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Abstract. This work analyses the propagation of combustion waves in Noble-Abel gases. The Chapman-Jouguet 
approach is adopted and analytical expressions are obtained for the jump conditions across the combustion waves, the 
Mach number and detonation velocity in the CJ point. The influence of covolume on the Rayleigh line and Hugoniot 
curve are considered. The results obtained for Noble-Abel gases are compared to the perfect gas solution. 
 
Keywords: Detonation, Deflagration, Chapman-Jouguet, Noble-Abel, Hugoniot curve 

 
1. INTRODUCTION  

 
The equation of state (EOS) for a perfect gas can be used with good accuracy at low pressures. At high pressures 

should be considered the effects of the volume of molecules and the forces of molecular attraction. The equation of Van 
der Waals was the first semi-empirical approach used to represent the behavior of real gases. In ballistics applications, 
the high propellant gas temperature means that inter-molecular attraction energy is small in comparison to the molecular 
kinetic energy (Johnston, 2005). Thus the attraction term can be removed without significant loss of accuracy, resulting 
in the so-called Noble-Abel (NA) equation of state, ( )P v b RT− = , where b is called relative volume correction term 

(co-volume), which corresponds to about four times the volume occupied by molecules. Experimental data show that 
the co-volume remains approximately constant in a wide range of T and P for a given gas (Baibuz, 1985). 

Combustion waves propagate in solid, liquid, gas or multiphase medium with different speeds, depending of the 
initial or boundary conditions. Combustion waves that propagate with subsonic velocities are called deflagrations and 
usually have speeds less than 1 m/s under ambient conditions and combustion waves that propagate with supersonic 
velocities are called detonations and usually have speeds of about 1500-2000 m/s under ambient conditions. It has been 
verified that the deflagration waves are approximately isobaric whereas detonation waves have high compression ratio, 
varying from 1.5 to 2.5 MPa. 

Shepherd (2007) stated that a detonation is not just a shock wave initiated by combustion. It is a combustion wave 
propagating at supersonic velocity, characterized by a unique coupling between a shock wave and a zone of chemical 
energy release. 

The classical Chapman-Jouguet (CJ) theory considers detonation waves as a discontinuity with an infinite reaction 
rate. Based on the CJ-theory it is possible to calculate the detonation velocity and jump conditions across the wave, for 
a specified gas mixture. During the Second World War, the CJ model was improved by Zeldovich, Döring and Von 
Neumann who considered a finite reaction rate. Their model (ZND) describes the detonation wave as a shock wave 
immediately followed by a reaction zone, with the thickness of this zone given by the reaction rate. The ZND theory 
provides the same detonation velocities and pressures than the CJ theory, the only difference between the models is the 
wave thickness (Zeldovich and Kompaneets, 1960; Williams, 1985; Glassman, 1996; Wingerden et al, 1999). 

In real detonations the wave structure is tridimensional due to hydrodynamic instabilities. However the CJ and ZND 
solutions give good results for the average properties (Fickett and Davis, 2000, Kuo, 2005). 

Since the pressures and temperatures attained in combustion waves can be extremely high, it is pertinent to analyse 
the effects of molecular volume and of the molecular attraction on the propagation characteristics of combustion waves. 

Next, an analysis of the propagation of combustion waves in NA gases is presented based on the (CJ) approach 
(Williams, 1985; Glasmann, 1996). The results are compared to the perfect gas solution. 
 
2. THE CONSERVATION EQUATIONS 

 
Assuming a one-dimensional steady-state flow of a NA gas, and adopting a fixed coordinate system on the 

combustion wave, the conservation equations of continuity, momentum and energy are given, respectively, by: 
 

1 1 2 2u u mρ ρ= =   (1) 

 
2 2

1 1 1 2 2 2P u P uρ ρ+ = +   (2) 
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2 2
1 2

1 22 2

u u
h h+ = +   (3) 

 
The subscripts 1 and 2 denotes properties of reactants and products, respectively, m is the mass flow rate per unit 

area, P is the pressure, ρ, the density, u, the flow velocity and h is the enthalpy. The NA equations of state for reactants 
and products are written, respectively, as: 

