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Abstract. The design of the satellite Attitude Control System (ACS) becomes more complex 

when the satellite structure has different type of components like, flexible solar panels, anten-

nas, mechanical manipulators and tanks with fuel, since the ACS performance and robustness 

will depend if the dynamics interaction effects between these components are considered in 

the satellite controller design. A crucial interaction can occur between the fuel slosh motion 

and the satellite rigid motion during translational and/or rotational maneuver since these in-

teractions can change the satellite center of mass position damaging the ACS pointing accu-

racy. Although, a well-designed controller can suppress such disturbances quickly, the 

controller error pointing may be limited by the minimum time necessary to suppress such dis-

turbances affecting thus the satellite attitude acquisition. It is known that one way to minimize 

such problems is to design controllers with a bandwidth below the lowest slosh and/or 

vibration mode which can result in slow maneuvers inconsistent with the space mission re-

quirements. As a result, the design of the satellite controller needs to explore the limits be-

tween the conflicting requirements of performance and robustness. This paper investigates the 

effects of the interaction between the liquid motion (slosh) and the flexible satellite dynamics 

in order to predict what the damage to the controller performance and robustness is. The fuel 

slosh dynamics is modeled using its pendulum analogs mechanical system which parameters 

are identified using the Kalman filter technique. This information is used to designs and to 

compare the satellite attitude control system by the Linear Quadratic Gaussian (LQG) and H-

infinity methods.  
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1 INTRODUCTION 

      The problem of interaction between fluid and structure is important when one needs to 

study the dynamic behavior of offshore and marine structures, road and railroad containers 

partially filled with a fluid [1]. In space applications the problem appear with spinning space-

craft with liquid fuel, damp devices involving fluid as the damping material, fluid interaction 

with flexible manipulator [2].  An interesting approach to analyze a rigid container mounted 

on flexible springs interacting with a perfect fluid including sloshing effects can be found in 

[3].  Space mission’s attitude control system (ACS) design the knowledge of the interaction 

between fluid motion (slosh) and structure dynamics is important because this interaction can 

damage the ACS pointing requirements.  A space structure, like rockets, geosynchronous sat-

ellites and the space station usually contains liquid in tanks that can represent more than 40% 

of the initial mass of the system. As a result, the first step to design its ACS is to obtain a de-

tailed dynamics model of the space structure. When the fuel tanks are only partially filled and 

suffer a transversal acceleration and/or rotational motion, large quantities of fuel moves un-

controllably inside the tanks and generate the sloshing effects. It has been shown in [4] that 

the dynamics interaction between the fuel motion and the rigid and/or flexible body dynamics 

can result in some kind of control instability. For minimizing these effects the ACS must be 

designed using a robust control method in order to assure stability and good performance to 

achieve the attitude control system requirement [5]. The dynamics of rigid-flexible satellite 

with fuel tanks when subject to large angle manoeuvre is only captured by complex non-linear 

mathematical model. Besides, the remaining flexible and/or liquid vibration can introduce a 

tracking error resulting in a minimum attitude acquisition time. A detailed investigation of the 

influence of the non-linearities introduced by the panel’s flexibility into the ACS design can 

be found in [6]. It was shown that system parameters variation can degrade the control system 

performance, indicating the necessity to improve the ACS robustness. An experimental con-

troller robustness and performance investigation has been done in [7], where the estimation of 

the platform inertia parameters was introduced as part of the platform ACS design. The prob-

lem of designing satellite non linear controller for rigid satellite has been done in [8] using the 

State Dependent Riccati Equation (SDRE) method which is able to deal with high non linear 

plants.  Due to the complexity of modeling the fluid and/or flexible dynamic of the system it 

is common to use mechanical systems analogies that describe this dynamic. Besides, if one 

needs to know some physical parameters related with the slosh or the flexibility dynamics it is 

common to obtain then by experimental apparatus or some kind of estimating method such as 

Kalman filter [9]. In [10] a new technique to control the attitude of a rigid-flexible satellite 

has been developed where a reaction wheel was used for controlling the angular motion and 

the vibrations are damped by piezoelectric patches that are symmetrically bonded in the pan-

el’s surfaces. A multi-objective approach has been used in [11] to solve the problem of opti-

mal solar sail trajectories control.  

