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Abstract 

The objective of this work is to apply an indicator geostatistical simulation approach to 

improve the accuracy of spatial modeling of categorical attributes using hard and soft 

information. Sample points of a categorical attribute are considered as the hard, or 

primary, information while a categorical map is used for determine the soft, or the 

secondary, information. The soft information is incorporated in the indicator simulation 

procedure as prior mean values, taken from a probability distribution function, related to 

the hard data. The prior mean values are then updated via indicator simulation to account 

for the hard data available in their neighborhoods. To illustrate the methodology a case 

study is presented with samples of soil texture classes, as the hard data, and with classes 

of a soil map defining the soft information. These data are gathered from an experimental 

farm of agriculture researches. The results show that the use of soft information, along 

with the hard data, improve the accuracy of the final products and show regions with 

higher uncertainties that are candidates to be sampled or resampled in the future. 
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1. Introduction  

Categorical attributes can be modeled, as grid representations, from a set of their samples, 

distributed in a spatial region of interest, using geostatistical approaches (Delbari et al., 

2011, Isaaks and Srivastava, 1989, Wasiullah and A.U. Bhatti, 2005,). Geostatistical 

indicator procedures, as the indicator kriging and the indicator simulation, are widely 

used mainly because they are able to estimate local or spatial uncertainty models, i. e., the 

joint conditional distribution functions, of continuous (ccdf) or categorical attributes 

(cpdf), at any unknown spatial location u (Juanga at al., 2004, Jaeri et al. 2013).  The 

uncertainty models are conditioned to a set of sample points of an attribute of interest and 

optionally to a set of sample points of secondary information correlated with the attribute.  

From the uncertainty models it is possible to derive attribute predictions and 

realizations along with uncertainty metrics as, for example, confidence intervals of the 

distributions. The final quality of the uncertainty models is greatly influenced by the 

number and the spatial distribution of the sample set. When the distribution of the 

samples is sparse, i. e., the number of samples is too small for the spatial region 

considered, the quality of the predictions and of the simulations tends to be low.  

The geostatistical indicator approaches allow, also, to improve the uncertainty 

modelling of a spatial attribute when a secondary information, correlated with the 
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primary one, is incorporated in the uncertainty estimation process. The secondary data is 

generally easier to obtain, sometimes at no cost on the internet, and densely distributed.  

The objective of this work is to apply an indicator geostatistical simulation approach 

to improve the accuracy of the spatial modeling of categorical attributes using hard and 

soft information. Sequential Indicator Simulation (SIS) is a widely used technique for 

modelling uncertainties of continuous and categorical variables. (Goovaerts, 1997, 

Felgueiras, 2000, Deutsch, 2006). The SIS and the SIS with prior means, GSLIB 

(Deutsch and Journel, 1998) functions known as sisim and sisim_lm respectively, were 

used in this work. Sample points of a categorical attribute were taken as the hard, or 

primary, information while a categorical map is considered as the soft, or the secondary, 

information. The soft information is incorporated in the indicator simulation procedure as 

prior mean values, taken from a probability distribution function, related to the hard data. 

The prior mean values are then updated via indicator simulation to account for the hard 

data available in their neighborhoods.  

To illustrate the applied methodology, a case study is presented with samples of soil 

texture classes, as hard data, and a soil map is used to determine the soft data. Four 

classes of soil texture were considered: sandy, medium clay, clay an too clayed. The 

classes of the soil map of the region of interest were taken in order to get pdf prior mean 

values of texture classes for each soil class. The soil texture were modeled using the hard 

data only and using the hard and the soft information. The resulting maps were presented, 

compared, and analyzed, mainly considering the improvement of the precision of the soil 

texture modeling. The results show that the use of soft information, along with the hard 

data, improve the quality of the final products and show regions with higher uncertainties 

that are candidates to be sampled or resampled in the future. 