 

1 1 1 1 1( )P v b R T− =   and  2 2 2 2 2( )P v b R T− =  (4) 

 
where the specific volumes are obtained from: 
 

1 11v ρ=  and 2 21v ρ= . (5) 

 
The enthalpy of a real gas (Van Wylen et al., 1994) can be obtained from: 

 

P
P

v
dh c dT v T dP

T

 ∂ = + −  ∂  
  (6)  

 
and integrating for a NA gas with constant properties, it yields: 
 

1 ,1 ,1 1 1 1f Ph h c T b P= + +   and  2 ,2 ,2 2 2 2f Ph h c T b P= + +  (7) 

 
2.1. Rayleigh line  

 
 Combining Eqs. (1) and (5) it yields 1 1 1u m mvρ= = and 2 2 2u m mvρ= = . Substituting into Eq. (2), it gives: 

 

22 1

2 1

P P
m

v v

−
= −

−
 (8) 

 
This equation is known as the Rayleigh line and relates the pressure variation to the specific volume variation along 

a combustion wave. Eq. (8) is independent of the equation of state. For a NA gas, Eq. (8) can be rewritten as: 
 

( ) ( ) ( )
22 1

2 2 1 1 2 1

P P
m

v b v b b b

−
= −

− − − + −
 (9) 

 

Dividing the numerator by P1 and the denominator by 1 1v b− , defining the dimensionless variables of pressure 

2 1p P P= , specific volume 2 2 1 1( ) /( )v v b v b= − −  and co-volume difference 2 1 1 1( ) /( )b b b v b= − − , the previous 

equation can be rewritten as: 
 

2 1 1

1

1

1

v bp
m

v b P
µ−− = − =

− +
    (10) 

 
where µ is the dimensionless mass flow rate, that can be expressed in terms of the Mach number of the reactants, 

1 1 1M u a= . Using the NA equation of state for the reactants, the speed of sound in real gases (Oates, 1984) is: 

 

( )
2 2

2 2 2 1 1 1 1 1 1 1
1 1 1 1 2

1 1 1 1 11 1v Ps

R P T v PvP P T
a v v R

T v v b R v bv b

γγ γ γ
ρ

   ∂ ∂ ∂   = = = = =       ∂ ∂ ∂ − −    −    
 (11) 

 
Considering Eq. (11) and rearranging the expression for µ  is: 
 

2 2
2 21 1 1 1 1 1 1

1 1 12 2
1 1 11 1

( ) ( )v b u v b u
m M

P Pv a

γµ γ γ
γ

− −
= = = =  (12) 
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2.2. Rankine-Hugoniot relations   
 
Substituting Eq. (7) into Eq. (3), the equation of energy becomes: 
 

2 2
1 2

,1 1 1 1 ,2 2 2 22 2P P

u u
c T b P q c T b P+ + + = + +  (13) 

 

where ,2 ,1f fq h h= −  is the heat of reaction. Substituting in Eq. (13)  2 2 2
1 1u m v=  and 2 2 2

2 2u m v=  from Eq. (1), 

1 1 1 1 1( )T P v b R= − and 2 2 2 2 2( )T P v b R= − from Eq. (4), the expression for m2 from Eq. (8) and dividing by 1 1 1( )P v b− , 

using the dimensionless variables p and v, the following is obtained: 
 

( ),2 ,1 2 1 2 1

2 1 1 1 1 1 1 1 1 1 1

( )1
1 1

2 ( ) ( )
P Pc c b b b b q

pv p p v
R R v b v b v b P v b

 +
− + − − − + + = − − − − 

 (14) 

 
Defining now the dimensionless heat flux 1 1 1( )q P v bα = − , using ,1 1 1 1/ /( 1)Pc R γ γ= − and ,2 2 2 2/ /( 1)Pc R γ γ= − , 

and making several algebraic manipulations, Eq. (14) reduces to: 
 

( )2 2 2 1

2 2 2 1

1 1 1 1
1 2

1 1 1 1
pv b p v b

γ γ γ γα
γ γ γ γ

        − − − +
− − + = + −        + + + −         

 (15) 

 