2 SATELLITE MODEL WITH SLOSHING 

      The phenomenon of sloshing is due to the movement of a free surface of a liquid that par-

tially fills a compartment and this movement is oscillating. It depends on shape of the tank, 

the acceleration of gravity and of the axial/rotational acceleration of the tank. As representa-

tive of the behavior of the total weight of the system it is accepted that when the mass of the 

liquid oscillates the mass center of the rigid body also oscillates, thereby disturbing the rigid-

flexible part of the vehicle under consideration. As an oscillating movement it is natural to 

consider the wave generated by the movement of the liquid as a stationary wave which all os-

cillation modes. Each mode of oscillation has a special feature of this phenomenon under 



 

study, and one observes, in a qu

modes that cause the greatest disruption in the system are the first and second modes. Despite 

the oscillation has lower frequency it is capable of resulting in violent shifting of the center of 

mass of the liquid creating an oscillation in the system as a role. The other oscillation modes 

act as a less aggressive and may not even vary the position of its center of mass due to the 

symmetry of the wave which on average causes no displacement.  Due t

sloshing dynamics is usually represented by mechanical equivalents that describes a similar 

and reproduce faithfully the actions and reactions due to forces and torques acting on the sy

tem. The main advantage of replacing the fluid m

simplifying the analysis of motion in the rigid body dynamics, compared to the fluid dyna

ics equations. Due to the complexity of establishing an analytical model for the fluid moving 

freely within a closed tank, it is used a simplified system, taking into account the following 

criteria [5] :  a) Small displacements, b) A rigid tank and c) No viscous, incompressible and 

homogeneous liquid. Under these conditions the dynamics of the sloshing can be approxima

ed by mechanical system consisting of a mass

moving in a fixed plane, with a spherical fuel tank and including the lowest frequency slosh 

mode. Based on the Lagrange equation and the Rayleigh dissipation function 

systems using the mechanical mass

shows a satellite model where slosh dynamics is represented by its pendulum analogous m

chanical system.  

 

Figure 1:  Satellite model with slosh dyna

      The mass of the satellite and the moment of inertia, regardless of the fuel, are given by m 

and I respectively and the mass equivalent of fuel and its inertia moment is given by M

respectively. It is assumed a transverse force f and a pitching moment M. A thrust F is a

sumed to act on the spacecraft longitudinal axis. Also it is given the velocity of the center of 

the fuel tank υx , υz   and the attitude angle  

ence (X,Y,Z). Besides, one assumes as generalized coordinates: 

locity, ω  representing the angular velocity of the rigid body, 

rod, b is the distance from satellite center of mass to the pendulum connected point, 

angle of the pendulum with respect to the spacecraft longitudinal axis, which is assumed in 

the equilibrium position ψ = 0 about the reference axis.  The par

on the shape of the tank, chemical

fuel tank. 

      The satellite equations of motion 

Lagrange equations given by 
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study, and one observes, in a quantitative sense, how much mass is displaced. Among all the 

modes that cause the greatest disruption in the system are the first and second modes. Despite 

the oscillation has lower frequency it is capable of resulting in violent shifting of the center of 

ass of the liquid creating an oscillation in the system as a role. The other oscillation modes 

act as a less aggressive and may not even vary the position of its center of mass due to the 

symmetry of the wave which on average causes no displacement.  Due to its complexity, the 

sloshing dynamics is usually represented by mechanical equivalents that describes a similar 

and reproduce faithfully the actions and reactions due to forces and torques acting on the sy

tem. The main advantage of replacing the fluid model with an equivalent oscillating model is 

simplifying the analysis of motion in the rigid body dynamics, compared to the fluid dyna

ics equations. Due to the complexity of establishing an analytical model for the fluid moving 

