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Abstract: Data assimilation is the process by which measurements and model predictions are combined to obtain an accurate 
representation of the state of the modeled system. We implemented a data assimilation scheme called LETKF (local ensemble 
transform Kalman filter) with FSUGSM (Florida State University Global Spectral Model) and made an experiment to evaluate the 
initial condition generated to numerical weather prediction to FSUGSM model. The LETKF analysis carries out independently at each 
grid point with the use of “local” observations. An ensemble of estimates in state space represents uncertainty. The FSUGSM is a 
multilevel (27 vertical levels) spectral primitive equation model, where the variables are expanded horizontally in a truncated series of 
spherical harmonic functions (at resolution T63) and a transform technique is applied to calculate the physical processes in real space. 
The assimilation cycle runs on the period 01/01/2001 to 31/01/2001 at (00, 06, 12 and 18 GMT) for each day. We examined the 
atmospheric fields during the period and the OMF (observation-minus-forecast) and the OMA (observation-minus-analysis) statistics 
to verify the analysis quality comparing with forecasts and observations. The analyses present stability and show suitable to initiate 
the weather predictions. 
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1. Introduction 

Predictions from computer models of the 

atmosphere integrating the Navier-Stokes equations 

for a three dimensional multi-constituent multi-phase 

rotation fluid, and coupled to representation of the 

ocean and land surface, are continually put to the test 

through the daily weather forecast [1]. However, the 

predictability is determined by the projection of 

uncertainties in both initial conditions and model 

formulation onto flow-dependent instabilities of the 

chaotic weather and climate attractor [2]. Uncertainty 

is a characteristic of the atmosphere, coupled with 

inevitable inadequacies in observations and computer 

models and increases errors in weather forecasts, 
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seasonal climate and hydrological predictions. 

Model forecasts have the limited predictability of 

the behavior of the atmosphere. It is because the 

atmosphere is an inherently chaotic fluid. The 

accuracy of weather forecast are influenced by the 

ability to represent computationally the full equation 

of that governs the climate, in addition to error in 

initial conditions. The NWP (numerical weather 

prediction) model is sensitive to the initial error in 

function of the initial state [3]. The initial condition is 

represented by an objective analysis of an atmospheric 

state. Some techniques are used to determine initial 

conditions for weather forecasts given a set of 

atmospheric and oceanic observations whose density 

is heterogeneous in both space and time. The analysis 

is useful in itself as a description of the physical 

system, and it can be used as an initial state for the 

D 
DAVID  PUBLISHING 



A Local Ensemble Transform Kalman Filter Data Assimilation System 
 for the Global FSU Atmospheric Model 

  

186

further time evolution of the system [4]. 

Ensemble forecasting is a form of multiple NWP 

that the models are conducted using slight different 

initial conditions. Ensembles are used to capture 

forecasting uncertainties. The multiple simulations 

have multiple forecasts, which are often referred to as 

sensitive dependence on the initial conditions. 

Ensemble prediction systems provide the means to 

estimate the flow-dependent growth of uncertainty 

during a forecast. 

Data assimilation is the process by which 

measurements and model predictions are combined to 

obtain an accurate representation of the state of the 

modeled system. A data assimilation scheme is 

recognized as essential in weather, climate analysis, 

and forecast activities. All data assimilation schemes 

require reasonable estimates of the initial condition to 

run AGCMs (atmospheric general circulation models) 

considering the errors of the model, the observations 

and the analysis. The KF (Kalman filter) [5] is one 

approach to estimate an appropriate analysis to 

atmospheric models. In this work, a data assimilation 

scheme, the LETKF (local ensemble transform 

Kalman filter) was implemented, where the 

uncertainty is represented not by a covariance matrix, 

but by an ensemble of estimates in state space. The 

ensemble is evolved in time through the full model, 

which eliminates any need for a linear hypothesis as to 

the temporal evolution.  

The EnKF (ensemble Kalman filter) [6] and the 

particle filter [7] use a probability density function 

associated with the initial condition, characterizing the 

Bayesian approaches [8]. Doucet [9] proposed the 

local ensemble Kalman filter (LEKF) where the EnKF 

is restricted to small areas (local); followed by LETKF 

(local ensemble transform Kalman filter; [11]) which 

is a kind of EnSRF (serial ensemble square root filter; 

[10]), but the algorithm is designed to be particularly 

efficient in parallel computer architecture by taking an 

advantage of independent local analyses. 

