

Organizational Testing Management Maturity Model for

a Software Product Line

Etiene Lamas1, Érica Ferreira1, Marcos Ribeiro do Nascimento1,
Luiz Alberto Vieira Dias1 and Fabio Fagundes Silveira2

1Brazilian Aeronautics Institute of Technology, ITA
São José dos Campos, São Paulo, Brazil

2Federal University of São Paulo, UNIFESP
São José dos Campos, São Paulo, Brazil

Abstract

This paper presents a framework entitled
Organizational Testing Management Maturity Model
(OTM3). The proposed framework is a set of structures
to support the development and testing of Software
Product Lines. This set follows the Experimental
Software Engineering concepts. OTM3 is a framework
for interactive, incremental, and continuous models. It
shall provide the information for the organization, and
a method to identity, establish and keep the capabilities
demanded by test maturity models. This is achieved
through: patterns, measures, controls, and software
engineering best practices.

Keywords: Software Testing, Maturity Models for
Software Testing, Software Product Line, Experimental
Software Engineering, Process Management with
Testing.

1. Introduction

The Organizational Testing Management Maturity
Model (OTM3) is under development and it uses
Software Testing (ST) techniques for processes
measurement improvements in Software Engineering
(SE), focusing on: i) direct experience on issues relating
to the measurement of ST, ii) continuous improvement
of software generated product maturity, iii) use of
technical specification, and iv) design using an
adaptation of the method of Goal Question Metric
(GQM) [1]. The OTM3 was designed to allow the
development of qualitative and quantitative metrics in
an iterative and incremental approach.

Software Product Lines (SPL) [2] were used in this
paper as an approach to a set of structures, in order to
adapt the Experimental Software Engineering (ESE)
concepts, focusing in drawing, verification and
validation of ST for each SPL [3].

In order to apply OTM3 in a practical environment,
its concepts were used in the Amazonian Integration
and Cooperation Project for Modernization of

Hydrological Monitoring (ICA-MMH) [4]. This project
under development at ITA, provides a management
organization capable of: i) deal with the SE application
architecture in 3-tier web; ii) use SE integrated
management systems, and iii) design and construction
Model Engineering Platform (MEP) for data collection
(hardware and embedded software).

2. Related Works

There are four relevant methods for conducting
experiments in the field of SE: scientific, engineering,
experimental, and analytical [5]. The most appropriate
one for the framework OTM3 is the experimental.

The Quality Improvement Paradigm (QIP) is linked to
the concept of the Experience Factory [6] which is the
set of tools for storage, modification, and withdrawal of
project information packed. Another instrument
connected to QIP approach is GQM [7]. This approach
provides the process of improving the measurement
model based on layers.

According to Brykczynski, Meeson, and Wheeler
[8], many defects found in testing are directly traceable
to requirements and design flaws, which could have
been detected earlier. Defects that are found out later in
the project are not only costly to fix, but also the effort
put on the software design and development are lost.
Thus, the inspection on documents is important, right
from the start of the project.

Related inspection methods and reading techniques,
the requirements inspection Test-Case Driven (TCD), is
an efficient and effective inspection technology, and a
“variant” to ideas behind Test-Driven Development
(TDD), Checklist Based Reading (CBR), Two-Person
Inspections (TPI), and Perspective Based Reading
(PBR) [9, 10].

3. Model OTM3

The framework OTM3 is composed of

categorization, depicted in Figure 1, with: i) Columns
for processes domains of ST: Operational,
Collaborative, Decision Support; and ii) Map Processes,

2010 Seventh International Conference on Information Technology

978-0-7695-3984-3/10 $26.00 © 2010 IEEE

DOI 10.1109/ITNG.2010.134

1026

that contains: standards, measure, control, and
continuous improvement sub-plans, and iii) in each sub-
plan, a PDCA cycle [11] is used: (P)lan,
(D)evelopment, (C)ontrol and corrective (A)ctions.

Figure 1. Framework OTM3

The framework OTM3 considered domains are: i)
Operational Testing Management – define a set of
operational base ST processes that allow to follow the
ST workflow; ii) Collaborative & Tactics Test
Management - define a set of ST processes for
integration and tactic inter-operability allowing the task
consolidation and multi-programming activities for ST;
and iii) Decision Support Test Management - define a
set of processes for information treatment and analysis,
and extraction of strategic patterns for decision making
over of software testing management

Key Performance Indicators (KPIs) represent the
outcome through measure by a metric Goals Questions
Indicators Measures (GQIM) [12].

