

CILAMCE 2013
Proceedings of the XXXIV Iberian Latin-American Congress on Computational Methods in Engineering

Z.J.G.N Del Prado (Editor), ABMEC, Pirenópolis, GO, Brazil, November 10-13, 2013

CODIFING TURBULENCE ON GP-GPU FOR THE CCATT-BRAMS
CODE: THE BRAZILIAN ENVIRONMENTAL PREDICTION SYSTEM

Leandro dos Santos Lessa
Renata Sampaio da Rocha Ruiz

Haroldo Fraga de Campos Velho
leandro_santos_lessa@yahoo.com.br

[renata, haroldo]@lac.inpe.br
Instituto Nacional de Pesquisas Espaciais (INPE)

Av. dos Astronautas 1758, 12227-010, São José dos Campos, SP, Brazil

Otavio Migliavacca Nadalosso
Cezar Augusto Contini Bernardi

Andrea Schwertener Charão
otaviomadalosso@gmail.com

[cbernardi, andrea]@inf.ufsm.br
Av. Roraima 1000, 97105-900, Camobi – Santa Maria, RS, Brazil

Abstract. Atmospheric, ocean, and environmental prediction models are codes with intensive
computation. One strategy to increase the performance is the use of hybrid architecture,
combining CPU and accelerators devices, as GP-GPU (or simply GPU) and FPGA. The
geophysical prediction codes can be characterized as having three modules: dynamical
engine (used to integrate the Navier-Stokes equations), components for physics (representing
turbulence, radiation, cloud dynamics, and precipitation), and geo-physical data (maps for
topography, surface ocean temperature, soil moisture). This paper reports the turbulence
module codification on GPU for the environmental code CCATT-BRAMS (Chemical Coupled
Aerosols Tracers-Transport + Brazilian Regional Atmospheric System), developed and
supported by the CPTEC-INPE (Centro de Previsão de Tempo e Estudos Climáticos). The
tests were carried out using CUDA (Compute Unified Device Architecture) and OpenCL
(Open Computing Language). Numerical experiments were performed on a South American
region, with 40 km for horizontal resolution. The results have shown a speed-up from 2 up to
14 times faster for GPU compared to serial CPU.
Keywords: CCATT-BRAMS, turbulence routine, GP-GPU, CUDA, OpenCL.

Codifying turbulence on GP-GPU for the CCATT-BRAMS code

CILAMCE 2013
Proceedings of the XXXIV Iberian Latin-American Congress on Computational Methods in Engineering
Z.J.G.N Del Prado (Editor), ABMEC, Pirenópolis, GO, Brazil, November 10-13, 2013

1 INTRODUCTION

The environmental prediction model CCATT-BRAMS (Freitas et al., 2007; CPTEC:
CATT-BRAMS) is a large and complex computational code, and the system is operationally
employed by the Center for Weather Prediction and Climate Studies (CPTEC) from the
National Institute for Space Research (INPE). This model allows atmospheric simulation with
emission, transport, pollutant dispersion, and chemical reactions, contributing for the studies
and forecasting on air quality to Brazil and South America.

The model requires intense computation, and it has been a target for research on
strategies to speed up its performance. One issue under investigation in the project “Massive
atmosphere II: scaling atmospheric models to heterogeneous architectures with 10 K cores”
(CNPq support: Proc. 560178/2010-7, RFP: 09/2010) is the adaptation of the CCATT-
BRAMS model on the heterogeneous computer systems, combining CPU with some
accelarator (co-processor), such as Graphics Processing Units (GPUs).

The use of GPUs to speed up processing is already noticed as an eficient solution for
several applications in scientific computing. However, there are challenges to be overcome
for each new application. In addition, today has several programming tools dedicated to GPU,
enhancing the options for investigation under consideration.

Geophysical prediction models (dynamics of atmosphere, ocean, air quality, ionosphere,
and so on) apply numerical methods for space and time integration. The model resolution
dictates the computational effort involved. Such models embrace several modules:
geophysical data (topography, surface covering (water, ice, grass, forest, etc), dynamics
(representing the convection/advection), physics (radiation, precipitation, turbulence). Here,
two frameworks for GPU programming are evaluated for codifying the Smagorinsky
turbulence parameterization.

2 CCATT-BRAMS MODEL

The system for environmental modeling CCATT-BRAMS is a software package
developed by the CPTEC-INPE, requiring a lot of computation. It is already run on a parallel
version, but depending on the model resolution (topography, and/or mesh points), even for
high performance machines, this is a heavy computer model. Therefore, the research to
improve the performance is always pursued.