This paper presents the first results of evaluation os 

analysis from LETKF scheme implemented with the 

AGCM of FSU (Florida State University). This data 

assimilation scheme is part of the analysis research at 

Center for Atmospheric-Ocean Prediction Studies of 

FSU, USA and the data assimilation with artificial 

neural networks at Laboratory of Computational and 

Applied Mathematics in INPE, Brazil. This 

experiment was conducted with synthetic observations, 

simulating measurements from surface and upper-air, 

and provides the basis of future research on FSUGSM 

data assimilation.  

The paper is organized as follows: Section 2 has a 

brief description of the LETKF data assimilation 

scheme related to software implemented; Section 3 

describes briefly the global atmospheric model 

FSUGSM used; Section 4 presents the methodology 

of experiment, the observations and the results; finally, 

Section 5 provides the discussion and summary. 

2. Local Ensemble Transform KF 

DA (data assimilation) is the process of finding the 

model representation of the atmosphere, which is 

consistent with the observations. According Talagrand 

[19], the purpose of assimilation is reconstructed as 

accurately as possible of the atmospheric or oceanic 

flow, using all available appropriate information. The 

DA essentially consists of: 

 Observation proper, which vary in nature, 

resolution and accuracy, and are distributed more or 

less regularly in space and time; 

 Physical laws governing the evolution of the flow, 

available in practice in form of discretized, and 

necessarily approximate, numerical model. 

A summarized history of the main data assimilation 

algorithms used in meteorology and oceanography, 

roughly classified according to their complexity (and 

cost) of implementation, and their applicability to 

real-time problems. The computational complexity 

involved in DA systems, has been presented in the 

literature [20]. An important problem in atmospheric 

data assimilation lies in the large number of degrees of 
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freedom of NWP models. Very large numerical 

dimensions: 107-109 parameters to be estimated, 2.107 

observations per 24 h period. The large number of 

degrees of freedom of covariance matrices involved 

can prohibit the implementation of the best 

assimilation method known that needs for the forecast 

to be ready in time. Many strategies can be adopted to 

fit the intensive computation with the operation period: 

the use of advanced computing, reduction of problem 

dimension to obtain a computer code feasible to run in 

real time; even with the use of parallel computing with 

thousands of processors. The algorithms are constantly 

updated and improved in its performance.  

One common approach at present is EnKF where 

the uncertainty is represented, not by an error covariance 

matrix, but by an ensemble of point estimates in state 

space, which are meant to sample the conditional 

probability distribution for the state of the system. 

Ensemble is evolved in time through the full model, 

which eliminates any need for linear hypothesis as to 

the temporal evolution. The ensemble forecasts are 

used for evaluate the probability distribution. Based in 

ensemble forecasting, the probabilistic state space 

formulation and the requirement for updating 

information when observations are encountered, the 

Bayesian approach is used to get the “errors of the 

day” on the predictions. The Bayesian approach is a 

set of efficient and flexible Monte Carlo methods for 

solving the optimal filtering problem. 

The KF, a sequential assimilation scheme, it is the 

best linear unbiased estimate of analysis, where the 

equations are obtained from an analytical solution 

from setting the gradient of the cost function to zero, 

considering recursive least square and the assumption 

of the Gaussian probability density functions (pdf). A 

brief description for KF algorithm could express 

below: 

Analysis step: update the analysis covariance matrix 

xn
a  xn

f WK xn1
obs Hn1 xn1

f 



     (1) 

Wn1
 Pn1

f H n1
T H n1

Pn1
f H n1

T  Rn1 1 (2) 

Pn
a  Pn

f WK HnPn
f

        

(3) 

Forecast step: 

xn1
f  Mn xn

a            (4) 

Pn1
f  MnPn

aMn
T Wn

b
        (5) 

The analysis xn
a  in Eq. (1) updates the analysis 

covariance matrix for Pn
a  in Eq. (3) at analysis step, 

by solving for Kn in Eq. (2), and we get the optimal 

weight (e.g. Kalman gain). The matrices  and H 

represent the dynamical system and observation 

operator, respectively. The covariance matrix R 

identifies the observation error. The covariance matrix 

Pn1
f  in Eq. (5) is associated to forecast model xn1

f
 

is updated in Eq. (4) at forecast step and Wn
b  is the 

modelling error. 