, it is used a simplified system, taking into account the following 

:  a) Small displacements, b) A rigid tank and c) No viscous, incompressible and 

homogeneous liquid. Under these conditions the dynamics of the sloshing can be approxima

mechanical system consisting of a mass-spring or pendulum. Consider a rigid spacecraft 

moving in a fixed plane, with a spherical fuel tank and including the lowest frequency slosh 

mode. Based on the Lagrange equation and the Rayleigh dissipation function 

systems using the mechanical mass-spring and pendulum type system, respectively.  Figure

shows a satellite model where slosh dynamics is represented by its pendulum analogous m

 
Satellite model with slosh dynamics pendulum analogous mechanical system.

 

he mass of the satellite and the moment of inertia, regardless of the fuel, are given by m 

and I respectively and the mass equivalent of fuel and its inertia moment is given by M

is assumed a transverse force f and a pitching moment M. A thrust F is a

sumed to act on the spacecraft longitudinal axis. Also it is given the velocity of the center of 

and the attitude angle  θ of the spacecraft with respect to a

. Besides, one assumes as generalized coordinates: V representing the linear v

representing the angular velocity of the rigid body, a  is the length of the pendu

rod, b is the distance from satellite center of mass to the pendulum connected point, 

angle of the pendulum with respect to the spacecraft longitudinal axis, which is assumed in 

 = 0 about the reference axis.  The parameters  m

on the shape of the tank, chemical-physical characteristics of the fuel and the fill ratio of the 

The satellite equations of motion for the satellite with sloshing can be derived using the 
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ics equations. Due to the complexity of establishing an analytical model for the fluid moving 

, it is used a simplified system, taking into account the following 

:  a) Small displacements, b) A rigid tank and c) No viscous, incompressible and 

homogeneous liquid. Under these conditions the dynamics of the sloshing can be approximat-

spring or pendulum. Consider a rigid spacecraft 

moving in a fixed plane, with a spherical fuel tank and including the lowest frequency slosh 

mode. Based on the Lagrange equation and the Rayleigh dissipation function one can model 

spring and pendulum type system, respectively.  Figure 1 

shows a satellite model where slosh dynamics is represented by its pendulum analogous me-

mics pendulum analogous mechanical system. 

he mass of the satellite and the moment of inertia, regardless of the fuel, are given by m 

and I respectively and the mass equivalent of fuel and its inertia moment is given by Mf  and If  

is assumed a transverse force f and a pitching moment M. A thrust F is as-

sumed to act on the spacecraft longitudinal axis. Also it is given the velocity of the center of 

 of the spacecraft with respect to a fixed refer-

representing the linear ve-

is the length of the pendulum 

rod, b is the distance from satellite center of mass to the pendulum connected point, ψ is the 

angle of the pendulum with respect to the spacecraft longitudinal axis, which is assumed in 

ameters  mf   , ψ and a depend 

physical characteristics of the fuel and the fill ratio of the 

can be derived using the 
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where L  is the Lagrangian of the system, R  is the Rayleigh dissipation function, rτ is the in-

ternal torque and tτ is the  external torque. Assuming that R , rτ , tτ , ω , V are given by  

 

















+=

















=

















=

















==

0

0

;0;

0

0

;0;
2

1 2
fbM

f

F

v

v

VR rt

z

x

ττθωψε &&                             (2) 

 

      The position vector of the satellite mass center with respect to the inertial system is  
 

kzibxr ˆ)( +−=
r

                                                                           (3) 

 

assuming the relations θ&& zxvx += and θ&& xzvz −=    the satellite velocity is given by 

 

kbvivr zx
ˆ)(ˆ θ&&r ++=                                                                          (4) 

 

     The position of the mass of fuel is given by 
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f
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r

                                                           (5) 

 

as a result, the velocity of the fuel mass is 
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     The Lagrangian of the entire system is given by 
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Substituting the Eqs. (4-6) into Eq. (7), using the relations given by Eq. (2) and performing 

the derivations of Eq. (1), one obtains the satellite equations of motion given by 
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Eq.(9), one can isolate and obtain the satellite accelerations given by
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      All equations derived previously are no linear. However, in order to design a LQR and 

