
The Unix-like Build Pattern

Bruno P. Kinoshita1, Eduardo Guerra2

1 TupiLabs
Sao Paulo – SP – Brazil

2 Instituto Nacional de Pesquisas Espaciais (INPE)
Sao Jose dos Campos – SP – Brazil

bruno@tupilabs.com, guerraem@gmail.com

Abstract. The time that software takes to get built is a challenge for many
development teams. Different ways to reduce this time have already been used in
software projects, such as compiling permutations and executing unit tests in
parallel. The pattern described in this paper, called Unix-like Build Pattern, can
be used to reduce the build total execution time by splitting it into smaller parts.

Resumo. O tempo que um software leva para ser construído é um desafio para
muitos times de desenvolvedores. Diferentes maneiras de diminuir este tempo já
foram aplicadas em projetos de software, como permutações na compilação do
código-fonte e execução de testes unitários em paralelo.O padrão apresentado
neste artigo. chamado de Unix-like Build Pattern, pode ser utilizado para reduzir
o tempo total de execução do build quebrando-o em partes menores.

Introduction

Building software is an important part of software development. There are several ways of
doing it but a series of good practices and tools can be used to help you to achieve better
results. The pattern described in this paper can reduce the build execution time, specially
when the build is comprised of several tasks (aka build steps).

This paper was written to describe an existing pattern, already in use in many
organizations and open source projects. It can be used by developers, devops, build
managers and systems engineers to reduce the build execution time.

This paper focus on Jenkins build server and Java dependency and life cycle build
tools. However, this build pattern can be considered independent of build server,
programming language and build tools. In the next sections we introduce Continuous
Integration, Jenkins, the Unix way and the build pattern using the Alexandrian pattern
format [Alexander et al 1977].

Continuous Integration and builds

Continuous Integration (CI) has been part of software development for many years, but has
gained more attention with agile techniques and cloud computing. Martin Fowler's
definition is probably one of the most cited, and defines CI as “(...) a software development
practice where members of a team integrate their work frequently, usually each person
integrates at least daily” [Fowler 2013].

[Smart 2013] and [Titus, Canino-Koning 2013] also define CI as a system that build
and test software automatically and regularly (e.g.: with a simple scheduled build), adding
more value to the software, bringing advantages to the software development teams and to
the end-users. Software development teams have already understood the importance of CI.
Tools like [Atlassian Bamboo 2013], [Apache Continuum 2013], [CruiseControl 2013],
[Apache Gump 2013], [Hudson CI 2013] and [Jenkins CI 2013] are essential for most of
these software development teams.

The set of good practices described by [Fowler 2013] includes:

1. Maintain a single source repository
2. Automate the build
3. Make your build self-testing
4. Everyone commits to the mainline every day
5. Every commit should build the mainline on a integrate machine
6. Keep the build fast
7. Test in a clone of the production environment
8. Make it easy for anyone to get the latest executable
9. Everyone can see what's happening
10. Automate deployment

Note that the sixth item – “keep the build fast” – is directly related to the main goal
of the Unix-like Build Pattern.

In a big project the build time can consume a significant amount of time. And the
addition of new steps to the build, like executing tests on multiple environments, source
code analysis and generating new reports can also contribute to making the build slower.

Taking into consideration size, complexity and steps required to build software; a
build server is a very important part of Continuous Integration [Fowler 2013]. The build
server acts as a monitor to the source repository [Fowler 2013]. It reacts to source code
commits and triggers the necessary steps to build the software. All these build steps can
take a long time to execute.

The Unix-like Build Pattern

Also known as Parallel Builds or Parallel Build Steps Execution.

It is not hard to find real projects having separate but related jobs [Smart 2013] for
building the software. A common case are products that are a combination of several
modules or components [Thiim, Hvatum 2012]. Besides having several parts, a software
can also require the execution of several steps to get built.

These build steps can vary according to programming language, framework,
components or API's used. Assessing the project structure (e.g. static code analysis),
splitting the source code compilation into multiple parts (e.g. GWT compiling
permutation), running tests in parallel (e.g. JUnit 4.7+) and sending notifications (e-mails,
SMS's, network alerts, etc) are examples of common build steps.