For the numerical models applied to atmospheric dynamics, a good representation for the
associated physical phenomena is an essential issue to obtain good forecasting. The first and
the closest atmospheric layer to the surface should contain a representation for turbulence.
Several parameterization were/are developed by the scientific community. One of them is due
to Smagorinsky (1963), where the Reynolds fluxes are described using space discretization
parameters. The latter turbulence model is one option for the CCATT-BRAMS.

Installing the CCATT-BRAMS is not a simple task, because the system has several files
needing appropriated set up for compiling. Many dependencies (external libraries) must be
carefully compiled. The computer code is written in Fortran 90, using about 530 files,
summing more than 380 thousand lines of code.

L.S. Lessa, R.S.R. Ruiz, H.F. Campos Velho, O.M. Nadalosso, C.A.C. Bernardi, A.S. Charão

CILAMCE 2013
Proceedings of the XXXIV Iberian Latin-American Congress on Computational Methods in Engineering

Z.J.G.N Del Prado (Editor), ABMEC, Pirenópolis, GO, Brazil, November 10-13, 2013

For dealing with all complexitues, and taking into account preliminar studies, we focused
on the GPU codification of the Smagorinsky parameterization: subroutine MXDEFM. The
sub-routine uses over 190 programming lines, and it has some nested loops, acting over 3D
arrays. Its execution time depends on the model resolution. For regular simulations, a call to
the MXDEFM sub-routine requires dozens of miliseconds – in general, for the CCATT-
BRAMS simulation, there is no dominance on a specific sub-routine.

As already known, for a relatively fast execution (even for low resolution), an effecient
parallelization can be difficult. Therefore, it is relevant to evaluate alternative techniques to
improve the performance, since the physics parameterization is called many times during a
given simulation. High resolution and long period integration (climate studies, for example)
increase the execution time.

2.1 Smagorinsky turbulence parameterization

In the Smagorinsky’s formulation, the turbulent fluxes are parameterized using the theory
of grandient-flux, the theory-K. In this parameterization, the tubulent fluxes (Reynolds
tensors) are given as following:

ui
'uj
' = −(Km)ij (D) j (1)

where (Km)ij is the turbulent eddy diffusivity for the momentum-i on direction-j and

(D) j ≡
∂ui
∂x j

+
∂uj
∂xi

 . (2)

being ui the mean wind component to direction-i, and xi is the space direction (here: i, j = 1,
2, 3). The formulation was up-dated by Lilly (1962) and Hill (1974), the eddy diffusivity for
the vertical direction can be parameterized as follows:

Kmv = cszΔz()2 Dv +H (N)"# $% f (Ri) (3)

where csz is a fitting coefficient, Δz is the vertical grid discretization, and the term |Dv|, the
magnitude to the deformation tensor for vertical direction, given by

Dv ≡
∂u
∂z
#

$
%

&

'
(
2

+
∂v
∂z
#

$
%

&

'
(
2)

*
+
+

,

-
.
.

1 2

 . (4)

The contribution from the advection in the turbulence production H(N) is expressed as

H (N) = max{0,−N 2} . (5)

being N = [(g θ)(dθ dz)]1 2 the Brunt-Väisälä frequency (g is gravity, and θ is the potential
temperature), and the function f(Ri) is written as

f (Ri) =max{0.1− (Kh,v Km,v)Ri} (6)

with Khv/Kmv the ratio between the heat and momentum eddy diffusivities, and Ri is the
gradiente Richardson number. The ratio Khv/Kmv is especified by the user. The Smagorinsky
parameterization is codified in the MXDEFM sub-routine.

Codifying turbulence on GP-GPU for the CCATT-BRAMS code

CILAMCE 2013
Proceedings of the XXXIV Iberian Latin-American Congress on Computational Methods in Engineering
Z.J.G.N Del Prado (Editor), ABMEC, Pirenópolis, GO, Brazil, November 10-13, 2013

3 PROGRAMMING ON GPU

3.1 CUDA system

CUDA (Compute Unified Device Architecture) (Nvidia: CUDA, 2012) is a framework
developed by NVIDIA Corporation, looking at the parallel processing for the GPUs produced
by this company. The CUDA programming could be considered an extension of languages
like C, C++, and Fortran, adding qualifiers (for instance: _global_, _device_, or shared) to
functions and data, producing kernels for execution on a GPU.