LQG controllers one has to get the linear set of equations of motion, which is obtained assu

ing that the system makes small movements around the 

substituting the Eqs (12-13) into Eqs (10

has the satellite equation of motion given by
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3 SATELLITE MODEL WITH 

To derive the equations of motion f

considers the same rigid satellite with 

to the satellite as shown in Figure 

 

Figure 2 - Satellite model with slosh dynamics 

The flexible appendage has 

tionθ , resulting in a linear velocity  

axis resulting in its variation given by

given by 
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θ&&
zv+= xv ,  θ&& xva -vzz =  and substituting they into Eq.(8) and 

Eq.(9), one can isolate and obtain the satellite accelerations given by 

f
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All equations derived previously are no linear. However, in order to design a LQR and 

LQG controllers one has to get the linear set of equations of motion, which is obtained assu

ing that the system makes small movements around the zero point of equilibrium 

13) into Eqs (10-11) and assuming the linearization conditions, one 

has the satellite equation of motion given by 
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ATELLITE MODEL WITH SLOSHING AND FLEXIBILITY 

he equations of motion for the satellite model with sloshing and f

satellite with tank partially filled plus a flexible appendage 

as shown in Figure 2.  

 
Satellite model with slosh dynamics and a flexible panel

 

has mass 
pm  and length l and it has two motions, 

velocity  θ&l  and a flexible deformation δ with 

axis resulting in its variation given byδ& . Thus, for small deformations, the panel 

and substituting they into Eq.(8) and 

                                   (12) 

                                      (13) 

All equations derived previously are no linear. However, in order to design a LQR and 

LQG controllers one has to get the linear set of equations of motion, which is obtained assum-

int of equilibrium [12].  Now, 

11) and assuming the linearization conditions, one 

                              (14) 

                                   (15) 

the satellite model with sloshing and flexibility one 

flexible appendage connected 

and a flexible panel. 

tions, the angular mo-

with respect to the Z 

, the panel velocity is 
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pv δ θ= +& &l                                                                 (16) 

The panel kinetic, potential energy and the dissipation function of energy D are given by  

21
( )

2
p pT m δ θ= +& &l                                            (17) 
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where  k  and 
d

k  are the panel elastic constant and the dissipation constant.   

     Now the Lagrangian considering the slosh and the appendices’ flexibility is given by  
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    In order to obtain the equation of motion for the satellite with sloshing and flexible panel 

one uses Eq.(1) plus the Lagrange equation given by  

 0 
d L L D
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which after all derivation and performing similar previously linearization one obtains the line-

arized equations of motion given by  
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4 LINEAR QUADRATIC REGULATOR - LQR  

      Assuming a plant described by the linear state equations given by 

 

)()()( ttt BuAxx +=& ,                                                                 (25) 

 

where x  represent the state vector, A the state matrix, B the input matrix and u  the control 

input. The LQR is an optimal control method that consists of minimizing the function given 

by  
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where the final time ft  is fixed,  Q  and H  are real positive semi-definite matrices, and R  is 

real symmetric positive definite matrix.  The gain of the control law is obtained solving the 

Riccati equation [9] given by: 

 

)()()()()( 1 ttttt tt PBBRPQPAAPP −+−−−=&                                      (27) 

 

where P  is the symmetrical solution matrix of the differential Riccati equation. The optimal 

LQR control law can be written as 

 

)()()( 1 ttt t xPBRu −−=                                                                 (28) 

 

where the gain of the LQR control law is given by  

 

)(1 ttPBRK −=                                                                     (29) 

5  LINEAR QUADRATIC GAUSSIAN - LQG  

       The LQG method is the union of the LQR problem with the Kalman filter problem. How-

ever, if there is any state that is not available one uses the Kalman filter to estimate it in order 

to feedback. The separation principle [9] ensures that each problem can be solved inde-

pendently of each other. 

