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The current paper presents a method for mapping summer annual agriculture (maize and 

soybean) by analyzing Land Surface Temperature (LST) time-series derived from the 

Moderate Resolution Imaging Spectroradiometer (MODIS). We used Terra and Aqua LST 

daytime and nighttime data (M_D11A2) with 8-day temporal and 1km spatial resolution. 

The physical basis behind the method is the heat transfer between soil, plant and 

atmosphere over time. There are two approaches, inter-daily and intra-daily LST variation. 

We tested daytime and day-night difference time-series, being the latter more efficient on 

detecting annual agriculture. Regarding the satellites, Aqua proves on being more efficient 

due the passage hour for daytime. In sense, the couple Difference/Aqua yielded better 

results. However, the performance is strongly dependent on the contiguity of agricultural 

areas due to the high thermal mixing susceptibility. Another drawback is the spatial 

resolution (1 km) which depending on the situation fails on detecting low acreage crops. 

Despite the limitations, the idea shows potential to be coupled to traditional vegetation 

indices based methods for furthering the biophysical meaning and relationships between 

vegetation and remote sensing. It also brings new findings about vegetation thermal 

behavior throughout the time.  
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1. Introduction 

Agriculture is one of the main sources of income in most of the developing countries and 

due to the increasing need for raw materials and food; this activity is always evolving in 

technology and more intensively in acreage. In Brazil, the agriculture chain represents 

about a quarter of the Gross Domestic Production (CEPEA, 2014) and albeit facing a 

decreasing in the rate of acreage expansion, it does still existing. For detecting and 

measuring these dynamics, Remote Sensing techniques have been proven on being fast and 



accurate way to deliver statistics about the acreage and crop conditions on time. 

 In this sense, several works deal with mapping annual crop areas using direct image 

interpretation, which is based on the interpreter knowledge about the crops and datasets 

(Rudorff et al., 2011). Another common technique is based upon vegetation indices (VI) 

and many works use one or combinations of many (Wardlow & Egbert, 2008). The VIs 

most commonly used for these purposes are the Normalized Difference Vegetation Index 

(NDVI) (Rouse, Haas, & Schell, 1974) and Enhanced Vegetation Index (EVI) (Huete et al., 

2002). These VIs and many other are based on the relationship between the red and near 

infra-red channels showing the contrast between the high radiation absorption by the 

chlorophyll in the red channel and high reflectivity by the leaf structure and its components 

on near infra-red channel (Tucker, 1979).  

  Both techniques are not straightforward by using medium or coarse resolution images 

due to the fast dynamic of the crop growing and the difficulty of crop detection in a single 

image. For overcoming these issues interpreters rely upon multitemporal images analysis. 

In this way it is possible to compare the growing of vegetation since the bare soil or straw 

aspect to the maximum leaf area index (LAI) and even to the senescence stage. 

 In the south of Brazil, the sowing of summer rainfed agriculture of soybean and maize 

usually takes place from October to December and the harvest occurs during the first three 

months of the next year. Farmers use to do double cropping even for rainfed agriculture by 

rotating usually from soybean to maize or wheat. Irrigated agriculture has a more flexible 

sowing season due to the lower dependency on the precipitation rates. This latter case can 

sometimes leads the interpreters to neglect an area of high biomass (high LAI, high VI) due 

to the epoch of occurrence as they were expecting to detect bare soil or straw cover.  



 Albeit the above mentioned techniques are well consolidated and have proven their 

effectiveness, in some situations they can fail or be highly time-consuming depending on 

the method and experience of the interpreter. In sense, these techniques rely only upon 

optical remote sensing channels. However, the thermal analysis approach for mapping 

purposes was not deeply investigated yet. A comprehensive work of land cover classes 

discrimination and change analysis was performed by Lambin & Ehrlich (1996), they 

coupled NDVI and LST data from the Advanced Very High Resolution Radiometer 

(AVHRR) and analyzed 10 years of data for the African continent showing that the use of 

LST improves the capacity to discriminate land cover classes as compared to NDVI applied 

solely. Nemani & Running (1997) compared the correlation between NDVI and LST 

derived data from AVHRR for different LCCs yielding good agreement. Nonetheless, the 

mentioned studies were developed always coupling traditional VIs to LST data. Indeed, the 

biophysical meaning of LST was not in depth explored being often overshadowed by VIs 

high efficiency. 