On EnKF approach, an ensemble of estimates on 

state space represents the covariance matrix Pn1
f  in 

Eq. (5). The nonlinear evolution problem for the error 

covariance is calculated by sampling from the 

probability density function and propagating samples, 

the model states, forward in time with the fully 

nonlinear model equations. At any time, the samples 

can be used to calculate an approximate mean and error 

covariance. The best implementation is in localization, 

in which applying a cut-off radius of influence for each 

observation eliminates spurious correlations. This is 

the LEnKF (local ensemble Kalman filter) algorithm 

that captures the space of forecast uncertainties, 

formulated by ensemble-based Kalman filter scheme. 

The LETKF algorithm is an EnKF-based scheme, in 

which the analysis ensemble members are constructed 

by a linear combination of the forecast ensemble 

member [21]. The ensemble transform matrix, 

composed of the weights of the linear combination, is 

computed for each local subset of the state vector 

independently. The local subset depends on the error 

covariance localization [15] with limited ensemble size 

[22]. By “local”, we mean that the analysis can be 

carried out independently at each grid point with the 

use of only local observations. The ensemble 
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transform matrix, composed of the weights of the linear 

combination, is computed for each local subset of the 

state vector independently, which allows parallel 

computations. The experiment LETKF-FSUGSM, a 

local subset of the state vector contains all variables at 

the region centered at given grid point.  
Each member of the ensemble gets its forecast: 

x
n1
f 

(i )

: i 1,2,3,...,k , where k  is the total member at 

time tn , to estimate the state vector x f
 of the 

reference model. The ensemble is used to calculate the 

forecasting by the average:  

x f  k 1 {x f }(i )

i 1

k           (6) 

and the model error matrix is given by: 

P f  (k 1)1 ({x f }(i )  x f )
i 1

k

 ({x f }(i )  x f )T

 
(7) 

The LETKF determines an analysis 

x
n1
a 

(i )
: i 1,2,3,...,k  to each member of ensemble 

and an appropriate sample mean state estimate  in 

Eq. (8) and covariance by Eq. (9). 

x a  k 1 {x a }(i )

i 1

k             (8) 

P a  (k 1)1 ({x a }(i )  x a )
i 1

k

 ({x a }(i )  x a )T
(9) 

Data assimilation problems are often limited by the 

high dimensionality of states created by special 

discretization over large high-resolution grids and the 

extensive spatial structure of observations. LETKF are 

suitable for such problems, promising computational 

efficiency and accuracy in localization method. 

The code of the LETKF in this experiment is based 

on the system initially developed by Miyoshi [21] and 

has been continuously improve. The current version is 

a MPI (message passing interface)-parallelized 

Fortran90 code and includes spatial covariance 

localization with physical distance [15] 

four-dimensional EnKF (4D-EnKF) for appropriate 

treatment of asynchronous observations [11] and 

temporal covariance localization. The LETKF code has 

been applied to and assessed with the Lorenz 

40-dimensional model [23] a low-dimensional AGCM 

known as the SPEEDY model [15, 16, 24], realistic 

atmospheric models such as the AGCM for the Earth 

Simulator (Miyoshi and Yamane, 2007) and the Japan 

Meteorological Agency operational global and 

mesoscale models [13, 15, 25], a global ocean model 

know as the GFDL (Geophysical Fluid Dynamics 

Laboratory) Mars AGCM [26, 27] and Center for 

Weather Forecast and Climate Studies (CPTEC) 

AGCM [28]. All applications showed successful data 

assimilation using the LETKF code. The core part of 

the LETKF code is shared and improvements from 

applications can benefit other applications directly. 

This research with FSUGSM is an important 

application to use LETKF system; this model has some 

different characteristics to improve the LETKF system 

after this evaluation. 

3. Florida State University Global Spectral 
Model 

The FSUGSM is a general circulation model, it is a 

global spectral model based on primitive equations. 

