ReTest: Framework for Applying
TDD in the Development
of Non-deterministic Algorithms

André A.S. Ivol®) and Eduardo M. Guerra?

! Centro Nacional de Monitoramento e Alertas de Desastres Naturais (CEMADEN),
Sao José dos Campos, SP, Brazil
andre.ivo@cemaden.gov.br
2 Instituto Nacional de Pesquisas Espaciais (INPE), Sao José dos Campos, SP, Brazil
eduardo.guerra@inpe.br

Abstract. TDD is a technique traditionally applied in applications with
deterministic algorithms, when you have a known input and an expected
result. Therefore, the challenge is to implement this technique in appli-
cations with non-deterministic algorithms, specifically when several ran-
dom choices need to be made during its execution. The purpose of this
paper is to present the ReTest framework, a JUnit extension, that allows
an extension of the TDD technique, to enable its use for the development
of non-deterministic algorithms.

Keywords: TDD - Non-determinism - Tests - Framework - JUnit -
Metadata + Code annotations

1 Introduction

TDD (Test-Driven Development) is a software development technique in which
tests are developed before code in short and incremental cycles [1]. The technique
proposes for the developer to create a new flawed test, and then, to implement
a little piece of code, in order to satisfy the current test set. Then, the code
is refactored if necessary, to provide a better structure and architecture for the
current solution [2,3].

TDD is traditionally applied in applications with deterministic algorithms,
when there is a known input and one expected result. The challenge becomes,
the use of TDD in applications with non-deterministic algorithms, where from
executions with the same input it is possible to obtain different valid results. This
type of approach usually uses several calls to functions that generates pseudo-
random numbers during the algorithm execution in order to represent random
decisions. Although it is not possible to know exactly what the output will be,
it is usually possible to check whether the output received is considered valid or
not. This scenario is very common in the development of scientific software [4].

The following factors make it difficult to develop non-deterministic software
using TDD: (a) the result of the same execution may be different for the same

(© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 72—84, 2017.
DOI: 10.1007/978-3-319-55907-0_7

ReTest Framework 73

inputs, which makes it difficult to compare with a return value; (b) obtaining
a valid return for a test case execution does not mean that valid return will be
returned on the next executions; (c) there are may be several random decisions
and a variable number of such of decisions, making not viable the creation of
Mock Objects [5,6] that return fixed results for these decisions; and (d) it is
difficult to execute a previous failed test with the same random decisions made
in its last execution.

The goal of this paper is to present an extension for the JUnit framework
called ReTest, developed by the authors of this work, which allows an extension
of TDD to enable its application for algorithms with non-deterministic charac-
teristics. The main feature of ReTest is to allow a test case that receives a class
responsible to generate pseudo-random numbers to be executed several times
with different seeds, increasing the test coverage. From the result of these repe-
titions, the framework stores the seeds that generated failures and uses them in
future tests, ensuring that a scenario where an error was detected in the past is
executed again.

The paper is organized as follows: Sects.2 and 3 give a brief introduction
to TDD and JUnit; Sect. 4 presents the ReTest framework; Sect. 5 describes the
use of ReTest in the context of TDD technique; and, finally, the conclusion and
proposals for future work are presented in Sect. 6.

2 Test Driven Development (TDD)

TDD is a code development and design technique, in which the test code is cre-
ated before the production code. There are several research reported by Guerra
and Aniche (see [1]) that indicates that the use of TDD can improve the source
code quality. One of the reasons for the popularization of TDD is its explicit men-
tion as part of the agile methodology Extreme Programming (XP) [7], however
today is widely use out of its context.

In TDD practice, the developer chooses a requirement to determine the focus
of the tests, then writes a test case that defines how that requirement should
work from the class client point of view. Because this requirement has not yet
been implemented, the new test is expected to fail.

The next step is to write the smaller amount of code as possible to implement
the new requirement verified by the test. At this point, the added test, as well as
all other previously existing tests, is expected to run successfully. Once you have
passed the tests, the code must be refactored so that its internal structure can
be continuously evolved and improved. The tests help to verify that the behavior
has not been modified during refactoring.

This cycle is performed repeatedly until the tests added verify scenarios for
all expected requirements of the class. The TDD cycle is presented in Fig. 1 [2,3].