 The physical basis behind it explores the difference between the emissivity of the soil 

and the plant canopy. According to Tang & Li (2014), land surface emissivity is the 

effectiveness of a surface on emitting thermal radiation, and spectral emissivity is the ratio 

of energy radiated by a particular material to energy radiated by a black body at the same 

temperature. Another property of the material is the thermal inertia (TI) which is the 

resistance to temperature variations; it is defined in function of the material's specific heat 

capacity, thermal conductivity and bulk density. Water has a high TI which makes its 

temperature fluctuation slow when compared to other common surface materials. For this 

reason, water bodies can be heater than the neighbour land surface during the night. Crop 



canopies have higher TI than dry soil showing lower diurnal temperature variation due to 

the content of water in its leaf structure. Moreover, as observed by Murray & Verhoef 

(2007), the vegetation canopy significantly influences the soil heat flux by reducing the 

irradiance reaching the soil surface during the day and acting as an insulator barrier 

between soil and atmosphere during the nighttime. 

 The Land Surface Temperature products provided by sensors onboard satellites are 

mainly dependent on the object's albedo, emissivity, thermal inertia and exogenous factors 

such as wind and relief (Kuenzer & Dech, 2013). However, LST is highly inverted 

correlated to the target moisture coupled with its intrinsic properties, therefore, LST 

products have been used in applications for drought detection concerning or not to 

agriculture. Wan et al. (2004) used LST and NDVI combined for monitoring drought in the 

USA. Many other works have applied LST solely or combined with other VIs and even 

precipitation data for detecting and monitoring drought on a multitemporal approach 

(Ezzine, Bouziane, & Ouazar, 2014; Kogan, 1995; Rhee, Im, & Carbone, 2010).  

 The present work is based on the assumption that LST is suitable for mapping annual 

agriculture due to the different thermal properties of the targets throughout the season by 

relying on time-series analysis in a simplified manner. The main objective is to establish a 

conceptually and computationally straightforward method for discriminating annual 

agriculture from other LCCs by analyzing LST time-series data from the sensors MODIS 

onboard Terra and Aqua satellites. The specific objectives are: i) characterize the LST 

temporal behavior of the LCCs; ii) assessment of spatial agreement between LST derived 

classification and reference map. 

 



2. Materials and methods 

2.1. Study area 

The study focused on the Northwest, Central-North, Central-West and West mesoregions of 

Paraná state, which is located in the south of Brazil, however, the analysis were performed 

by municipality and then aggregated into microregions. The three latter regions comprise 

the traditional and most important grain production area of the state which occurs mostly on 

clay texture soils. During the last two decades the Northwest region has shown an 

expansion of sugarcane on areas of medium texture soils. Nonetheless, a few sugarcane 

expansion areas can be found on the Central-North area. Albeit being traditional grain 

areas, the region was chosen due to two factors: agricultural acreage expansion during the 

last fifteen years and diversity of farm sizes tending to difficult the mapping, so that being a 

good area to test the methodology proposed in this work.  

 

2.2. Base datasets 

The summer crops base map for the 2011/2012 was elaborated by the Insurance and Risk 

Studies Group (GESER/ESALQ-USP - www.esalq.usp.br/geser) using Landsat-TM and 

ETM+ images visual interpretation and classification of soybean and maize areas. In the 

present work, we are considering as summer crops maize and soybean whose areas were 

summed for composing the summer crop area for each year. Other crops coexist in the 

region; however, the acreage of them is too small as compared to maize and soybean. So, 

GESER/ESALQ-USP map is highly suitable for the current study, as it considers only 

soybean and maize areas.   

 A soil map at the scale of 1:50000 was elaborated by the Brazilian Agricultural 



Research Corporation (EMBRAPA) and is available at www.itcg.pr.gov.br. In the studied 

region there is a predominance of Latosols followed by Argisols. Soybean and maize are 

produced almost totally on clay soils (Argisols, Latosols, Neosols and Nitosols) and 

sugarcane on medium texture soils (Latosols and Argisols). The Figure 1 depicts the 

microregions and soil classes for the studied area. 

 

Figure 1 - Study area. 