This article is organized as follows: Section 1 presents an introduction; section 2 refers 

to the main concepts of this work; section 3 describes the applied methodology; section 4 

reports a case study in an experimental farm in the region of São Carlos city, in São 

Paulo, Brazil; section 5 presents results and discussions; and section 6 addresses the final 

conclusions and new ideas for futere researches related to the accuracy improvement of 

spatial data modeling. 

2. Concepts  

The indicator approaches allow for modeling the joint conditional distribution functions, 

of continuous (ccdf) or categorical attributes (cpdf), at any unknown spatial location u 

considering an available punctual sample set. The Simulation process consists of drawing 

realizations from the joint distribution functions. 

The Sequential Simulation process works with the ccdfs and a random number 

generator. For categorical variables, the ccdfs can be built from the cpdfs considering one 

order among the classes. N realizations of each, continuous or categorical, Random 

Variable Z can be drawn from a ccdf repeating n times the following steps: generating a 

random cp number between 0 and 1 (cp - cumulative probability value) and mapping the 

cp value to the zcp attribute value using the given ccdf.  

The Sequential Indicator Simulation takes the following steps (Govaerts, 1997):  

•  Draw a value z1
(l) 

from the univariated ccdf of Z1, Prob{Z1 z1|(n)}, conditioned to 

the (n) original samples. 

•  Update the original sample data set (n) to a new information set (n+1) : 
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                         (n+1)=(n) {Z1 = z1
(l)

}; 

•  Draw a new value z2
(l) 

from the univariated ccdf of Z2, Prob{Z2 z2|(n+1)}, 

conditioned to the information set (n+1): 

•  Update the information set (n+1) to a new information set (n+2) : 

                         (n+2)=(n+1) {Z2 = z2
(l)

}; 

•  Sequentially consider all the J Random Variables Zj’s. 

•  Repeat the above sequence for a new l realization (up till L Random Fields) 

The Sequential Indicator Simulation with Prior Mean allows incorporating prior 

pdf/cdf information obtained from a secondary (soft) data. The prior cdfs/pdfs are updated 

via indicator kriging (Bayesian framework), i.e., each prior local are updated to account 

for the hard data available in its neighborhood (Deutsch and Journel, 1997). 

The realizations at each location u are used to create prediction maps and uncertainty 

maps. From the realization values of continuous variables one can assess to the mean, the 

standard deviation or any quantile value to build a prediction, or estimated, map. 

Confidence intervals, based on the standard deviation or quantile values, are used to 

create the uncertainty maps. From the realization values of categorical variables one can 

assess to the most frequent class, higher probability, to built prediction and uncertainty 

maps. In this case the prediction map contains the classes with higher probabilities, Pmax, 

while the uncertainty map contains the 1-Pmax values. Other metrics of uncertainty can be 

used, as the Shannon Entropy, that take into account all the probability values of a cpdf 

(Felgueiras, 2000). 

3. Methodology  

Given a spatial region of interest, the methodology applied has the following steps:  

1. For a sample set of points of a categorical attribute, the hard data, evaluate the 

       variograms for residuals of the indicator sample sets related the attribute classes;  

2. Determine the local prior pdf values for each output grid spatial location using a   

      secondary information, the soft data;  

3. Fill the parameter file of the SIS, sisim and sisim_lm, GSLIB functions;  

4. Run the SIS functions to obtain grids with realizations of the hard information; 

5. Creating maps of predicted, or estimated, classes and uncertainties, 1-Pmax, values    

      from the output file of the SIS functions; 

6. The final resulting maps of predictions and uncertainties are analyzed and  

      compared. 

4. A Case Study  

In order to illustrate the methodology of this work, it was used as hard information a set 

of points of soil texture data sampled in the region of an experimental farm known as 

Canchim. The study region is located in the city of São Carlos, SP, Brazil, and cover an 

area of 2660 ha between the north-south coordinates from s 21
o
55’00’’ to s 21

o
59’00’’ 

and the east-west coordinates from w 47
o
48’00’’ to w 41

o
52’00’’. 