The framework allows the diagnostics for capability
maturity of the organization through the application of a
questionnaire. This questionnaire is interactive and
incremental as well as qualitative and quantitative
(quali-quant), for each management domain of process
testing.

The OTM3 was based on the standard SPEM 2.0
[13] and it is composed by a set of processes in maps
that constitute the main phases of ST, namely: Planning,
Construction, Test Execution, Test Finalization and
Approval.

4. Construction

The Construction Phase is aimed at test
developments. The basic objectives of this phase are:
Develop and Review Strategies from Scenarios. Test
Case Scenarios aim to prepare the environment for the
Test Execution Phase. The Construction Phase also
realizes Measurement and Analysis (Figure 2).

Figure 2. Construction

1027

5. Test Execution

As shown in Figure 3, Test Execution includes the

following steps: i) testing techniques activities (i.e.
black and white-box testing and Performance testing)
are applied; ii) Architectural Integration Testing level;
iii) System Testing; iv) the Acceptance Testing; and
v) Execution Phase is considered complete, then it

will occurs the next phase of model OTM3, which is
the Test Finalization Phase.

It is very important to emphasize that the activities
in the Test Execution Phase always apply the
Regression Test Selection (RTS) technique.
Regression testing means rerunning test cases from
existing test suites to build confidence that software
changes have no unintended side-effects.

Each testing activity performed by the Test
Execution Phase contains specific tools to be used.

Figure 3. Test Execution

When implemented the tools that are suggested to
be used correlated to this techniques are, for example:
black-box - Selenium [14], JUnit [15]; and white-box -
JaBUTi [16].

The Mantis (MT) tool is used to manage the process
defects [17]. MT tool supports native integration with
the Subversion (SVN) tool [18]. The SVN tool provides
further support to the activities of changing control and
continuous integration, ensuring that changes to the
project to be built, are tested and reported in a short
time. MT tool also achieves integration with the
TestLink tool [19]. TestLink is a tool for executing and
tracking test cases, organizing them into test plans.

The existence of these three integrated tools adds
project-level reporting, analysis and management
capabilities, especially when used in conjunction with
requirements traceability information. It also allows full
control on system defect management.

It is also important to mention that in the Test
Execution Phase, quali-quant indicators and metrics are
applied. Defined metrics will identify risk areas that
requires more testing, provide a solution to potential
problems, and identify areas for process improvement.

Before the Test Execution Phase is considered
completed, two important test activities are performed:
the System Testing and Acceptance Testing.

6. OTM3 within ESE

SE like other disciplines (i.e. Physics, Medicine,

Manufacturing), requires the cycle of model building,
experimentation, and learning. SE is a laboratory
science. The researcher’s role is to understand the
nature of the processes, products and the relationship
between the two in the context of the system. The
practitioner’s role is to build “improved” systems, using
the knowledge available [20, 21, 22, 23].

Study is an act to discover something unknown or
for testing a hypothesis. Studies can be experimental
and observational. OTM3 identifies and helps the
resolution of potential problems. Studies Classification
are primary and secondary. A good example is
systematic review, where OTM3 metrics data collection
helps predict the long-term direction and scope for an
organization and enables a more holistic view of

1028

business and identifies high-level goals in each SPL
[20, 21, 22, 23].

The components of the primary studies (four
parameters were used, based upon the GQM template):
1) object of study; 2) purpose: i) characterize; ii)
evaluate; iii) predict; iv) control; and v) improve; 3)
focus – based on the standard ISO/IEC 25001 [23]; and
4) stakeholder point of view [20, 21, 22, 23].

The new standard ISO/IEC 25001:2007 [24] replaces
the current ISO/IEC 9126 series and set the basis for
OTM3 formulation on software quality testing, defect
detection or prevention capability.

The GQIM paradigm [11], which is heavily used in
SE for defining metrics, is the technique that supports
this research. While the need for metrics has been
recognized, implementation of structured measurement
programs is lagging, especially in the ST area. OTM3
could measure the effectiveness of a Test Process.
Efficient Test Process measurements are essential for
managing and evaluating the effectiveness of a Test
Process.