 

2.3. MODIS LST datasets 

Wan & Li (1997) proposed an algorithm to retrieve land surface temperature for day and 

night passages of the so forthcoming sensor MODIS. Since then, the LST product has been 

refined being at the present moment in the version 5. According to Wan (2008), the LST 

products were heavily assessed through calibration and testing campaigns resulting in 



errors of about 1°C. For the current work, series of LST data from September to March 

from 2002 to 2012 were analyzed for both Terra (morning) and Aqua (afternoon) were 

used.  The MOD11A2 (Terra) and MYD11A2 (Aqua) are 8-day compositions of LST from 

the daytime and nighttime, and emissivity of bands 31 (10780 – 11280nm) and 32 (11770 – 

12270nm), all of them at 1km nominal spatial resolution. In this study we used LST day 

and nighttime data from both satellites.  

 All the images were firstly reprojected to geographic/WGS84 using the MODIS 

Reprojection Tool. Then, the files were organized for posterior processing by a Python 

script that was designed to compute the difference of LST between Day and Night for each 

8-day image (hereafter LST-Difference). The Python script is available in our repository at 

www.bitbucket.org/geopaitos/python-remotesensing. The rationale behind that is that 

greater temperature differences indicate dryer surfaces or lower LAI or both (Sandholt, 

Rasmussen, & Andersen, 2002). As we are concerned on developing a simple methodology 

for mapping crops using LST, the Day datasets (hereafter LST-Day) were also analyzed 

solely by focusing only on the variation between days rather than intra-day.  

 

2.4. Temporal profiles of LST-Day and LST-Difference for LCCs 

In this step, the seasonal profiles of LST-Day and LST-Difference for each LCC were 

analyzed, there are four cases: LST-Day and LST-Difference for Terra and Aqua. In order 

to minimize the latitudinal variation of irradiance, the samples were acquired at about the 

same latitude (-23°40' to -25°10').  

 The soil classes were summarized into clay and medium texture due to the intrinsic 

capacity of water retention which is a key factor for heat transferring between surfaces. 



Within the study region, not all the LCCs occurs on the two considered soil types, so that, 

only sugarcane, forest and annual agriculture were analyzed for both soil classes and 

pasture only for the medium texture soils. Moreover, the annual agriculture on medium 

texture soils is seldom verified, due to this the samples may carry great uncertainty derived 

from the intrinsic heterogeneity and small acreage. Additionally, a special care was taken 

on sampling Forests, based on the assumption of its LAI steadiness over a season, an 

ancillary image of EVI was used for selecting Forests whose EVI were similar among 

samples  despite of the soil class. For each of the four cases, the Pearson correlations 

between the seven LCCs' were calculated and the time-series plots visually analyzed. 

 

2.5. Using season statistics images for mapping and validation 

The dataset was grouped from the DOY 185-2011 to DOY 105-2012. Considering that the 

sowing period for the region ranges from September (maize) or October (soybean) to 

December and the harvest from January to March, a small extra period was included as pre-

sowing window for catching safely the bare soil or straw cover phase. 

 The metrics combination (LST-Day or LST-Difference) with satellite (Terra or Aqua) 

that yielded better results (session 3.1) were used for mapping and hence validation. The 

measure adopted for assessing the LST variation for both intra and inter-daily throughout 

the time-series is the variance. In this sense, a steady land cover class (e.g. Forest) is likely 

to show lower phenology variance than agriculture during a given season, due to this, 

variance can be a good measure to assess the phonological steadiness. For the studied 

season the variance was calculated in a pixel basis resulting in one variance (σ²) image for 

the season. The metrics combination (LST-Day or LST-Difference) with satellite (Terra or 



Aqua) that yielded better results (session 3.1) was classified to retrieve the Annual-clay 

acreage. The classification process was a simple density slice applied in the variance image 

and the thresholds to separate the Annual-clay class were adjusted manually.  

 The validation scheme was the simply comparison between the yielded and 

GESER/ESALQ-USP maps. The outputs for the analysis are a difference map and 

contingency tables. However, accuracy assessment of maps derived from coarse resolution 

images, as observed by (Xiao et al., 2005) is a daunting task due to the LCCs fragmentation 

and spectral-mixing in the pixel. The base map was elaborated over TM and ETM+ images 

whose spatial resolution is about 30m whereas the MODIS LST images used has 1000m 

resolution. 

 

3. Results and discussion 

3.1. LST-Day and LST-Difference temporal profiles for LCCs 

 The temporal profiles for all LCCs were plotted using splines for LST-Day and LST-

Diff from Terra and Aqua satellites (Figure 2). The use of splines was convenient for better 

visualizing these plots, either way, the correlation matrices and variances were calculated 

using the raw data.  