The canonical form of a hyperbola is 2
0 0( )( )p p v v K− − = , where 0p p=  and 0v v=  are horizontal and vertical 

asymptote, respectively. The canonical form of the hyperbole can be rewritten as: 
 

2
0 0 0 0pv v p p v p v K− − + =  (16) 

 
Comparing this equation with Eq. (15) therefore yields: 
 

( )2
0

2

1
1

1
v b

γ
γ

−
= −

+
,  2

0
2

1

1
p

γ
γ

−
= −

+
  and ( )

2

2
0 0

2

1
1

1
p v b

γ
γ
 −

= − − + 
. (17) 

 
By algebraic manipulation of Eq. (15), the equation of the Hugoniot curve for NA gas is obtained: 
 

( ) ( )2 2 2 1 2

2 2 2 1 2

1 1 1 1 1
1 2 1

1 1 1 1 1
p v b b b

γ γ γ γ γα
γ γ γ γ γ

            − − − + −
+ − − = + − − −            + + + − +               

 (18) 

 

If the properties of reactants and products are constant, then Eq. (18) describes a hyperbola. If γ2 and b2 are function 
of the temperature and pressure of the products, then the hyperbola is degenerate. When b = 0 in Eq. (18), the Hugoniot 
equation of hyperbola, valid for NA gas or ideal gas with the same properties for reactants and products, is obtained: 

 

2 2 2 1 2

2 2 2 1 2

1 1 1 1 1
2

1 1 1 1 1
p v

γ γ γ γ γα
γ γ γ γ γ

       − − − + −
+ − = + −      + + + − +       

 (18.a)  

 
As the pressure ratio and specific volume (or velocity) ratio must be positive, they are restricted to the interval: 
 

0 p< < ∞ ;         ( ) 2 1

2 1

1 1
1 2

1 1
b v b

γ γ α
γ γ
 − +

− < < + − + − 
  

 
Figure 1 shows the effects of bi, γi and α on the Hugoniot curves for NA gases.  
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a)   1 2γ γ γ= = ;  1 2 0b b b= = =                                               b)   1 2 1.2γ γ= = ;  1 2b b b= =  

 

                             
c)   1 2 1.3γ γ= = ;  1 2b b b= =                                               d)   1 2 1.2γ γ= = ;  1 2b b≠  

                                                    
e)   1 2 1.3γ γ= = ;  1 2b b≠                                                               f)   1 2γ γ≠ ;  1 2b b≠  

 
Figure 1. Hugoniot curves for NA gases. 
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In figure 1, a 'p v−  reference system is used, where: 

  

2 1p P P=    (19a) 

 

 2 2 2 1 2 1 2 1 1 2

1 1 1 1 1 1 1 1

'
' 1

1 1

v b v v b v v b v b b
v v v

v b b v b v v v

 − − −
= = = ⇒ = − + − − −  

 (19b)  

 
and the co-volume relative difference is: 
 

 2 1 2 1 1 1

1 1 1 11

b b b v b v
b

v b b v

− −
= =

− −
 (19c) 

 
2.3. Properties of Chapman-Jouguet waves  

 
When the Rayleigh line is tangential to the Hugoniot curve, the upper and lower CJ points are determined. In the CJ 

points the Mach number of the products is unitary, M2 = 1. This result is independent of the used equation of state, as 
shown by Kuo (2005). The Rayleigh line, Eq. (9), for a NA gas, can be written as: 

 
1

1

dp p

dv v b
µ −= − =

− +
 (20) 

 
Differentiating Eq. (18.a) yields: 
 

( ) ( )
( ) ( )( )

2 2

2 2

1 1

1 1 1

pdp

dv v b

γ γ
γ γ

+ + −
= −

+ − − −
 (21) 

 
Equating the derivatives (20) and (21) and solving, expressions for p and v as functions of each other can be 

obtained: 
 

( ) ( )2 21 1

v
p

v bγ γ
=

+ + −
 (22) 

 

( )
( )

2

2

1

1 1

b p
v

p

γ
γ

−
=

+ −
 (23) 