The goals of software production are: i) high quality
product; ii) within budget constraints; and iii) a
specified deadline. The Final goals are: i) cost
reduction; ii) meeting deadlines; and iii) product quality
improvement.

In this experimental study the main objective was:
“What is the effect of the software testing techniques in
a SPL strategy on product reliability and stability, given
an environment of expert programmers in a new
domain, with tight schedule constraints?”

Other questions: “In what order should the
requirements be tested, especially when time is short?”;
“Does the software response to an action in the time
defined on the requirements?”; “How to test
applications in SPL domains using an OTM3
approach?”; “What are Testing Coverage (TC) criteria
to be applied for applications in each of the SPL
domains?”; “How to measure the TC in OTM3 about
non-functional requirement?”; “How are non-functional
requirements descriptions used for Test Cases
generation in OTM3?”; “How to reduce the Test Case
set without decreasing the TC in OTM3 (i.e. eliminating
redundant Test Cases)?”; “OTM3 approaches support
the software maintenance (regression testing), but how
to evaluate its maintainability?”; “How are the defects
distribution per phase or per type of defects?”; “What
are the origins of these defects?”; “How to avoid these
types of defects in future projects using an OTM3
approach or other strategy to support the ST?”; “How
many defects were detected using the OTM3
approach?”

Questions that cannot be answered by this
experimental study, out of OTM3 context: “How
effective is the training? Are the subjects really
following the techniques?”

According to Pfleeger [25], one of the challenges
would be to understand the chances where, under
certain conditions, a particular tool or technique could
contribute for the improvement of software

development. In this sense, experimentation can be
considered as determinant for the identification of the
feasibility and effectiveness of the techniques applied to
SE [26].

The purpose points out for the intended use of the
measures: i) characterization - what is the current state
of the object under study? ii) evaluation - is the current
state good or bad? iii) prediction - how the quality focus
can be predicted? and iv) improvement - is it possible to
find cause-effect relationships involving the quality
focus? [20, 21, 22, 23].

7. Strategy for the proposed experiments

As already stated the adopted strategy in the project
was Experimentation Model; it involves an
experimental study in two dimensions: 1) the maturity
of software product (A); and 2) ST process
improvement (B). The experimental primary study was
based on the following scenarios: driven by
understanding; predominantly qualitative analysis;
qualitative or quantitative study; pure qualitative study.
The study executed in laboratory (in vitro), has
involved the project team, it were used to test
hypotheses or get information on the study field.

To improve the software product for each SPL in the
project, the aim of the experiment (A) was to propose
the effectiveness and efficiency of software evaluation.
Primary and secondary GQIM metrics probably could
discover that failures could be traced back to defects in
the requirements specification. The evaluation is
performed by comparing the secondary GQIM
indicators generated in each RTS.

The strategy adopted in the ICA-HMM project was
to provide software development in a model driven
architecture (MDA) approach, integrated with a Unified
Process based on SPL components for each subsystem,
according to Linden et al. [3].

The metrics and indicators from GQIM are being
applied on the main phases of the operational software
testing the OTM3 Model, the principal primary metrics
observed on the 1st SPL as shown in Table 1.

Table 1. Project statistics SPL 1

Criteria Types Project Statistics
Classes (Entity, Manageable) =13, Enumeration = 1

and Controller = 4
Services 5

Value Objects Value Object = 8 and Array = 4
State Machines Machines=5, States=34 and Transactions = 41

DataBaseEntities 13
Object patterns 10

Lines Code 104,660 (.java, .xml, .css, .js, .properties, .sql
and .xhtml);
75,011 excluding blank lines and comments
18,230 comments

IHM CRUD = 8 and Customizes = 5

An additional a number of test cases between RTS 1

and 2, were due to a better specification of software
components manually developed, and have been done by
the development team. Assistance in the area of project

1029

quality and the completion of incomplete test cases
(blocked) is presented in Table 2 for both RTS.

The data presented in Table 2 represent the
functional tests performed on the SPL 1 on the initial
phase of the proposed framework.