 

Figure 2 - LST-Day and LST-Difference time series for LCCs 

 Even though not all LCCs are representative over the considered soil types, Forest-clay 

and Forest-medium could be used efficiently to assess the soil texture influence on the LST 

behaviour throughout the season. As observed in the Figure 2, for all combinations the 



separation between Forest and the other targets were clear and effective, moreover, the 

Forest-clay class usually presented lower LST-Day and LST-Difference than Forest-

medium. This let us assume that clay textures lead to slower heat transferring between 

surfaces due to its higher water retention capacity than of the medium texture soils (Murray 

& Verhoef, 2007). As we are not concerned on assessing the LST data quality which has 

been already assured (Wan, 2008), it is unnecessary to rely on meteorological stations 

temperature data, hence, the Forest behaviour throughout the season serves as a 

comparative pattern for the other classes. Considering that assumption and analyzing the 

Figure 2, we observed a reasonable correlation among the other LCCs and Forests. The 

variances of all time-series are presented in the Table 1 and the pairwise Pearson 

correlation matrices for the four combinations are presented in the Table 2.  

Table 1 - LCCs time-series variances. 

 Terra – Day Terra – Difference Aqua – Day Aqua – Difference 

AM 14.604 8.224 12.646 10.153 

AC 26.415 19.715 32.234 33.226 

SC 15.953 10.323 12.634 14.404 

SM 14.869 7.654 12.316 10.861 

FC 10.739 4.622 8.041 6.509 

FM 11.188 5.147 8.619 3.771 

PM 17.584 7.587 12.259 5.381 

A = Annual, S = Sugarcane, F = Forest and P = Pasture. M = medium and C = clay. 

 

 As observed in the Table 1, the Annual-clay class shows the higher variance for all the 

four cases whereas Forest classes show the lowest variances as expected. The odd output is 

the class Annual-medium whose variance differs considerably from the Annual-clay. 

However, the Annual-medium class as previously mentioned is unlikely to exist in the 

study area; therefore, the samples are too small due to the limited acreage. Additionally, as 



annual agriculture is not traditional in the medium texture area, the sowing and harvest 

dates do not follow a strict pattern since they are higher dependent on the rain occurrence 

during the expected sowing season. For these reasons, the Annual-medium class analysis is 

inconclusive. Other important observation is in how the variance between classes differs in 

each of the four cases. The Aqua-Difference combination yielded the highest amplitudes 

between Annual-clay class and the other classes. This is a key factor for the proposed 

mapping method effectiveness which relies on variance or standard deviation of a time-

series to detach the Annual-clay from a group of classes. Although out of the scope of this 

work, the observations show that sugarcane variance was greater than for pasture, this is 

due to a possible occurrence of sugarcane harvest/planting event during the season, which 

does not occur for pastures. 

Table 2 - Pearson correlation between LCCs. 

 LST-Day (Terra)  LST-Difference (Terra) 

 AM AC SM SC FM FC PM  AM AC SM SC FM FC PM 

AM 1.000 0.774 0.887 0.946 0.885 0.954 0.945  1.000 0.743 0.897 0.840 0.875 0.637 0.851 

AC 0.774 1.000 0.786 0.693 0.573 0.687 0.650  0.743 1.000 0.624 0.734 0.578 0.400 0.518 

SM 0.887 0.786 1.000 0.948 0.783 0.894 0.880  0.897 0.624 1.000 0.938 0.877 0.636 0.891 

SC 0.946 0.693 0.948 1.000 0.871 0.953 0.963  0.840 0.734 0.938 1.000 0.799 0.568 0.773 

FM 0.885 0.573 0.783 0.871 1.000 0.951 0.928  0.875 0.578 0.877 0.799 1.000 0.847 0.903 

FC 0.954 0.687 0.894 0.953 0.951 1.000 0.972  0.637 0.400 0.636 0.568 0.847 1.000 0.716 

PM 0.945 0.650 0.880 0.963 0.928 0.972 1.000  0.851 0.518 0.891 0.773 0.903 0.716 1.000 

                

 LST-Day (Aqua)  LST-Difference (Aqua) 