The vertical coordinates are defined on sigma surfaces. 

The horizontal coordinates are latitude and longitude 

on a Gaussian grid in real space. The spectral model, 

used in this study, runs with T63 horizontal resolution 

(approximately 1.875°) and 27 unevenly spaced 

vertical levels in σ-coordinate. Details of this model 

can be found in Cocke and LaRow [29] and 

Krishnamurti [30]. 

The dynamical processes are the six primitive 

equations to forecast atmospheric motions: vorticity, 

divergence, thermodynamic, continuity, hydrostatic 

and moisture, which are expanded in their spectral 

form. The nonlinear terms are calculated on a Gaussian 

grid using a transform method. The vertical 

discretization of the FSUGSM, uses finite difference 

schemes and semi-implicit leapfrog scheme for time 

integration. The full physical packages include 
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orography, planetary boundary layer, dry adjustment, 

large-scale precipitation, moist-convection, horizontal 

diffusion, and radiation processes. The horizontal 

diffusion term is usually incorporated in a numerical 

weather prediction model to parameterize the effects of 

motions on the unresolved scales and to inhibit spectral 

blocking, that is, the growth of small scales in the 

dynamic model variables due to the accumulation of 

energy at high wavenumbers. The presence of any 

dissipation, physical or computational, can attenuate 

the amplitude of the short wavelengths very 

significantly, cited by Zhuin and Navon [31].  

According to Cocke [29], the global model has been 

developed to take advantage of scalable parallel 

architectures. The grid calculations are done use a 

domain decomposition approach. In this experiment, 

we use a small number of processor, and then the 

domain decomposition is simply a one-dimensional 

partitioning of latitude bands. Each latitude band 

maybe arbitrarily assigned to any processor to achieve 

optimal load balance. The vertical calculations for any 

given domain are done on the same processor. 

4. Experimental LETKF-FSUGSM 

Data assimilation is the process where observations 

are embedded into models, and to adjust them in real 

time as new data becomes available. The result of DA 

process is a consistent model with the observed data 

and itself forecasting, which is initial condition to next 

model prediction period, this run is called DA cycle. 

The LETKF-FSUGSM is tested with synthetic 

observations simulating surface and upper-air 

observations seeking the model grid point localization. 

LETKF analyses the prognostic variables: zonal 

component wind (u), meridional component wind (v), 

temperature (T), humidity (q), and surface pressure (ps), 

on period starting in 01/01/2001 until 31/01/2000. 

Observations are taken and analyzed every six hours 

(00, 06, 12, 18 UTC). The control or “nature run” 

model fields, to this assimilation experiment, are 

obtained from the integration of models without 

analysis, e.g., the initial condition for the next run is its 

previous model forecast. The first analysis, to run the 

control models, is taken from the National Centers for 

Environmental Prediction (NCEP). FSUGSM run with 

NCEP analysis from 31/12/2000-18UTC and the 6 

hours forecast (01/01/2001-00 UTC) is the initial 

condition to run the control model to entire period of 

experiment. 

4.1 Observations 

The data assimilation experiments in this study are 

based on observational synthetic simulation 

experiments, where a control model fields assumed to 

be known, and observations are simulate by adding 

Gaussian random noise to that control or “nature run” 

model; this noise is according to observational errors.  

The observational grid is a regularly distributed 

dense network; it has (45 × 96 × 27) grid points for 

latitude, longitude, and vertical directions, respectively 

for four upper-air variables (u, v, T and q) and (45 × 96) 

for surface variable (ps). This grid localization is one 

point at each two FSUGSM model grid of 

latitude/longitude with (96 × 192, 27). We exclude the 

extremes points of latitude, simulating no observations 

in poles. Large errors exist in polar region where no 

observations are available. Fig. 1 shows the 

observation grid to one level. Fig. 1 shows on example 

of the temperature observation grid to one level that is 

about 4,320 observations. 

Firstly, we perform the model FSUGSM to collect 

the control or “nature run” fields and then we perform 

the observational routine to collect the synthetic 

observations based on model fields. Next step is to 

perform the analysis-forecast cycles. We run 236 

analysis-forecast cycles. The first forecast to initiate 

the analysis cycle is the control field model from 

01/01/2001 at 00 UTC (the result of the model 

performed with NCEP analysis for 

31/12/2000-18UTC).  