* * *

How to optimize a build execution that is composed by several tasks?

Unix developers and users have axioms that define how tools and scripts are created and
used together. This principle is called 'the Unix way', or 'the Unix philosophy'. It is based
on the principle of modularity, with each program doing one thing well, and connecting
programs using the output of one program as the input to another.

This build pattern applies the Unix way on the software structure. It can be used to
build software with a long execution time and/or allow more builds to be executed
simultaneously. In Figure 1 we can see the general idea of this pattern, and a comparison
between a monolithic and a Unix-like build.

Figure 1. Unix-like build pattern

By applying this pattern to your builds you can reduce the build total execution time
by allowing the scheduler to run build steps simultaneously on multiple CPU cores or
computers, reducing the turnaround time.

As you can see, the build is split into smaller parts, similar to the Unix way. The
output of build steps is used as the input of another build step. And the parts of the build
can be easily replaced.

Therefore:

* * *

Break the build into smaller parts, executing in parallel independent tasks.

Jenkins (previously known as Hudson is “an open source Continuous Integration tool
written in Java”. Even though it is written in Java, it is programming language and runtime
agnostic, being able to build software written in different programming languages.

Looking at Figure 2 you can understand how the build queue wait time can be
reduced. While the build server is running the Build #11, it can start running the tests for
Build #10 job in parallel. Thus reducing the time that builds have wait in the queue for an
available execution slot.

Figure 2. Running multiple builds [Jenkins CI Wiki 2013]

[Titus, Canino-Konning 2013] separate build servers in those that have master and
slaves, being able to run builds in parallel, and those that have only a master, centralizing
the whole work. Using this classification, Jenkins fits to the “hybrid mode” category. In
other words, it can be used as a central build server or running jobs distributedly.

Using plug-ins, and/or building a master/slave Jenkins instance, you can schedule
jobs to run in parallel in one or multiple computer. This is an important and useful feature
when you have to break your build into smaller parts, since you can decide where you
would like to execute your builds.

A build job (or simply job) in Jenkins can be either a single step/task or can do a
number of things, from compiling and testing code, to running special reporting tools or
integrating with other systems. The vanilla version of Jenkins is able to handle relation

upstream/downstream jobs. It means that you can define one job to trigger a subsequent
one, and so forth, until you have successfully built your software. There are also plugins
that can further extend this functionality by creating build pipelines or by coordinating
multiple jobs executions.

* * *

Relationship to other patterns.

The Component Baselines build pattern, described by [Thiim, Hvatum 2012], can be used
to break the application into smaller parts, the component baselines. Since it reduces the
size of the project that needs to get build, you will be able to build only the isolated
components baseline, instead of the whole project.

Another pattern that can be used to find a suitable suite to apply the Unix-like build
pattern is the Sparse Workarea pattern [Thiim, Hvatum 2012]. With the sparse work area,
you can work only on the code being modified, reducing what needs to be build too, thus
reducing your total execution time during development.

Breaking your project into smaller parts and scheduling some of these parts to build
in specific time slots, is exactly the same that is done in the Time Slicing build pattern
[Simpson 2011]. However, while the focus of the Unix-like build is modularity and time
saving - as in the Unix way - the Time Slicing pattern is focused in efficient resource
utilization.

* * *

Unix-like Build Pattern in real life.

Jenkins CI (the Open Source project) has a Jenkins instance that builds the Jenkins Core.
There are always at least two jobs in there, one for building the main branch, and another
for the LTS (Long Term Supported) branch. But there are other jobs used for branches that
are created for specific features (e.g. changes in the UI).

Figure 3. Jenkins core builds [Jenkins CI 2013]

Another example is creating a separate job for SonarQube code analysis. SonarQube
is a quality assurance dashboard tool, that collects several static and dynamic code metrics,
such as cyclomatic complexity, lines of code, test coverage among others. While
SonarQube is a very useful tool, it can take a while, since it may have to index each source
code file several times to collect and present metrics.

A common mistake is to configure a job in Jenkins that executes SonarQube for
each new build, occupying a slot in the build queue for longer than necessary. Applying the
unix-like build pattern, one could save time by scheduling the SonarQube execution to only
certain periods of time, such as during the nightly build, or before a new release is cut.