Table 2. Comparison SPL 1 – RTS

Primary Metrics Unit Qty. SPL1
– RTS 1

Qty. SPL1
– RTS 2

Number of Use Cases Cardinal
number

8 8

Number Test Cases Cardinal
number

170 235

Number Test Cases -
passed

Cardinal
number

79 169

Number Test Cases –
failed

Cardinal
number

16 25

Number Test Cases –
blocked

Cardinal
number

75 41

The derived or secondary metrics based on GQIM,

present in Table 3, should provide product quality
attributes, such as to control the software process.
Product metrics can be used for general predictions or
to identify anomalous software components.

Table 3. SPL 1 – derived Metrics

Secondary
Metrics

Indicator Value
SPL1 –
RTS 1

Value
SPL1 –
 RTS 2

Tested Use
Case/ # Total

Use Case

Testing coverage
Percent Use Case

 (PUC)%

6/8=
0,75

[75%]

8/8=
1

[100%]
Tested Test
Case/ # Total

Case Test

Testing coverage
Percent Case Test

 (PCT)%

95/170=
0,56

[56%]

194/235=
0,83

[83%]
Defect Test
Case/ # Total

Case Test

Testing Find
Defects (TFD)%

(per defect case test)

16/170=
0,09
[9%]

25/235=
0,11

[11%]
Defect Test
Case removed
(RTS 1-2)/ #
Total Defect

Case Test
(RTS 2)

Effective
Removal of

Defects
(ERD)

N/A 4/25=
0,16

[16%]

Blocked/fail
Test Case
(RTS 1) /

#(Blocked/fail
Test Case
(RTS 2))

Effectiveness of
Detection of

Defects
(EDD)

N/A (16+75)/
(91+66)=

0,58
[58%]

ERD /
Total week
Product lines

Defects
Removal
per week

N/A 0,16/4=
0,04
[4%]

Tested Test
Case/

Total week
effort to

line product

Density of the
Efficiency per week

or per members
team

Test (DET)

95/6=
0,56

[56%]

194/4=
0,56

[56%]

The qualitative analysis of secondary metrics that

identify the characteristics of efficiency and
effectiveness of the software product provides better
process control and prediction. Both can influence the
decision-making and management control of product
quality and process of software development, adhering
to standard ISO/IEC 25001:2007 [24].

The purpose of experiment (B), software testing
improvement, is still under development and is aiming
at improving the process testing for each SPL and to
evaluate the effectiveness and efficiency of the TCD
inspections, when it comes to find the major faults in
requirement specifications. The evaluation should
perform a comparison of TCD inspections for the well
tested and widely used technique CBR.

8. Discussion and Conclusion

The present proposed framework is under
development. Some experiments were performed for a
case study from a real project on the beginning of Test
Execution phase. So far the results are encouraging, as
seen on Tables 1, 2 and 3. Further experiments are on
the planning phase.

It should be noted that the test artifact tracking
relating to the Use Cases must be inspected and
verified.

The revision by PBR must be planned, due to
eventual activities deficiencies.

When using ESE the quality team must prepare in
advance a strategy for its application control and
evaluation that ensure the: i) maturity of the testing
process; ii) preparation of a checklist to inspect for SPL
activity; and iii) proper use of the proposed framework.

Measurements are collected and analyzed weekly,
and the progress evaluated. Developers must adapt their
behavior monthly. Finally the OTM3 is not geared to
mathematically prove the correctness of the software;
the testing process aims to provide the best quality of
software products.

9. References

[1] Basili, V.R. “Software Modeling and Measurement: The
Goal Question Metric Paradigm”, Computer Science
Technical Report Series, CS-TR-2956 (UMIACS-TR-92-
96), University of Maryland, College Park, MD. 1992.

[2] Linden, F.J., K. Schimid, and E. Rommes, “Software

Product Lines in Action: The Best Industrial Practice in
Product Line Engineering”, Springer, 2007.

[3] Software Engineering Institute (SEI), “Software Product

Lines”, Carnegie Mellon University, Pittsburgh, PA,
http://www.sei.cmu.edu/productlines/, Last access: Oct
23, 2009.

[4] Pessoa, J.A. Dias, L.A.V. Cunha, A.M. “A Desktop

Environment for River Hazards Monitoring”,
Proceedings of the Sixth International Conference on
Information Technology: New Generations, ITNG 2009,
Las Vegas, NV, USA, April 27-29, 2009.

