet. However, 

in the last variation of the initial model, it is possible to have more than one agent 

within each cell because we have one strategy that will never shoot (s0.0). This 

leads to groups of agents following this purely cooperative strategy within the 

same cell, increasing the number of agents following this strategy at the end of the 

simulations. 

Clearly, the models can be enhanced with further refinements and sensibility 

analysis. For example, all the models presented in this article have agents 

homogenously distributed over the cells. In experiments not presented here, we 

studied models with the agents randomly distributed over the cells at the 



beginning of the simulation. The results are similar to the homogeneous case, with 

a straightforward increase on the standard deviation of the results, because there 

is a fourth stochastic ingredient, besides the escalating decision, the confronts, and 

the movement. We also tested the model using four neighbours by cell and found 

similar results. In fact, these results have the same explanatory power as the 

models presented in this work. 

We can cite some questions to be investigated in future works. An open issue is to 

explore evolutive models concerning population dynamics. New populations are 

generated from the fittest agents of the previous simulation, with some mutation in 

their characteristics. Will these populations competing for space evolve to Nash 

equilibrium? Perhaps, “we can only expect some sort of approximate equilibrium, 

since […] the stability of the average frequencies will be imperfect” (Nash 1950). 

Another question that can be investigated is the evolution of cooperation within 

the context of mobility. Clearly a pacific agent does not need to wait until losing 20 

units since it arrived the cell to move to another cell. Therefore we would have a 

more complex model, with the behaviour of agents differing not only by their 

mixed strategies, but also by their different ways to decide their actions based on 

the previous results. Within this environment, it is possible to investigate how the 

parameters of the model can affect how agents are grouped or repelled spatially, 

and the path taken by the different strategies. 

7. Availability 

The model presented in this work was implemented in the TerraME modelling 

framework (Carneiro 2006). TerraME is a development environment for spatial 

dynamical modelling that links cell spaces to geospatial databases for data storage 

and retrieval. It uses the geoprocessing library TerraLib for working with 

geospatial data (Camara et al. 2000), and Lua language to create models 

(Ierusalimschy 2003). Because of its simplicity, Lua has a large amount of 

programmers in the game development community, an activity that has many 

requirements in common with social simulation. The source code as well as the 

programs necessary for running the simulation are available at 

http://lucc.ess.inpe.br/doku.php?id=papers:mobility. 
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