LETKF system is running with 20 members, the first 

6 h forecast is the same for the members. The LETKF 
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Fig. 1  The dot points shows the Temperature observation grid to 02/01/2001 at 00 UTC (each dot point is a localization 
observation). 
 

program runs parallel with four processors. After 

LETKF perform, we obtain the error covariance matrix, 

the analysis for each member, the first-guess mean of 

the members and the analysis mean of the members. 

The LETKF program runs parallel with four processors. 

Then, we perform the FSUGSM model for each 

member, we run a single model simultaneously, 

submitting a job to one processor to each member at 

same time; each job has itself work area with itself 

analysis and its 6-hours forecast, these forecasts are the 

first-guess to the next assimilation cycle. Next 

assimilation cycle begins for the next time (6 h) as soon 

as the first-guess members and observations are ready. 

These tasks continue until 28/02/2001 at 18 UTC. 

According to Laroz [32], the OMF (observation 

minus forecast) increment gives a raw estimation of 

agreement of the forecast information (i.e., the first 

guess) with the observation information prior to 

assimilation. Usually, a small OMF increment 

indicates a high quality forecast, and OMF increments 

are used as a primary measure of the quality of the 

assimilation. The OMA (observation minus analysis) 

increment represents the changes to the model forecast 

that are derived from the analysis algorithm. If the 

assimilation system weighs the observations heavily 

relative to the forecast, then the OMA increments will 

have significant differences relative to the OMF 

increments. If the model information is weighed more 

heavily than the observational information then there 

will be little change represented by the OMF 

increments. 

The computer used to this experiment is the HPC 

(high performance computing) Cluster that provides 

403 computer nodes and 6,464 CPU cores. Jobs are 

managed by scheduling software (e.g., batch 

processing). All programs are developed in Fortran90 

codes and bash scripts are developed to implement the 

operation of data assimilation cycle. Although, the 

parallelization employed, the focus of this LETKF 

implementation is the evaluation of the analysis to 

FSUGSM, and then time results will not be 

commented. 

4.2 Results 

In this section we show the results of the 

LETKF-FSUGSM analysis-forecast cycles experiment. 

We compare the behavior of the model with analysis 

comparing with its first-guess, observations and 
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control model fields.  

Figs. 2 and 3 show that the model fields of LETKF 

analysis, first-guess (6 h forecast), control model and 

the differences between analysis and control model. 

Fig. 2 presents temperature in Celsius degree (C) on 

second vertical level (bottom to top), generated from 

assimilation cycle 08/01/2001-00UTC. Fig. 3 presents 

surface pressure in hector-Pascal (hPa) generated from 

assimilation cycle 13/01/2001-18UTC. 

We noted that the analysis field is similar to  

forecast field, and the differences from control model 

are only some points over Australia and Asia 

(temperature), these differences for surface pressure 

are around 5 hPa to -5 hPa, and in temperature are 

about 4 °C or -6 °C. 

These results show the effectiveness of data 

assimilation, the combination of forecast and some 

points of observation based on control model. The 

analysis follows the forecast bias.  

Fig. 4 shows truncated fields over United States of 

America and Fig. 5 shows truncated fields over Brazil, 

these truncated fields are from LETKF analysis, 

control field (base of observations), and differences 

between those. Fig. 4 shows surface pressure generated 

in 15/01/2001 at 12UTC assimilation cycle.  

Fig. 5 shows temperature at level 3 in 03/01/2001 at 

06 UTC. The differences present between analysis field 

and control field of FSUGSM are small. Figs. 6 and 7 

present the zonal global means from three fixed points 

at latitude: 30o Norte (30 N), EQ (equator) and 30o S 

(30 S) during the 124 assimilations cycles of January, 

2001, the means are from control model, 6 h forecast 

and LETKF analysis. 

Fig. 6 shows surface pressure: means between 960 

and 976 hPa to 30 N; mean between 992 and 1,008 

hPa to equator; means between 1,007 and 1,016 to 30 

S. Fig. 7 shows surface temperature: means between 

10 and 16 °C to 30 N; means between 27 and 29 °C to 

Equator; means between 22 and 24 °C to 30 S, 

considering the summer season to south hemisphere 

and winter season to north hemisphere, the results are 

coherent and the forecast and analysis are stable. 
 