 
These expressions are valid for the upper CJ point (detonations) and lower CJ point (deflagrations). It can be  seen 

that, for p and v be positive, it is necessary that: 
 

( )2

2

1

1

b
v

γ
γ

−
>

+
 and  

2

1

1
p

γ
>

+
 

 
Substituting v and p from Eq. (22) and Eq. (23) into Eq. (15), p and v, as function of the parameters α, γ1 and γ2 can 

be calculated:  

( )
( )

( )

( )

1/ 2

1

2 1

2
1 2

2
1

1
1 2

1 11
1 1

1 1 1
1

1

b b

p
b

γα
γ γ

α
γ

γ α
γ

±

   +  − + −  − −     = + ± −    − −      − +   −    

 (24) 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
 

( ) ( )

( )

1/ 2

2 1
2

2 1

2
2 1 2

2
1

1
1 2

1 11
1 1

1 1
1

1

b b

v b

b

γγ α
γ γ

α
γ γ

γ α
γ

±

   +  − + −  − −    = + − −    −     − + −   −    

∓  (25) 

  
In Eq. (24) and Eq. (25), higher signs correspond to a detonation and lower signs correspond to a deflagration. When 

1 2b b=  and  γ1 = γ2 = γ  , then Eq. (24) and Eq. (25) simplify and become valid for a perfect gas with constant properties, 

resulting in: 
 

( ) ( )

1/ 2

2

2
1 1 1 1

1
p

γα γ
α γ±

   
 = + − ± + 

−    

 (26) 

 

( )

1/ 2

2

1 2
1 1 1

1
v

γ γα
γ α γ±

  −  
 = + + 

−    

∓  (27) 

 

Equation (12) gives an expression for2
1M  as a function of p and v:  

 

2
1

1 1

11

1

p
M

v b

µ
γ γ

± ±
±

±

 −= − = −  − + 
 (28) 

 
Mach numbers in the reactants for detonations and deflagrations are obtained by substituting the expressions for p±

andv± in Eq. (28). The temperature ratio along a combustion wave can be calculated by: 

 
 ( )2 1 1 2T T T R R p v± ± ± ±±= = .   (29) 

 
Figure 2 shows the dependence of the properties of the combustion waves upon the dimensionless heat-release 

parameter α in NA gases, for several cases. In Tab. 1 the parameter values of some alkanes, used to draw Fig. (2.f), are 
given.  

 
Table 1 – Parameter values of the some alkanes.  

 
Properties γ1 γ2 R1 (J/kg.K)  R2 (J/kg.K) b1/v1 b2/v1 

CH4 1,389 1,251 300,80 303,10 0,002921 0,002678 
C3H8 1,368 1,252 282,12 296,30 0,00308 0,002855 

iso-C8H18 1,354 1,252 274,75 293,47 0,00318 0,002932 
 

2.4. Temperatures and stagnation conditions  
 

The stagnation temperature, T0 i, for a NA gas, considerinĝ /i i ib b v= , i =1,2, is obtained from: 

 

( )0, 0,2

2

ˆ1 ( 1)
1 1

ˆ ˆ2(1 ) (1 )

i ii i i
i

i ii i i

T Pb
M

T Pb b

γ γ
γ

−  −
= + + − 

− −  
 (30) 
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a)   1 2γ γ γ= = ;  1 2 0b b b= = =                                               b)   1 2 1.2γ γ= = ;  1 2b b b= =  

         
c)   1 2 1.3γ γ= = ; 1 2b b b= =                                              d)   1 2 1.2γ γ= = ; 1 2b b≠  

  

            
e)   1 2 1.3γ γ= = ;  1 2b b≠                                                    f)  combustion of alkanes in air 

 
Figure 2.  Properties of combustion waves in NA gases versus heat release, α. 
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For an isentropic process in a NA gas it can be shown that ( ) 1
0, 0,

i

i
i i i iP P T T

γ
γ −= . Therefore, Eq. (30) can be 

rewritten as: 
 

( )
1

1 1
0, 0,2

2

ˆ1 ( 1)
1 1

ˆ ˆ2(1 ) (1 )

i ii i i
i

i ii i i

T Tb
M

T Tb b

γ
γγ γ

γ

−
 −  −  = + + −   − −    

 (31) 