Projects hosted at Apache can ask for a Jenkins build at http://builds.apache.org,
and a SonarQube analysis project at http://analysis.apache.org. Jenkins builds at Apache
are, in general, responsible for compiling the code and running tests, and are triggered for
every commit. The SonarQube projects are built in another Jenkins instance on a daily basis
only if the project changed since last run.

Conclusion

In a competitive environment, with other rival teams and/or corporations, the time to build
the project can be a key factor. It can also be demotivating for software developers that
have to wait for a long time for the build to finish.

The pattern described in this paper is a well-known pattern among software
developers, devops, system engineers and other professionals. We called this pattern the
Unix-like Build Pattern since it follows the Unix way – or Unix philosophy – by splitting
the build into smaller parts rather than having a single monolithic build.

These smaller parts can be build steps or other jobs. This pattern allows you to
execute these build steps in parallel, taking advantage of multiple CPU core architectures,
as well as Jenkins installations with a master/slaves architecture.

Finally, another benefit is giving chance to other jobs to be executed by the build
tool while a task is being performed on another CPU. This can reduce the time that builds
have to wait in a build queue to be executed, increasing the build server throughput.

References

Alexander, C., Ishikawa, S., Silverstein, M. (1977) “A Pattern language: towns, buildings,
construction”, Oxford, Oxford University Press.

Apache Ant (2013), http://ant.apache.org, Jul

Apache Continuum (2013), http://continuum.apache.org/, Jul

Apache Gump (2013), http://gump.apache.org/, Jul

Apache Ivy (2013), http://ant.apache.org/ivy, Jul

Apache Maven (2013), http://maven.apache.org, Jul

Apache Wiki (2013) “Sonar Instance at Apache”
http://wiki.apache.org/general/SonarInstance. Jul

Atlassian Bamboo (2013), https://www.atlassian.com/software/bamboo/, Jul

Composer (2013), http://getcomposer.org/, Jul

CruiseControl (2013), http://cruisecontrol.sourceforge.net/, Jul

Fowler, Martin (2013) “Continuous Integration”,
http://www.martinfowler.com/articles/continuousIntegration.html, Jul

GNU Make (2013), http://www.gnu.org/software/make/, Jul

Hudson (software) (2013), “Hudson-Jenkins split”,
http://en.wikipedia.org/wiki/Hudson_(software)#Hudson.E2.80.93Jenkins_Split, Jul

Hudson CI (2013), http://hudson-ci.org/, Jul

Jenkins CI Wiki (2013) “Splitting a big job into smaller jobs”,
https://wiki.jenkins-ci.org/display/JENKINS/Splitting+a+big+job+into+smaller+jobs.
Jul

Jenkins CI (2013), http://jenkins-ci.org/, Jul

Jenkins Clone Workspace SCM Plug-in (2013),
https://wiki.jenkins-ci.org/display/JENKINS/Clone+Workspace+SCM+Plugin, Jul

Jenkins Copy Artifact Plug-in (2013),
https://wiki.jenkins-ci.org/display/JENKINS/Copy+Artifact+Plugin, Jul

Julian, Simpson (2011), “Build Patterns to Boost your Continuous Integration”. Methods &
Tools, Spring 2011.

McIlroy, M.D., Pinson, E. N., Tague, B.A. (1978) “UNIX Time-Sharing System: Forward”.
Bell System Technical Journal.

Phing (2013), http://www.phing.info/, Jul

Raymond, Eric Steven (2003), “The Art of UNIX Programming (The Addison-Wesley
Professional Computing Series)”. Addison-Wesley.

Smart, John Ferguson (2011) “Jenkins: The Definitive Guide”. O'Reilly Media.

SonarQube (2013), http://www.sonarqube.org/, Jul

Thiim, Ralph, Hvatum, Lise (2012). “Organizing and Building Software - Patterns for
effective management of large and complex code bases”. Pattern Languages of
Programs Conference (PLoP) 2012.

Titus, C., Canino-Koning, Rosangela (2012) Continuous Integration, “The Architecture of
Open Source Applications – Elegance, Evolution, and a Few Fearless Hacks”. lulu.com.