 
Fig. 2  Comparison of FSUGSM fields of temperature (°C) on sigma level 0.976 at 08/Jan/2001-00UTC, where (a) Letkf 
analysis field; (b) the forecast field; (c) control model field and (d) the differences field between analysis and control model.  
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Fig. 3  Comparison of FSUGSM fields of surface pressure (hPa) at 13/Jan/2001-18UTC, where (a) Letkf analysis field; (b) the 
forecast field; (c) control model field and (d) the differences field between analysis and control model.  
 

 
Fig. 4  Comparison of FSUGSM fields of surface pressure (hPa) at 13/Jan/2001-18UTC, over USA region, where (a) Letkf 
analysis field; (b) control model field and (c) the differences field between analysis and control model. 
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Fig. 5  Comparison of FSUGSM fields of temperature (°C) on 0.953 sigma level, at 13/Jan/2001-18UTC, over Brazil region, 
where (a) Letkf analysis field; (b) control model field and (c) the differences field between analysis and control model. 
 

Fig. 8 presents the monthly average of humidity 

differences between control model and LETKF 

analysis during January 2001. The result shows that the 

analysis is consistent with control model, the major 

differences are between 0.05 and 0.2 Kg/Kg. 

Since observations are constructed from the 

control model, OMF and OMA are expected to match 

each other. Furthermore, good performance means that 

the RMSE (root mean square error) in O-A is smaller 

than RMSE in O-F. The quality of the analysis is 

evaluated in terms of bias (observation minus analysis), 

and RMS (root mean square) of the bias, then these 

increments are shown at Fig. 9 and its RMSE at     

Fig. 10 where the OMA in red line is smaller than OMF 

in blue marks, and confirm that LETKF-FSUGSM 

works well.  

5. Summaries and Discussions 

We summarized the experiment of LETKF data 

assimilation on FSUGSM as follow:  

(1) The LETKF data assimilation cycle experiment 

using a dense synthetic observational network, which 

are not in all points of model grid and the observation is 

located on the model point, the all observations are 

available to each 6 h and shows good performance. No 

observations are available in polar region;  

(2) The ensemble size is chosen to be 20 members. A 

smaller ensemble size requires a smaller length scale 

and the data assimilation is more stable; 

(3) The FSUGSM is an operational model to weather 

prediction with resolution T63L27 and also efficient 

computationally; 

(4) The LETKF data assimilation perform analysis 

at each grid point simultaneously using the state 

variables and all observations in the region centered at 

given grid point, considering the dynamical nature, in 

which case a local subset contains only a part of the 

variables at a grid point. The ensemble is used to 

calculate the average of forecasting which is used to 

get the model error covariance matrix. 



A Local Ensemble Transform Kalman Filter Data Assimilation System 
 for the Global FSU Atmospheric Model 

  

194

 
Fig. 6  Zonal global mean of surface pressure (hPa) of 
FSUGSM trajectory during January, 2001 at fixed latitude 
point: 30° Norte (30 S); EQ; 30° Sul (30 S). The blue lines 
are 6 h forecast means, the red lines are LETKF analysis 
and green lines are control model. 
 

 
Fig. 7  Zonal global mean of surface temperature (°C) of 
FSUGSM trajectory during January, 2001 at fixed latitude 
point: 30° North (30 N); EQ; 30° South (30 S). The blue lines 
are 6 h forecast means, the red lines are LETKF analysis 
and green lines are control model. 

 
Fig. 8  Differences of zonal global mean of humidity (Kg/Kg) 
field of FSUGSM control model and LETKF-FSUGSM 
analysis during January 2001. 
 

 
Fig. 9  OMF  increment in blue marks comparing with 
OMA in red line to January 2001. 

The results present by LETKF-FSUGSM data 

assimilation show stability to obtain analysis to 

initiate the FSU model and the analyses are suitable to 

get weather predictions.  