Assuming a plant described by the linear state equations given by 

 
( ) ( ) ( )

( )

t t t w

t υ
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x Ax Bu

y Cx
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where x  is the state vector,  A is the state matrix, B is the input matrix, y is the output vector, 

C  is the output matrix, υ  and w are white noise and u  is the control input [13]. Following a 

similar approach described before, now the LQR gain is given by  

 
1 T

c c
−=K R B P                                                                         (31) 

 

Where R  is real symmetric positive definite matrix and 
c

P  is the symmetrical solution of the 

LQR   Riccati equation given by 

 
-1-T T T

c c c c+ + =A P P A P BR B P M QM 0                                                    (32) 

 

Similarly the Kalman filter gain now is given by  

 
1T

f f
−=K P C V                                                                   (33) 

 

where V  is real symmetric positive definite matrix and f
P  is the symmetrical solution matrix 

of the KF  Riccati equation given by. 
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-1 0T T T
f f f f =P A + AP - P C V CP +Γ WΓ                                        (34) 

 

where 0T
c c= ≥P P and 0T

f f= ≥P P  and Q , R , V  e W  are weights matrices which can be re-

garded as setting parameters ("tuning") that must be manipulated until they find one accepta-

ble response to the system. The LQG method is more realistic than the LQR method, since  it 

can estimate the states that are not available to be feedback and it allows to include the noise 

in the model which represents imperfections of the system. 

6 SIMULATIONS RESILTS  

The first simulation is the comparation between the LQR and LQG control law, for the 

satellite model with sloshing dynamics given by Eqs.(14-15). The parameters values used in 

the simulations are m=600Kg, mf =100Kg, I=720Kg/m, If = 90Kg/m, a=0.3m, b=0.3m, 

F=500N, ε=0.19Kgm
2
 /s. The initial conditions used are θ=2

o 
,
 
dθ/dt= 0.57

o 
/s , ψ=1

o  
and 

dψ/dt = 0
o
 . Figure 3 shows that the LQR control law performance is better than the LQG. The 

main reason is because the LQR control law considers that the sloshing variables are available 

to be feedback which is not true. Figure 4 shows that both the torque and the force of the LQR 

controller are smaller than the LQG controller.   

 

 
Figure 3 – The angular and sloshing control by the LQR and LQG controller. 

 

 
Figure 4 – The LQR and LQG controller effort to control the angular and sloshing motion. 

 

      The second simulation is also the comparation between the LQR and LQG control law, 

but now the satellite model has the sloshing dynamics plus the flexible dynamics of panel, 
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which the data values are mp=10kg,  l= 1.5m, k = 320Kgrad
2
/s

2
 , kd = 0.48Kgrad

2
/s.  The 

simulations initials conditions are  θ=2
o
 , dθ/dt= 0.57

o
 /s, ψ=1

o
 ,dψ/dt= 0

o
/s 

  
, δ =δ& =0.  

      Figure 5 and 6 show that the LQR control law performance in better than the LQG only 

for controlling the angular motion. However, for controlling the flexible motion the LQR con-

troller performance is damage.  

 

Figure 5 : Control of the  angular motion, sloshing and flexibly. 

 

Figure 6: The LQR and LQG performance controlling angular motion, sloshing and flexibly. 

 

       

7 CONCLUSIONS  

 

In this paper one described the concepts of the sloshing phenomenon which is associated with 

the dynamics of a liquid moving into at partially fills reservoir. To derive the equation of mo-

tion of a spacecraft with liquid inside the sloshing phenomenon is represented by its mechani-

cal analog of a pendulum type. One shows that the performance of the LQR control is better 
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than and LQG control and the reason that the LQG control is degraded is because the sloshing 

states need to be estimated by the filter, besides that there is noises representing the imperfec-

tions of the models acting over the system. These comparisons show that when all states are 

available to be feedback the LQR controller is better than LQG. However, in a realistic situa-

tion one has not the sloshing states to be feedback, so one must use the KF to estimate then.  

Besides, one observes that flexibility still has small fluctuation, which is not appropriated 

when one needs high precise pointing.  
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