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ABSTRACT 

 
This paper aims to use unique features of hyperspectral data 

on an automatic process for outlining individual tree crowns 

(ITCs) in a tropical forest area, with special focus on semi-

deciduous species. In order to enhance biophysical and 

biochemical properties of canopy species, a set of vegetation 

indices were computed. These indices served as input for a 

region growing segmentation algorithm that takes into 

account mutual similarity of pixels and spectral separability 

between neighbor segments. Segmentation output was 

evaluated on the basis of a score computed with the 

proportion of the area of the segments located within 

manually delineated ITCs. Results show that the 

segmentation approach is able to automatically delineate up 

to 70% of the control ITCs. 

 

Index Terms – Brazilian Atlantic Forest, image 

segmentation, individual tree crowns, forest management, 

deciduous tree species 

 

1. INTRODUCTION 

Hyperspectral remotely sensed data provide important 

information for management and conservation of tropical 

forests. In this context, research has been developed on tree 

species discrimination at both leaf- and canopy-levels [1]-

[3]. At the canopy-level, due to unique spectral signatures of 

tree species, the focus has been on pixel-based classification 

approaches. However, studies performed at the individual 

tree crown (ITC) level had reported higher classification 

accuracies [1],[2],[4]. ITCs are often manually delineated 

using high spatial resolution images [1], since tree crowns, 

particularly from emergent species, are easily 

distinguishable. Although this method produces satisfactory 

results, it is labor intensive and therefore unfeasible over 

large areas. 

      Automatic ITC delineation in tropical forests is a 

challenging task because of the vegetation stands structure. 

Trees have often non-uniform heights and overlapping 

crowns, which makes the distinction of clear boundaries 

between individuals very difficult, even in sub-meter 

resolution images. Moreover, effects of the bidirectional 

reflectance distribution function (BRDF) caused by crown 

architecture, view and illumination angles lead to different 

proportions of shaded and illuminated pixels within the 

same ITC. Nevertheless, the information present in 

hyperspectral images can be exploited to reduce such 

effects, and enhance spectral features contributing to an 

improved ITC delineation. 

      In this work, we propose a method for automatic 

delineation of tree crowns, in a tropical forest area, using a 

region growing segmentation algorithm designed 

specifically for this task. The high dimensionality of 

hyperspectral data was reduced into a set of vegetation 

indices (VI) to enhance biophysical and biochemical 

features of semi-deciduous tree species. The segmentation 

algorithm took into account, through a spectral separability 

measure between segments, the contribution of VIs on the 

automatic ITC delineation process. 

 

2. DATA AND METHODS 

 

2.1 Study area and hyperspectral data 

The study area is the reserve of Santa Genebra  (22º48’- 

22°50’ S, 47º06’- 47°07’ W), located in the municipality of 

Campinas, in the State of São Paulo, Brazil. The area 

comprises 251.77 ha and constitutes one of the major 

remnants of sub-montane semi-deciduous forest (a subtype 

of Atlantic Forest). 

      Hyperspectral images were acquired on June 8, 2010 

with the ProSpecTIR-VS (AISA Eagle and Hawk) sensor 

onboard an aircraft flying 1350 m above ground level, 

resulting in an instantaneous field of view (IFOV) of 1 m. 

357 radiance bands were collected in the 400-2500 nm 

region of the visible and infrared spectra, with a spectral 

sampling distance of about 5 nm. Ten flight lines cover all 

the study area. 

 

2.2 Image preprocessing 
Prior to the processing steps, the radiance images were 

georeferenced using a Geographic Lookup Table (GLT) file 
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and mosaicked, presenting low BRDF effects among scenes. 

The Fast Line-of-Sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) algorithm [5] was used to convert 

radiance values into surface reflectance. Three spectrally 

pure materials (endmembers) comprising “Vegetation”, 

“Soil/Litter” and “Shade” were carefully selected manually, 

and chosen to model each pixel. The respective fractions 

were computed using the Linear Spectral Mixing Model 

(LSMM) [6]. Only pixels containing at least 60% of the 

component vegetation were further considered for analysis, 

i.e., pixels dominated by soil/litter and/or shades were 

masked out. Subsequently, 3 areas of about 400x400 pixels 

were randomly selected to perform the segmentation tests. 