The investigations continue, to get more results 

performing for a long period to evaluate errors and 

forecasts. Furthermore, we are implementing another 

330 °C-370 °C 
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Fig. 10  Root Mean Square errors of OMF in blue marks 
and OMA in red line to January 2001. 
 

strategy that use NCEP reanalysis to generate 

synthetic observations. 

Acknowledgments 

The authors thank Dr. Takemasa Miyoshi for 

providing computer routines of the LETKF code and 

Dr. Haroldo de Campos Velho for fruitful discussions. 

This paper is a contribution of the Brazilian National 

Institute of Science and Technology (INCT) for 

Climate Change funded by CNPq Grant Number 

573797/2008-0 e FAPESP Grant Number 

2008/57719-9. 

References 

[1] Bengtsson, L. 1999. “From Short Range Barotropic 
Modeling to Extended Range Global Weather Prediction: 
A 40-year Perspective.” Tellus (A-B) 51 (1): 13-32.  

[2] Palmer, T. N. 1999. “A Nonlinear Dynamical Perspective 
on Climate Prediction.” J. Climate 12: 575-91.  

[3] Lorenz, E. N. 1963. “Deterministic Nonperiodic Flow.” J. 
Atmos. Sci. 20 : 130-41. 

[4] Hólm, E. V. 2008. Lectures Notes on Assimilation 

Algorithms. Technical report, European Centre for 

Medium-Rnage Weather Forecasts Reading, UK. 

[5] Kalman, E. R. 1960. “A New Approach to Linear 
Filtering and Prediction Problems.” Journal of Basic 
Engineering 82: 35-45. 

[6] Evensen, G. 1994. “Sequential Data Assimilation with a 

Nonlinear Quasi-Geostrophic Model Using Monte Carlo 

Methods to Forecast Error Statistics.” Journal of 

Geophysics Research 99 (10): 143-162. 

[7] Doucet, A., Godsill, S., and Andrieu, C. 2000. “On 
Sequential Monte Carlo Sampling Methods for  
Bayesian Filtering.” Statistics and Computing 10 (3): 
197-208. 

[8] Daley, R. 19991. Atmospherics Data Analysis. New York: 

Cambridge University Press. 

[9] Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, 

E. J., Corazza, M., Kalnay, E., Patil, D. J., and Yorke, J. 

A. 2004. “A Local Ensemble Kalman Filter for 

Atmospheric Data Assimilation.” Tellus A 56 (5): 415-28. 

[10] Whitaker, J. S., and Hamill, T. M. 2000. “Ensemble Data 

Assimilation without Perturbed Observations.” Mon. Wea. 

Rev. 130: 1913-24. 

[11] Hunt, B. R., Kostelichi, E. J., and Szunyogh, I. 2007. 

“Efficient Data Assimilation for Spatiotemporal Chaos: A 

Local Ensemble Transform Kalman Filter.” Physica D 

230: 112-26. 

[12] Szunyogh, I., Kostelich, E. J., Gyarmati, G., Patil, D. J., 

Hunt, B. R., Kalnay, E., Ott, E., and Yorke, J. A. 2005. 

“Assesing a Local Ensemble Kalman Filter: Perfect 

Model Experiments with the National Centers for 

Environmental Prediction Global Model.” Tellus A 57: 

528-45. 

[13] Miyoshi, T., and Aranami, K. 2006. “Applying a 

4D-LETKF (Four-Dimensional Local Ensemble 

Transform Kalman Filter) to the JMA NHM 

(nonhydrostatic model). SOLA 2: 128-31. 

[14] Miyoshi, T., and Yamane, S. 2007. “Local Ensemble 

Transform Kalman Filtering with an AGCM at a 

T159/L48 Resolution.” Mon. Wea. Rev. 135: 3841-61. 

[15] Miyoshi, T., Sato, Y., and Kadowaki, T. 2010. “Ensemble 

Kalman Filter and 4D-Var Inter-Comparison with the 

Japanese Operational Global Analysis and Prediction 

System.” Mon. Wea. Rev. 138: 2846-66. 

[16] Cintra, R. S. 2010. “Assimilacao de dados com redes 

neurais artificiais em modelo de circulacao geral da 

atmosfera.” Ph.D. thesis, National Institute for Space 

Research. 