The submited job to a kernel can be divided among thousands of threads, organized into
blocks, and grids, with dimensions blockDim and gridDim, respectively. The kernel uses
indexes blockIdx and threadIdx for helping to define the job to be executed by a thread.

The CUDA system can only be used with Nvidia’s GPU. Although the standard CUDA is
widespread, and even with the opening CUDA source code made by NVIDIA, CUDA is a
proprietary platform, implying restrictions on portability.

3.2 OpenCL system

OpenCL (Open Computing Language) (Khronos Group: OpenCL, 2012) is a framework
supported by the consortium Khronos Group, as an open library for heterogeneous computing,
employing GPUs or others devices associated to the CPU. The OpenCL programming uses
APIs for communication with the devices and a language based on C for kernel
especifications, to be executed on supported accelerators.

Several actions must be explicitly performed in the CPU for using the OpenCL API.
Among them: GPU identification¸ buffers allocation, number of the parameters for the kernel,
number of threads, and the way adopted to do the execution. The kernel execution is divided
among threads, or work-items (using the OpenCL terminology). The threads are organized on
work-groups, equivalent to the blocks in CUDA, and the work-groups are indexed by local
(inside the group) or global identifiers, respectively obtained by functions get_local_id() or
get_global_id() (the last, without equivalent in CUDA). Each thread deals with differents data
transfered to the GPU. The data return is done by buffers reading as defined as writing
buffers, through other calls done by the CPU. As an open and independent standard, OpenCL
appears as a convenient alternative for demanding performance and portability.

4 DEVELOPMENT

The parallelization procedures used for both GPU frameworks are described in this
session. Secondly, some particular characteristics of each approach is mentioned. Only the
codification of sub-routine MXDEFM is evaluated on the GPU. A profile for the sub-routine
was carried out to identify parallelization opportunities. GPU parallelism was mainly focused
on loops in the sub-routine. One important requirement is that the loops must not have
dependencies with previous loops. For instance, for a loop with N iterations, iteration N-1
should not depend on results from iteration N-2.

The mentioned dependency was not verified, but some aspects are important to note:
(a) nested loops are conditionally activated, depending on the set-up of the simulation,

L.S. Lessa, R.S.R. Ruiz, H.F. Campos Velho, O.M. Nadalosso, C.A.C. Bernardi, A.S. Charão

CILAMCE 2013
Proceedings of the XXXIV Iberian Latin-American Congress on Computational Methods in Engineering

Z.J.G.N Del Prado (Editor), ABMEC, Pirenópolis, GO, Brazil, November 10-13, 2013

(b) some loops perform few operations, implying on a limit to how much computation can be
parallelized in the GPU version. Therefore, one nested loop was selected as the parallelization
target, with dominance over the simulation for a given configuration of CCATT-BRAMS.

After this first evaluation, analysis on the definition of necessary parameters for the GPU
kernel codification was performed. For this point, parts of the original Fortran code were re-
codified in C, for becoming easier to work with the extensions employed in CUDA and
OpenCL. There is a compiler with support to CUDA on Fortran (PGI CUDA Fortran), but
there is no such compiler for OpenCL. Therefore, a mixing code using Fortran and C was
developed. C and Fortran Intel compilers were applied.

Some parameters to be transferred to CUDA and OpenCL kernels are 3D arrays. One
issue here, with hibrid programming (Fortran and C), is that the array records in memory are
different for C and Fortran. For C, the vectors with more than one dimension (matrices) are
allocated as row-major, while Fortran uses column-major. For dealing with these features, and
looking at the work division to the parallel execution, the multi-dimension arrays were
mapped to a one-dimension vector. This strategy allows the direct acess to the C language for
these data, for transfering parameters with Fortran is always done by memory addresses, i.e.,
C pointers. Therefore, the parameters for the kernel, for CUDA or OpenCL, were transfered
this way, from a Fortran call, where the multi-dimensional arrays were considered as one-
dimensional ones.

Defined the strategy for data transfer, definitions for input and output variables, vectors,
and matrices were established for CUDA and OpenCL, and then the allocation of buffers in
the GPU memory. The latter procedure is important to allow reading and changing the data
during kernel execution. The buffers are also necessary for CUDA and OpenCL callings, for
input parameters definition from the kernel, only after this data is available to the GPU.

For the kernel generation, the job was divided in parts, each one executed in a GPU
thread. After the kernel execution, a reading is done from the output buffers for collecting the
processed data.