The hard data set consists of 86 samples of soil texture information each classified as 

one of the following four classes: sandy, medium clay, clay or too clayed. Figure 1 (left 

map) illustrates the borders of the Canchim farm along with location and the 

classification of the soil texture sample set. This map was obtained with a nearest 

neighbor estimation procedure showing the regions of influence of each class. 
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Figure 1. Distribution of the soil texture sample points (left map) and map of soil classes 

of the Canchim region (right map) 

 

It is also considered a soil map of the figure 1 (right map) in order to assess the 

secondary (soft) information, the probabilities a priori of the texture class for each soil 

class. These probabilities a priori are presented in table 1. 

 
 

Soil Class Sandy Mediu Clay Clay Too Clayed 

LVA1 0 0 1 0 

LVA2 0 1 0 0 

LVD1 0 0 1 0 

LVD2 0 0 1 0 

LVD3 0 1 0 0 

LVD4 0 1 0 0 

LU 0 0 1 0 

LEA1 0 0.4 0.6 0 

LEA2 0 1 0 0 

LEA3 0 1 0 0 

LED1 0 0 1 0 

LED2 0 0 1 0 

LED3 0 1 0 0 

LEe 0 0 1 0 

LRD1 0 0 0 1 

LRD2 0 0 0.8 0.2 

LRD3 0 0 0.7 0.3 

LRD4 0 0 1 0 

LRD5 0 0 1 0 

LRe 0 0 0.4 0.6 

TRe1 0 0 0.4 0.6 
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    0 

      0.71 

TRe2 0 0 0 1 

TRe3 0 0 1 0 

TRe4 0 0 0.7 0.3 

PVd 0 1 0 0 

AQd 1 0 0 0 

Haq 0.8 0 0.2 0 

Ho 0 0 1 0 

A 0 0 1 0 

 

Table 1. Probabilities a priori of the texture classes for each soil class 

 

5. Results and Discussions  

Figure 2 shows the map of predicted soil texture classes (left) and respectively 

uncertainty map (right) obtained from the realizations of the sisim approach. The 

estimations were assessed from the higher probabilities of the cpdfs estimated at each 

spatial location. The uncertainties were defined as 1- the higher probability of the cpdf 

and, as expected for environmental attributes, are higher in the borders, the transitions 

areas, of soil texture class regions. Consequently the probability uncertainty values are 

lower in the middle of those regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Map of predictions of texture classes (left) and map of uncertainties (right) 

estimated using the output of the sisim function 
 

Figure 3 shows the map of predicted texture classes (left) and respectively 

uncertainties (right) obtained from the realizations of the sisim_lm approach. The borders 

of the soil classes is overlapped in these maps to aid the analyzes of the results. This final 

soil texture map presents a configuration more similar to that of the soil map. The 

uncertainty map presents lower global uncertainty probability indicating that the use of 

soft information can produce higher precision distributions. As to the previous case 

higher uncertainties appear in the borders of the classes. In addition it was found a region 

of high uncertainties, highlighted in blue, in the middle eastern of the map.  This region 
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0.0 

     0.66 

contains samples of texture classes conflicting with the soil map information. Regions 

with these characteristics should be considered as candidates to be sampled or resampled 

in order to get more reliable results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Map of predictions of texture classes (left) and map of uncertainties (right) 

estimated using the output of the sisim_lm function 

 

6. Conclusions  

Spatial modeling of categorical attributes can be accomplished from geostatistical 

indicator sequential simulation approaches using hard and also soft information when it is 

available. Secondary variables can be incorporated in the simulation to improve the 

accuracy of the predictions and of the uncertainty representation.  

The uncertainties of the modeling are used to qualify the estimates and should be 

applied in decision making procedures for planning activities on environmental 

applications, for example. Moreover, regions where the uncertainties are higher must be 

considered candidates to be sampled or resampled in the future. 

The set of realizations of the indicator simulations can be used as input for 

multivariable spatial modeling of categorical variables in Monte Carlo approaches, for 

example. 

In the future we intend to explore similar methodology for spatial modeling of 

continuous attributes considering also secondary variables. 
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