With the use of TDD, the design of the code is defined in cycles. The idea
is that with each new test added, create a small increment of functionality com-
pared to the previous ones. TDD technique is described in several books, such
as “Test-Driven Development by Example”, “Agile Software Development, Prin-
ciples, Patterns, and Practices”, “Growing Object-Oriented Software, Guided

74 A.A.S. Ivo and E.M. Guerra

1 - write a test
that fail

3 - eliminate
redundancy

A 2 - make the code work m
REFACTOR 4

Fig. 1. TDD execution diagram

by Tests” and “Test-Driven Development: A Practical Guide” (see [2,3,8,9]),
besides being widely used in industry.

3 JUnit Framework and Its Extension Points

JUnit is an open-source framework, created and developed by Erich Gamma and
Kent Beck, for the creation of unit tests in the Java language. Its purpose is to be
a basis for the creation of test automation code. It is widely used for the practice
of TDD and its same model was used in the creation of test frameworks for other
languages, being these frameworks referenced in general as XUnit. Some main
features of such frameworks are the execution of test cases and the display of
execution results [10].

JUnit, since version 4, provides extension points that allow the introduction
of new functionality. Some of the most important JUnit extension points are
represented by the classes Runner and Rule.

Runner is the class responsible for running the test methods from a test
class. When a simple test class is executed with JUnit 4, it uses the class Block-
JUnit4ClassRunner.class as the default runner. The Runner class hierarchy is
represented in the diagram in Fig. 2.

In this way, to implement a Runner just create a new class and extend the
Runner class shown in the diagram in Fig. 2.

To use just create a test project, and in the tests class include the annotation
@RunWith and as argument pass the new class Runner.

This will replace all known JUnit 4 behavior. If you want to maintain the
behavior, simply create a new Runner that extends the BlockJUnitClassRunner
class.

Another extension point is known as Rule that other than Runner adds new
behaviors mainly before and after the execution of each test. To write our own
Rule, just create a class that implements the TestRule interface.

To use, just declare a public attribute in the test class and annotate it with
@Rule, as shown in Code Snippet 1.

ReTest Framework 75

<<interface>>
Describable
A
Runner | <<interface>> <<interface>>
Filterable Sortable
A Ve
| ParentRunner |
BlockJUnit4ClassRunner | | Suite

Fig. 2. Core class diagram of ReTest framework

Code Snippet 1. @Rule use example

public class TestClass {

@Rule
public NewRule newRule = new NewRule();

public void testMethod(@RandomParam Random random) {
Object result = nonDeterministicAlgorithm(random);
assertResult(result);
}
}

In the example shown in Code Snippet 1, when executing the test project,
who should call the testMethod() is newRule, responsible for adding the desired
behaviors before and after the tests.

4 ReTest: Test Framework for Non-deterministic
Algorithms

The ReTest framework, Random Engagement for Test, aims to extend JUnit
to provide a framework for testing non-deterministic algorithms. It provides to
its users a mechanism for managing the seeds used to generate random data
in the algorithm being tested. Consequently, the same test can be repeated
and the seeds used in failed runs can be repeated. These features facilitates
the application of TDD for the development of non-deterministic algorithms.
The ReTest framework is open-source and can be found at https://github.com/
andreivo/retest.

76 A.A.S. Ivo and E.M. Guerra

4.1 Overview

To use ReTest the developer needs to create a test project using JUnit 4, and
include the @RunWith annotation with ReTestRunner.class argument in the
test class.

In the test methods the developer needs to include annotations to config-
ure how it should be executed and annotations in the parameters that need to
receive values generated and managed by the framework. The framework man-
aged parameters are meat to be used as input data for the tests. The Code
Snippet 2 shows a simple example of use.