4.1 CUDA Implementation

CUDA implementation required few adaptation on the original MXDEFM sub-routine.
Before calling to the kernel, the multi-dimensional arrays are mapped into a one-dimensional
ones. The resulting arrays, coming from the GPU, were copied to the original arrays after the
GPU execution.

The C code, an file with extension “.cu”, employed CUDA calls to manager allocation,
transfer, and clean up the memory (cudaMalloc, cudaMemcpyAsync, cudaMemcpy, and
cudaFree). The kernel on CUDA needed to call some mathematical functions, all of them
available in the CUDA API (see Figure 1).

4.2 OpenCL Implementation

The OpenCL framework is able to run for GPUs made from different companies. It is
necessary to identify the device where the kernel will be executed. This process requires the
application of calls to identify and/or allocate one or more devices (clGetDeviceIDs), contexts
(clCreateContext), and command queues (clCreateCommandQueue).

Codifying turbulence on GP-GPU for the CCATT-BRAMS code

CILAMCE 2013
Proceedings of the XXXIV Iberian Latin-American Congress on Computational Methods in Engineering
Z.J.G.N Del Prado (Editor), ABMEC, Pirenópolis, GO, Brazil, November 10-13, 2013

Figure 1: Turbulence parameterization: part of CUDA codification.

In our first experiments, the context set-up requires a long period of execution time in
OpenCL. However, this call needs to be done only one time, using the same defined context
for all simulation time-steps. This action needs to change the external code to the sub-routine
MXDEFM, generating the context and making it available into a module to be accessed by
the sub-routine.

The context is a data structure defined in C, which need to be handled in Fortran.
OpenCL has no Fortran support, but there exists an independent module called FortranCL

(http://code.google.com/p/fortrancl/), offering an OpenCL interface for this language. This
allows the generation of an OpenCL context before simulation iterations call the sub-routine.

During code development, an advantage was noted using the flag CL MEM ALLOC
HOST PTR. This flag does a new memory allocation, when building the buffers, and it was
applied instead of the flag CL MEM USE HOST PTR. The latter flag just uses pointers for the
memory already allocated.

Figure 2: Turbulence parameterization: part of OpenCL codification.

5 RESULTS

In our experiments, the CCATT-BRAMS uses a computational grid with 70×70×30 grid
points (two horizontal directions, and vertical direction). The number of timesteps used in the

L.S. Lessa, R.S.R. Ruiz, H.F. Campos Velho, O.M. Nadalosso, C.A.C. Bernardi, A.S. Charão

CILAMCE 2013
Proceedings of the XXXIV Iberian Latin-American Congress on Computational Methods in Engineering

Z.J.G.N Del Prado (Editor), ABMEC, Pirenópolis, GO, Brazil, November 10-13, 2013

simulation was 6480. Identical outputs were obtained for three platforms: CPU alone, CPU +
GPU-CUDA, and CPU + GPU-OpenCL.

One machine employed to performe the experiments is a server with processor Intel Xeon
E5620 2.4Ghz, 12 GB DDR3 (RAM), GPU Nvidia Tesla M2050 3 GB GDDR5 (hereafter
GPU-1). The operational system is Debian 6 (Squeeze) 64 bits, kernel 3.9.2, with OpenCL
1.2, and compilers Intel icpc 12.1.4 and ifort 12.1.3. The code was prepared for recording
execution time of different parts of the code.

Other hardware environment is a desktop with processor Intel Core-i7 3.06 GHz, 12 GB
(RAM), GPU Nvidia GForce GTX 580 1.5 GB GDDR5 (hereafter GPU-2). The operational
system is Linux Ubuntu 10.04 LTS 64 bits, with CUDA release 4.2, and compilers Intel icoc
12.0.4 and ifort 12.0.4. Only CUDA implementation was tested here.

Table 1 shows the time average obtained on different parts of the code. The average was
computed from 23 samples (simulation time-steps), without consideration with the time spent
with initialization for the OpenCL code (procedures before the simulation time-steps) – this
period spends 1 second (1000 ms), approximately. Following Table 1, most of the execution
time with OpenCL is taken with the kernel compilation (clCreateProgramWithSource),
buffers reading (clEnqueueReadBuffer), and making memory available
(clReleaseMemObject), the computation requires only 3.5% of the total time.