These areas were spatially smoothed by a mean filter with a 

3x3 moving window to normalize variations of pixel 

brightness within the ITCs, and to preserve edges 

simultaneously. 

      Hyperspectral data provide the possibility to compute 

several VIs. These indices can enhance biophysical and 

biochemical features of semi-deciduous canopy tree species. 

Five VIs were considered in the analysis (Table 1): 1) 

Normalized Difference Vegetation Index (NDVI) [7]; 2) 

Pigment Sensitive Normalized Difference (PSDN) [8]; 3) 

Red-edge Normalized Difference Vegetation Index 

(RENDVI) [9]; 4) Simple Ratio between Red (600-699 nm) 

and Green (500-599 nm) broad bands (SRred/green)[10]; 5) 

Structurally Insensitive Pigment Index (SIPI) [11]. To 

normalize pixel values among VIs, the images were 

quantized to integers in the 0-255 range.  

 

TABLE I 
VEGETATION INDICES SELECTED TO ENHANCE BIOPHYSICAL 

AND BIOCHEMICAL PROPERTIES OF CANOPY TREE SPECIES 
 

Vegetation Index Formula 

NDVI (ρ864 - ρ671)/(ρ864 + ρ671) 

PSDN (ρ800 - ρ675)/(ρ800 + ρ675) 

RENDVI (ρ752 – ρ701)/(ρ752 + ρ701) 

SRred/green  RED/  GREEN * 

SIPI (ρ803 – ρ467)/(ρ803 + ρ681) 
ρ closest ProSpec-TIR bands to the original index formulation 

*  RED and  GREEN referrers to the mean of all bands in the red range 

(600-699 nm) and in the green range (500-599 nm), respectively [10]. 

 

2.2 Image segmentation 

     In this work we used a modified version of the region 

growing segmentation algorithm originally available in the 

SPRING software [12]. The segmentation starts with an 

iterative aggregation of pixels presenting mutual similarity 

in a first order neighborhood. Let iA and iB be neighboring 

pixels with respective neighborhood as depicted in Fig. 1. 

Both pixels will be merged if, and only if, the most similar 

neighbor of iA is iA,2 (i.e.iB) and the most similar neighbor of  

iB is iB,4(i.e.iA). A region is formed if the above mentioned 

test is true and the spectral Euclidian distance between the 

two elements is lower than a similarity threshold (T) set by 

the user. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Analysis of the mutual similarity between two pixels, 

iA and iB. 

 

     Another aspect taken into account is the way the 

threshold value T is handled here. In the same manner as 

employed in SPRING, the process begins with a T lower 

than that initially defined by the user and increases at each 

iteration according to a degree of exigency (ex) until T is 

reached. Considering this reasoning, only the most similar 

pixels will be merged at first. In this work, a provisory 

similarity threshold (p_T) is updated iteratively by 

computing T/ex ratio. At the last iteration, ex is equal to 1. 

     After merging two pixels, a new region is constructed, an 

identifier (id) is assigned, and the mean value of this region 

is updated to comply with the new arrangement. In the case 

of a pixel i having another neighbor that already belongs to 

a region, identified by id, its similarity will be calculated 

over the mean of this region. If the difference between the 

pixel i and this adjacent region is lower than the difference 

of this pixel among its neighbors, it will be merged to that 

region. 

     The result of the previous processes frequently produces 

several regions with few pixels each and therefore it is 

necessary to merge them. Hence, the decision to group 

regions was based on their spectral separability, estimated 

by the Jeffreys-Matusita (JM) distance [13], a common 

measure used in feature selection procedures. 