 
The ratio of stagnation temperatures of a NA gas and a perfect gas is: 
 

( )

( )

1
0,2

2

0, ,

20, ,

ˆ1 ( 1)
1 1

ˆ ˆ2(1 ) (1 )

1
1

2

i

iii i i
i

ii i i
i NA

ii PG
i

Tb
M

Tb b
T

T
M

γ
γγ γ

γ

γ

−
 −  −  + + −   − −    =

−
+

 (32) 

 
Figure 3 compares the behavior of the stagnation temperature and pressure for NA and perfect gases. 
 
 

 
Figure 3 – Stagnation to static temperature and pressure ratio for NA gases, dotted line, and perfect gases, solid line. 

 ( 1 2 1.4γ γ= =  and 1 2b b b= = ). 

 
The stagnation temperature after CJ combustion wave (M2 = 1) is obtained from: 

 
2

2 1
0,2 0,22 2 2

2
2 22 2 2

ˆ1 ( 1)
1 1

ˆ ˆ2(1 ) (1 )CJ CJ

T Tb

T Tb b

γ
γγ γ

γ

−
 

   − −  = + + −    − −     

 (33) 

 
Once known the stagnation temperatures, their ratio can be calculated. Given the parameters (bi, γi, Ri and α) of 

reactants and products, the pressure, specific volume and temperature ratios, Mach numbers and stagnation conditions 
in the CJ combustion waves (deflagrations and detonations) in NA gases can be calculated. 
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3. DISCUSSIONS 
  
 The influences of bi, γi and α on the propagation of combustion waves in NA gases are discussed next. 
 
a)  Influence of γi 

The influence of γi in the Hugoniot diagram for NA gases is similar to that observed in perfect gases (Williams, 
1985). The higher the value of γi, the further the hyperbola vertex moves away from its center, as shown in Fig. (1a). 
This means that the quantity of the released heat in the reaction increases with the value of γi. 

The influence of γi  on the properties of the CJ combustion waves can be seen in Fig. (2a). For the CJ detonation 
waves, increasing γi, the pressure ratio p+, temperature ratio T+ and the initial Mach number, M1+ also increases whereas 
the specific volume ratio, v+, presents a particular behavior, since it initially decreases until a certain value, and then 
reverses its trend. For the CJ deflagration waves, the pressure ratio p- and the initially Mach number M1- decreases, 
while the specific volume ratio v- and temperature ratio T- increase when γi  increases. M2 doesn’t changes with γi for 
both detonation and deflagration waves. 

 
b) Influence of co-volumes 

When the co-volumes b1 = b2 = 0 and γ = const, then the relative co-volume is b = 0 and NA gas behaves as a 
perfect gas. In this case, the Hugoniot diagram and the properties of the CJ combustion waves are shown in Fig. (1a) 
and Fig. (2a) and they are identical to the curves obtained by Williams (1985). 
 According to Eq. (11) the speed of sound in NA gas increases as the co-volume bi increases. The speed of sound in a 
NA gas is higher than the speed of sound in a perfect gas with the same properties and under the same thermodynamic 
conditions. Furthermore, increasing the co-volume value, the stagnation properties, T0 and P0, decrease, considering the 
same conditions of T and P, as shown in Fig. (3). 
 Case 1 2b b const= =  and different from zero and γ = const.: 

 In this case the relative co-volume b is zero. The branches of the Hugoniot hyperbole with different values of co-
volume, but with the same value of α, have a common point of intersection that is located on the vertical line 'v = 1 as 
shown in Fig. (1b). In the detonations branch, the hyperbola moves to the right as the co-volume value increases. In the 
deflagration branch, the curve moves down increasing the co-volume value. It can be seen that the vertex of the 
Hugoniot curve moves away from the center point when the co-volume value decreases. 
 The pressure ratio, the initial Mach number and the temperature ratio for both detonation and deflagration waves are 
independent of b according to Eq. (24), Eq. (28) and Eq. (29) respectively. The specific volume ratio instead, increases 
with the co-volume value according to Eq. (25) and Eq. (19b) as shown in Fig. (2b) and Fig. (2c) in case of detonations 
and decreases with the co-volume value in case of deflagrations with the trends observed in Fig. (2b). 