Something similar is also verified with CUDA codification. A “long period” of time is
concentrated on data transfer, from the CPU to GPU, and vice-versa. Less time is spent on the
computation. For the computational system used, the first data transfer took much more time.
Neglecting this first data transfer, the average for total execution time is 1.11 ms (little lower
than OpenCL), where the difference is mainly on allocation, decresing to 0.228 ms.

Table I: Execution time for OpenCL and CUDA sub-routine.

OpenCL parcial code time
(ms)

CUDA parcial code (GPU-1) time (ms) CUDA parcial code (GPU-2) Time
(ms)

clCreateCommandQueue 0.043 cudaMalloc +
cudaMemcpyAsync (CPU to
GPU)

52.397 +
0.353

cudaMalloc +
cudaMemcpyAsync (CPU to
GPU)

50.924+0.
308

clCreateBuffer 0.012

clCreateProgramWithoutSource 0.337 cuda_kernel_mxdefm_<<<...>>
>(,,,)

0.019 cuda_kernel_mxdefm_<<<...>>
>(,,,)

0.016

clSetKernelArg 0.008

clEnqueueNDRangeKernel 0.045 cudaMemcpy (GPU to CPU) 0.319 cudaMemcpy (GPU to CPU) 0.571

clEnqueueReadBuffer 0.380 cudafree 0.174 cudafree 0.001

clReleaseMemObject 0.267

Total 1.263 Total 53.003 Total 51.820

Results for cudaMalloc were obtained without activating the CUDA function

cudaThreadSyncronize. Activating this CUDA function, the total execution time measured is

Codifying turbulence on GP-GPU for the CCATT-BRAMS code

CILAMCE 2013
Proceedings of the XXXIV Iberian Latin-American Congress on Computational Methods in Engineering
Z.J.G.N Del Prado (Editor), ABMEC, Pirenópolis, GO, Brazil, November 10-13, 2013

(GPU-2): 0.609 ms [cudaMalloc = 0.380 + cudaMemcpyAsync (CPU to GPU) = 0.017 +
cuda_kernel_mxdefm = 0.20 + cudaMemcpy (GPU to CPU) = 0.010 + cudafree = 0.001).

6 CONCLUSION

A parallel implementation on GPU for the turbulence parameterization routine in the
CCATT-BRAMS environmental prediction model was performed. Two frameworks were
used in this implementation: CUDA and OpenCL. For both implementations, more execution
time was employed to transfer data, between CPU and GPU, than the computation in the
device. One important issue was to mapping the computational effort associated to each part
of the CUDA and OpenCL codes. These results are going to help future implementations for
other CCATT-BRAMS routines on GPU execution.

Our results have also shown different performances on different hardware devices (see
execution time for GPU-1 and GPU-2 in Table 1). More investigations are necessary for
better understanding such desagreement.

ACKNOWLEDGEMENTS

This project has been supported by FINEP under contract CT-INFO Edital Grade-
01/2004. Authors thanks to the CNPq and FAPESP, Brazilians agencies for research support.
The authors thank two anonymous referees for reviewing that helped make the text clearer.

REFERENCES

S. R. Freitas, S.R., Longo, K., Dias, M., Chatfield, R., Dias, P., Artaxo, P., Andreae, M.,
Grell, G., Rodrigues, L., Fazenda, A., & J. Panetta, 2007 “The coupled aerosol and tracer
transport model to the brazilian developments on the regional atmospheric modeling system
(CATT-BRAMS). part 1: Model description and evaluation”. Atmos. Chem. Phys. Discuss.,
vol. 7, pp. 8525–8569.

CPTEC-INPE, “Modelo ccatt-brams / qualidade do ar,” 2012, available at:
http://meioambiente.cptec.inpe.br/modelo_cattbrams.php (accessed at: 29-Dec-2012).

Lilly, D. K., 1962, “On the numerical simulation of buoyant convection”. Tellus, v. 14, pp.
168–172.

Hill, G. E., 1974 Factors controlling the size and spacing of cumulus clouds as revealed by
numerical experiments”. J. Atmos. Sci., v. 31, pp. 646–673.

NVIDIA Corporation, “CUDA Toolkit Documentation,” 2012, available at:
http://docs.nvidia.com/cuda/ (accessed at: July-2013).

Hinton, Khronos Group, “The OpenCL specification – version 1.2,” 2012, available at:
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf (Accessed at: 30-Dec-2012).

Smagorinsky, J., 1963 “General circulation experiments with the primitive equations,” Mon.
Weath. Rev., vol. 91, pp. 99–164.