     Let RA and RB be two neighboring regions with 

respective mean vectors MA and MB and covariance matrices 

CA and CB; the JM distance for normally distributed classes 

is given by: 
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which is known as Bhattacharyya distance [14], where T = 

transposition function; ln = natural logarithm; || = 

determinant. JM distance values range from 0 to 2, with 

higher values indicating total separability between adjacent 

regions. Fig. 2 illustrates the process: 

 

 
 

Fig. 2. Jeffreys-Matusita (JM) distance (Eq. 1) between 

regions RA and RB, calculated with mean vectors (MA; MB) 

and covariance matrices (CA; CB). Finally, a region RA will 

be grouped to a neighbor RB if the following conditions are 

satisfied: 

 

i) ||MA - MB|| < p_T, with p_T updated iteratively 

until T is reached; 

 

ii)JMA,B ≤  JMthreshold.  

 

After a set of empirical tests, the combination of parameters 

for the segmentation algorithm that produced the best results 

was: T=30; minimum size of a region = 30 pixels; 

JMthreshold=0.5 and ex= 15. 

 

2.2 Segmentation evaluation 

     To evaluate the segmentation results, ITCs of semi-

deciduous tree species were manually delineated in the 3 

test areas using a true color composite (R= 638 nm; G=548 

nm; B=460 nm) and a fixed scale of 1:2000. First, we 

computed the percentage of the area of the segments inside 

each reference ITC, say θ. Therewith, it was verified the 

degree of fragmentation inside the ITCs of the reference. 

However, it was noted that some segments reached a θ of 

100 %, which means that 100 % of their area was located 

inside a reference ITC. A visual inspection of those 

segments reveled that they were related to spurious isolated 

pixels, located mainly in the borders of the images. In order 

to overcome this problem, a second score, μ, was computed, 

which is referred as the percentage of reference ITC´s area 

occupied by a given region. The larger θ and μ, the better 

the segmentation is. Finally, we define:  

     φ = 
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒆𝒈𝒎𝒆𝒏𝒕𝒔 𝒘𝒊𝒕𝒉 𝜽 ≥𝟓𝟎% 𝒂𝒏𝒅 𝝁 ≥𝟕𝟓%

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑰𝑻𝑪𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆
                 (4) 

The score φ ranges from 0 to 1, being 1 a perfect 

segmentation (i.e. all of the reference ITCs were perfect 

outlined by the algorithm). Thus, we count the number of 

segments with more than 50% of their area inside a 

reference ITC and the segment´s area should overlap 75% or 

more of the reference ITC´s area.  

 

3. RESULTS AND CONCLUSION 

Results of the accuracy score φ for the test regions 1, 2 and 

3 reached 55%, 56% and 70%, respectively, indicating the 

percentage of ITCs well delineated by the algorithm. It is 

worth noting that the score φ is quite restrictive due to the 

numerator of Eq. 4. Fig. 3 shows the results for the test 

region 3. Segments that meet the criterion presented in Eq. 4 

are depicted in red color and coincide in size and shape with 

the manually delineated ITCs. 

     For semi-deciduous tree species, particularly in the dry 

season (when the hyperspectral images were acquired), leaf 

anthocyanin content tends to be higher due to the 

senescence process. This causes an increase in reflectance 

values at the red region, ascribing a reddish aspect to tree 

crowns (Figure 3a). For instance, as SRred/green is directly 

proportional to red reflectance, deciduous tree species stand 

out from other species (Figure 3b). The segmentation 

algorithm was functional to detect this pattern and 

successfully identified ITCs. This suggests that the method 

could be applied to data acquired from high spatial 

resolution spaceborne sensors, with broad bands centered at 

green and red regions. 

     Although further tests must be performed to prove the 

effectiveness of the segmentation algorithm, promising 

results were achieved. The spectral separability measure (i.e. 

JM distance) employed to merge segments proved to be a 

useful criterion on the ITC delineation process. This, 

together with the computation of VIs, is a simple way to 

explore the high dimensionality of hyperspectral data. 

Future work will focus on ITC delineation of evergreen tree 

species and at the applicability of the segmentation 

algorithm on object-oriented classification approaches to 

map canopy tree species in tropical forests. 
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