[5] Wohlin, C., P. Runeson, M. Höst, M. Ohlsson, B.

Regnell, and A. Wesslén, “Experimentation in Software
Engineering: an introduction”, Kluwer Academic
Publishers, USA, 2000.

1030

[6] Basili, V., G. Caldeira, and H. Rombach, “Experience
factory”, Encyclopedia of Software Engineering, Ed. J.J.
Marciniak, Vol. I, Wiley, 1994, pp. 469-476.

[7] Seaman, C., “Qualitative Methods in Empirical Studies

of Software Engineering”, IEEE Computer, Vol.25,
No.4, July/August 1999.

[8] B. Brykczynski, R. Meeson, and D.A. Wheeler, “Institute

for Defense Analyses Software Inspection: Eliminating
Software Defects”, Proceedings of the 6th Annual
Software Technology Conference, Salt Lake City, UT,
April 15, 1994.

[9] N. Fogelström and T. Gorschek, “Test-case Driven

versus Checklist-based Inspections of Software
Requirements - An Experimental Evaluation”, 10th
Workshop on Requirements Engineering, Toronto
Canada, May 17-18, 2007, pp. 116 - 126.

[10] A. Aurum, H. Petersson, and C. Wohlin, "State-of-the-

Art: Software Inspections after 25 Years", Published in
Software Testing, Verification and Reliability, Vol. 12,
No. 3, 2002, pp. 133-154.

[11] Walton, M. “Deming Management at Work”. Clearwater,

FL, U.S.A: The Berkley Publishing Group, 1991.

[12] Park, R.E., W.B. Goethert, and W.A. Florac, “Goal-

Driven Software Measurement – A Guidebook”,
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 1996.

[13] Software Process Engineering Metamodel - SPEM 2.0

available at http://www.omg.org/spec/SPEM/2.0/ Last
access: Oct 23, 2009. .

[14] Selenium, available at http://seleniumhq.org/, Last
access: Oct 23, 2009.

[15] JUnit, available at http://www.junit.org/, Last access:
Oct 23, 2009.

[16] A.M.R. Vincenzi, W.E. Wong, M.E. Delamaro, J.C.

Maldonado, “JaBUTi: A coverage analysis tool for Java
Programs”, Simpósio Brasileiro de Engenharia de
Software, Manaus, AM, XVII Simpósio Brasileiro de
Engenharia de Software - SBES'2003, 2003, pp. 79-84.

[17] Mantis, available at http://www.mantisbt.org/, Last

access: Oct 23, 2009.

[18] Subversion, available at http://subversion.tigris.org/, Last

access: Oct 23, 2009.

[19] TestLink Community, “User Manual”, available at

http://testlink.sourceforge.net/docs/testLink.php, Last
access: Jan 10, 2010.

[20] S.L. Pfleeger (SLP), Rand Inc. “Evaluating Software

Technology” - Tutorial at SBES’2002 and Software
Engineering Thesis Workshop talk at SBES’2002.

[21] V.R. Basili (VRB), UMD/USA “The Role of

Experimentation in Software Engineering: Past, Present,
Future” - Keynote speaker at ICSE 18.

[22] F. Shull, J. Carver and G.H. Travassos (FS/JC/GHT) “An
Empirical Methodology for Introducing Software
Processes”, 8th European Software Engineering
Conference (ESEC) and 9th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-9),
Vienna, 2001.

[23] G.H. Travassos and M.O. Barros (GHT/MOB)

“Contributions of In Virtuo and In Silico Experiments for
the Future of Empirical Studies in Software
Engineering”, Workshop Series on Empirical Software
Engineering, WSESE, ESERNET, 2003.

[24] ISO/IEC 25001:2007, “Software engineering - Software

product Quality Requirements and Evaluation (SQuaRE)
- Planning and management”, http://www.iso.org/iso/
catalogue_detail.htm?csnumber=35724, Last access: Oct
23, 2009.

[25] S.L. Pfleeger, “Albert Einstein and Empirical Software

Engineering”, IEEE Computer, Oct., 1999, pp. 32-38.

[26] M.V. Zelkowitz, D.R. Wallace, D.W. Binkley,

“Experimental Validation of New Software
Technology”, Lecture Notes On Empirical Software
Engineering, Chapter 6, World Scientific, 2003, pp. 229-
263.

1031