Case 1 2b b> , different from zero and γ = const. 

This is the most common case since the reagents molecules are generally larger than that of the products, provides 
the relative co-volume b < 0 and it is shown in the Fig. (1c). It is observed that for different values of b, the Hugoniot 
curves are crossing a common point located to the right of the vertical line 'v  = 1. For the detonation branch this 
common point moves to the right increasing the co-volume value as in the deflagration branch it moves down. In 
addition the vertex of the Hugoniot curve moves farther from the center point when the co-volume value decreases. 

When both the co-volume values increase, the properties of the detonation waves p+ and M1+ decrease, while 'v +  

increases. The increasing of T+ instead, is non-significant according to Fig. (2d). In the case of deflagration waves, 
increasing both the co-volume values, 'v −  shows a significant decrease, the temperature ratio T- and pressure ratio p- 

increase while the initial Mach number M1- decreases in an imperceptible manner. 
Case 1 2b b<  different from zero and γ = const. 

In this case, the relative co-volume is positive, b > 0 and for different values of b, the Hugoniot curves are crossing a 
common point located to the left of the vertical line 'v = 1. Increasing the co-volume, the detonation branch moves to 
the right and the deflagration branch moves down. Again, decreasing the co-volume, the vertex of the Hugoniot curve 
moves farther from the center point. 

With the increase of the co-volume, all properties of the detonation waves showed a significant increase except for 
the temperature ratio T+. For deflagration waves, all properties decrease, but only the specific volume ratio  'v −  shows a 

significant decrease. 
Real case of combustion waves for alkanes in air. 
Properties of combustion waves in Noble-Abel gases for combustion of some alkanes with air are shown in Fig. (2f). 

It is observed that for the three cases under review 1 2b b>  and 1 2γ γ> , according to Table 1, as the size of the reactants 

molecules is greater than that of the products, it means that the reactants are able to store a higher quantity of energy 
than the products. For detonation waves, the pressure ratio p+ and initial Mach number M1+ increases as the co-volume 
values increase, while the temperature ratio T+ decreases. The specific volume ratio 'v +  shows little changes only for 
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small α  values. For deflagration waves, increasing the co-volume values, the pressure ratio p- and the initial Mach 
number M1- show a significant slight decrease only for small values of α, while the specific volume ratio increases and 
the temperature ratio T- decreases in a significant manner. 

   
c) Influence of α 
 The vertex of the Hugoniot curve moves farther from its center when increasing the value of α. This causes an 
increase in the pressure and specific volume ratios, as shown in Fig. (1). 
 For detonation waves, the pressure ratio p+, the temperature ratio T+ and the initial Mach number M1+ increase, 
while the specific volume ratio'v +  decreases fast for small values of α and then remains almost constant when α  

increases, as may be seen in Fig. (2).  For deflagration waves, the specific volume ratio 'v −  and the temperature ratio T- 

increase with the increase of α , while the pressure ratio p- and the initial Mach number M1- show a fast decrease for 
small values of α and then remain almost constant, as observed in Fig. (2). 

For a reaction where the properties γ1, b1 of the reactants and γ2, b2 of the products are different, a minimum quantity 
of heat, αmin, is required to start the reaction as is shown in Figs. (1.f) and (2.f). This quantity of minimum 
dimensionless heat depends on the properties of reagents γ1, b1 and  products γ2, b2, and can be found from the Eq. (24) 
making the discriminant equal to zero, which provides: 

 

( )
( )min

2 1

1 1

1 1

b
α

γ γ
−

= −
− −

 (34) 

 
4.  CONCLUSIONS  
 

This paper presented a simplified description of the propagation of combustion waves in NA gases, considering the 
CJ approach. Analytical expressions for the properties along combustion waves were obtained in terms of 
dimensionless volumes and co-volume differences, thus allowing an easy analysis and comparison between NA and 
perfect gases. It was verified that the effects of variations in co-volumes and specific heat ratios along combustion 
waves in NA gases can be significant. 
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