 AM AC SM SC FM FC PM  AM AC SM SC FM FC PM 

AM 1.000 0.613 0.883 0.821 0.916 0.813 0.870  1.000 0.637 0.797 0.704 0.815 0.598 0.775 

AC 0.613 1.000 0.507 0.693 0.503 0.487 0.457  0.637 1.000 0.612 0.736 0.551 0.490 0.479 

SM 0.883 0.507 1.000 0.858 0.906 0.739 0.878  0.797 0.612 1.000 0.871 0.890 0.562 0.765 

SC 0.821 0.693 0.858 1.000 0.768 0.660 0.716  0.704 0.736 0.871 1.000 0.736 0.486 0.602 

FM 0.916 0.503 0.906 0.768 1.000 0.880 0.943  0.815 0.551 0.890 0.736 1.000 0.692 0.856 

FC 0.813 0.487 0.739 0.660 0.880 1.000 0.813  0.598 0.490 0.562 0.486 0.692 1.000 0.588 

PM 0.870 0.457 0.878 0.716 0.943 0.813 1.000  0.775 0.479 0.765 0.602 0.856 0.588 1.000 

A = Annual, S = Sugarcane, F = Forest and P = Pasture. M = medium texture and C = clay texture. 

 



 When analyzing the Table 2, it is clear the lower correlation between Annual-clay and 

all the other classes, even Annual-medium whose samples fails on representativeness. 

Amongst the four cases, the pair Aqua-Difference yielded overall lower correlations 

between classes and as observed in the Table 1, highest variance for Annual-clay.  

 Some factors explain such behaviour differences between the four combinations. The 

use of nighttime data presents an information gain about the land surface. As reported by 

Wang et al. (2006), difference between day and night temperatures can be closely related to 

the surface moisture. In our case, the surface moisture comprises both soil and plant. Since 

health vegetation together with its LAI is also correlated with moisture, the LST-Difference 

can also be related to the canopy and soil moisture together. For these reasons, LST-

Difference yielded better results than LST-Day.  

 Regarding the difference in the performance between Terra and Aqua datasets, there are 

some reasons for that. The Terra satellite acquire images from the land about 10:30 and 

22:30 whereas Aqua at 13:30 and 1:30. This means that at the moment of the Aqua passage 

during the day the land received 3 more hours of irradiance than when Terra passes. 

Moreover, these 3 hours are indeed the most intensive which means closer to solar nadir. 

This can be observed when comparing the LST-Day plots of Terra and Aqua (Figure 1) 

where the latter usually presents higher values.  

 

3.2. Mapping performance and validation 

To validate the proposed method, we compared the maps provided by GESER/ESALQ-

USP to the one produced from the variance image. However, several factors tend to ruin 

such analysis. As previous mentioned, the difference between spatial resolutions (30m to 



1000m) leads to serious incoherencies, as is not expected that a coarse resolution sensor 

detects as agriculture pixels which annual agriculture percentage acreage is small as 

compared to the pixel size. Another hurdle for the method performance is the inability on 

detecting small Riparian forests whose width usually ranges from 30 to 500 m in the study 

region. These forests exert strong influence on the thermal response of the surrounding 

areas tending to decrease the method effectiveness. 

 The percentage of agreement between base and produced map is not straightforward 

comparable. There are some municipalities where soybean/maize is almost inexistent, then, 

a simple commission error leads to great percentage error. Due to this reason, we adopted a 

particular approach to analyze the results, rather than only tables, we preferred to present 

choropleth and difference maps. The percentage analysis can be a misleading approach, 

nevertheless, it allows us to draw conclusions regarding to the regions where there are 

anomalous occurrences. The Figure 3 depicts the percentage error of the agreement 

between the base and yielded maps by municipality. 

The Figure 3 analysis shows clearly that both the commission (lower than 100%) and 

omission errors (higher than 100%) occur in areas of low agriculture acreage and 

municipality area ratio. With regards to agreement, the map derived from LST fails where 

no or few annual agriculture areas exist. This is caused due to the inaptitude of the MODIS-

LST product in detecting small agriculture areas; moreover, the surrounding targets exerts 

heavy influence on the central pixel by contaminating it, even more than in optical products 

(Deng & Wu, 2013), it is a property of the heat which is always changing towards the 

equilibrium. In short, sudden transitions between adjacent targets are unlikely to occur in 

thermal products. 



 

Figure 3- Agreement percentage between GESER/ESALQ-USP and the LST derived maps. 

The map also shows the annual agriculture areas detected visually, by LST method and by 

both. 