[17] Cintra, R. S., and Velho, H. F. C. 2014. “Data 

Assimilation by Artificial Neural Networks for an 

Atmospheric General Circulation Model: Conventional 

Observation.” arXiv preprint arXiv: 1407.4360. 



A Local Ensemble Transform Kalman Filter Data Assimilation System 
 for the Global FSU Atmospheric Model 

  

196

[18] Hoffman, M. J., Greybush, S. J., Wilson, R. J., Gyarmati, 
G., Hoffman, R. N., Kalnay, E., Ide, K., Kostelich, E. J., 
Miyoshi, T., and Szunyogh, I. 2010. “An Ensemble 
Kalman Filter Data Assimilation System for the Martian 
Atmosphere: Implementation and Simulation 
Experiments.” Icarus 209: 470-81. 

[19] Talagrand, O. 2008. Data Assimilation in Meteorology 
and Oceanography. San Diego: Academic Press. 

[20] Wilson, R. J., and Hamilton, K. P. 2008. “Comprehensive 
Model Simulation of Thermal Tides in the Martian 
Atmosphere.” J. Atmos. Sci. 53: 1290-326. 

[21] Lyster, P. M., Guo, J., Clune, T., and Larson, J. W. 2004. 
“The Computational Complexity and Parallel Scalability 
of Atmospheric Data Assimilation Algorithms.” J. Atmos. 
Oceanic Technol. 21: 1689-700. 

[22] Miyoshi, T. 2005. “Ensemble Kalman Filter Experiments 
with a Primitive-Equation Global Model.” Ph.D. thesis, 
University of Maryland. 

[23] Miyoshi, T. 2011. “The Gaussian Approach to Adaptive 
Covariance Inflation and Its Implementation with the 
Local Ensemble Transform Kalman Filter.” Mon. Wea. 
Rev. 139: 1519-35. 

[24] Lorenz, E. 1996. “The Evolution of Dynamic 
Meteorology.” In Historical Essays on Meteorology 
1919-1995, edited by Fleming, J. R. Boston: Amer. 
Meteor. Society. 

[25] Molteni, F. 2003. “Atmospheric Simulations Using a 
GCM with Simplified Physical Parameterizations. I: 
Model Climatology and Variability in Multi-decadal 
Experiments.” Climate Dynamics 20: 175-91. 

[26] Miyoshi, T., and Sato, Y. 2007. “Assimilating Satellite 
Radiances with a LETKF (Local Ensemble Transform 
Kalman Filter) Applied to the JMA Global Model 
(GSM).” SOLA 3: 37-40. 

[27] Wilson, R. J., and Hamilton, K. 1996. “Comprehensive 
Model Simulations of Thermal Tides in the Martian 
Atmosphere.” J. Atmos. Sci. 53: 1290-326. 

[28] Greybush, S. 2011. “Mars Weather and Predictability: 
Modeling and Ensemble Data Assimilation of Spacecraft 
Observations.” Ph.D. thesis, University of Maryland. 

[29] Medeiros, M. S., Herdies, D. L., Aravequia, J. A., and 
Souza, S. S. 2010. “The Impact of Assimilation with the 
Inclusion of AMSU—A Radiances in 4D-LETKF/AGCM 
System.” In Proceedings of American Geophysical Union, 
Fall Meeting, abstract #A13B-0197. 

[30] Cocke, S., and LaRow, T. E. 2000. “Seasonal Predictions 
Using a Regional Spectral Model Embedded within a 
Coupled Ocean-Atmosphere Model.” Mon. Wea. Rev. 
128: 689-708. 

[31] Krishnamurti, T. N., Kanamitsu, M., Ceselski, B., and 
Mathur, M. B. 1973. “Florida State University’s Tropical 
Prediction Model.” Tellus 25 (6): 523-35. 

[32] Zhijin, I. Li, Navon, M., and Zhu, Y. 2000. “Performance 
of 4D-Var with Different Strategies for the Use of 
Adjoint Phisycs with FSU Global Spectral Model.” 
Monthly Weather Review 128 (3): 668-88. 

[33] Lahoz, W. A., Khattatov, B., and Ménard, R. 2009. Data 
Assimilation: Making Sense of Observations, edited by 
Laroz, W. A., Khattatov, B., and Ménard, R. NewYork: 
Springer. 

 