  We assessed the spatial agreement between methods by municipality. In order to 

avoid uncertainty related to area calculation, all layers were reprojected into Albers Equal 

Area Conic with standard parameters for Brazil as established by the Brazilian Institute of 

Geography and Statistics (IBGE). For the sake of brevity, the data were aggregated into 

microregions as shown in the Table 3. 

From the Table 3 analysis, it is clear that the microregions whose texture soil is medium 

(Paranavaí, Umuarama, Cianorte and Ivaiporã) presented lower agreement between maps. 

This is due to the low annual agriculture acreage, so, simple commission or omission errors 



lead to low agreement. Regions where there is abundance of annual agriculture occurrence 

(Floraí, Maringá, Porecatú and Apucarana) yielded better results. From the Figure 3 and 

Table 3 coupled analysis, we can conclude that the LST derived method performance is 

highly dependent on the adjacency of the crop areas. In short, the more aggregated the 

areas, the less susceptible to contamination, the more efficient is the LST derived method. 

Table 3 – Spatial agreement between GESER and LST by microregion. 

Microregion 
None GESER LST Both   GESER LST 

hectares  % % 

Foz do Iguaçu 363872 48252 61336 62826  56.6 50.6 

Cascavel 578268 95176 73382 105304  52.5 58.9 

Toledo 359825 140844 137312 237384  62.8 63.4 

Ivaiporã 459081 78586 31551 46159  37.0 59.4 

Faxinal 145397 30282 23480 27403  47.5 53.9 

Londrina 152361 46744 56014 90499  65.9 61.8 

Apucarana 124736 22412 39811 40589  64.4 50.5 

Maringá 62749 10197 41834 42598  80.7 50.5 

Floraí 14386 7030 28679 79871  91.9 73.6 

Porecatú 101977 16777 55768 62560  78.9 52.9 

Astorga 358610 37523 64632 50323  57.3 43.8 

Campo Mourão 326306 100416 96343 184051  64.7 65.6 

Goioerê 209136 53210 56753 167508  75.9 74.7 

Cianorte 350429 26728 15336 14972  35.9 49.4 

Umuarama 922753 45814 24541 29874  39.5 54.9 

Paranavaí 944538 38202 27685 5273   12.1 16.0 

Note: The table represents the spatial agreement between classes in a dual way, as considering one source or 

the other as basis. GESER(%) represents the agreement between maps using GESER as basis and so on. Both 

= GESER + LST; GESER(%) = Both / GESER; LST(%) = Both / LST. 

 

  

4. Conclusions 

We proposed a method for mapping annual agriculture using only time-series analysis of 

MODIS-LST data. Further, to yield a representative image we relied on the calculation of 

the time-series variance which is effective in representing the time-series unsteadiness. This 

thermal approach were not yet in depth explored, thus, the present work brings new 



findings about temperature and vegetation relationships over time. The proposed method 

does not proves itself on being more efficient on mapping agriculture than traditional VIs 

methods, however, on achieving good results, it proves that the thermal data can effectively 

translate biophysical attributes of vegetation using a different physical basis. The analysis 

showed that Forests has lower seasonal temperature variation than annual agriculture, 

pasture and sugarcane stay in the middle of this variance scale. So, for future works, Forests 

can be used as a proxy for assessing the climate variation over an area since it shows lower 

variance than the other targets, this helps to dissociate the thermal variability into climatic 

and phenological components. 

 The analysis let us conclude that the difference between daytime and nighttime 

temperatures is more suitable than daytime solely on dissociating land cover classes. 

Moreover, MODIS-Aqua data were more responsive to intra-daily temperature variation 

than MODIS-Terra due to the time of satellites passage over the area. Day temperature is 

usually higher at 13:30 than 10:30 due to the accumulated irradiance, for that reason Aqua 

showed better results. 

 As main drawback, the method performance is strongly influenced by neighbor 

contamination on a central pixel, so, the boundaries between classes are not so clear when 

compared to optical remote sensing. This is due to the low spatial resolution of the sensor 

and the fact that heat is physically always flowing towards equilibrium. 

 Indeed, despite the shortcomings, the proposed method uses non-traditional datasets for 

mapping achieving good results depending on the target. Moreover, this approach can be 

combined to the more traditional yielding better results and furthering the biophysical 

relations between vegetation and the electromagnetic spectrum. 
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