Code Snippet 2. Simple example of how to use ReTest

@QRunWith (ReTestRunner.class)
public class TestClass {

@Test

@ReTest (10)

@SaveBrokenTestDataFiles(filePath = "/data/filel.csv")
@LoadTestFromDataFiles(filePath = "/data/filel.csv")

public void testMethod(@RandomParam Random random) {
Object result = nonDeterministicAlgorithm(random) ;
assertResult(result);
}
3

In the code shown in Code Snippet 2, the test method is marked with the
@ReTest(10) annotation, which configures the framework to execute it 10 times.
At each execution, the framework will initialize the parameter marked with
@RandomParam received by the test method with a different seed. Notice that
this object is passed as an argument to the method being tested, called nonDe-
termanisticAlgorithm(). The class Random is used internally by the test method
for the generation of its random numbers and, consequently, as a basis for its
non-deterministic decisions. The assertResult() method used checks whether the
return of the algorithm is considered valid. This test will be executed multiple
times with Random initialized with different seeds, simplifying the execution of
a large number of scenarios.

The seeds used in failed tests will be stored in the file “data/filel.csv”,
because the test method is marked with the @SaveBrokenTestDataFiles anno-
tation. When executed again, in addition to the 10 repetitions configured by
the @ReTest annotation, the test method will also run with the seeds stored
in the “data/filel.csv” file, which is configured by the @LoadTestFromDataFiles
annotation. That way, by running the failed tests again, you can check that the
error has been corrected in addition to maintaining a set of regression tests.

Since in TDD the tests are executed frequently, throughout the development
process the test executions should achieve good code coverage. This is reinforced
by the fact that the tests that have failed previously are always executed again,
creating data for regression tests.

ReTest Framework 77

4.2 Features
The ReTest framework has an API that allows you to:

generate randomic data to be applied to the tests;

create custom randomizers for data in the application domain;

save the data from failed tests;

save test data that has been successfully executed;

save the return of the test method to generate a set of data based on random
inputs and expected outputs;

load test data from external files or sources;

create custom mechanisms for handling external sources, both for saving and
loading test data.

—~ S~

a
b
¢
d

~—~
)
— — N N

~
=
~— —

4.3 ReTest Annotation Set

In addition to the common JUnit annotations, the ReTest framework has a set of
4 annotations for the test methods and 4 annotations for the method parameters.
The annotations for the methods are:

(a) @ReTest: This annotation is responsible for performing the test repetition.
In this annotation it is possible to indicate how many times the test method
should be executed;

(b) @SaveBrokenTestDataFiles: When you mark a method with this anno-
tation, the input data will be saved to the file when the test fails;

(c) @SaveSuccessTestDataFiles: When you mark a method with this anno-
tation, the input data will be saved to file when the test is successful;

(d) @LoadTestFromDataFiles: When you mark a method with this annota-
tion, the input data from this file will be loaded and used in the execution.

The annotations for the method parameters are:

(a) @IntegerParam: Annotation indicates that the ReTest framework should
pass as a parameter a random integer;

(b) @RandomParam: This annotation indicates that the framework should
pass an instance of an object of type Random, with a known seed, so that
it can be stored and retrieved from files, making it possible to reconstruct
the same test scenario;

(¢) @SecureRandomParam: This annotation indicates that the framework
should pass an instance of an object of type SecureRandom, with a known
seed, so that it can be stored and retrieved from files, making it possible to
reconstruct the same test scenario;

(d) @Param: This annotation allows to indicate custom randomizers for the
specific data types in the application domain, allowing the extension of the
framework for random generation of several types of data.

78 A.A.S. Ivo and E.M. Guerra

4.4 Internal Architecture and Extension Points

This framework is based on the implementation of a new Runner, which reads
and interprets the annotations presented in the session Sect. 4.3. The Fig. 3 shows
the class diagram of the ReTestRunner implementation. In this diagram it is
possible to observe the first extension point of the framework for personalization
of the format of the data files, in the form of the implementation of the abstract
class TestDataFiles. To configure the newly created class, it should be passed
as a parameter to the @SaveBrokenTestDataFiles, @SaveSuccessTestDataFiles,
and @LoadTestFromDataFiles annotations.

| ReTestRunner |
payload
O *
DataFilePayload
<<abstract>> » CSVTestDataFiles
TestDataFiles

Fig. 3. Core class diagram of ReTest framework

The Fig. 4 shows the existing randomizers used to introduce parameters with
random values in the test methods. At this point it is possible to observe the
second extension point of the framework, in the form of the implementation of the
abstract class DataType. To configure the new class created as the data generator
for a test, it should be configure as an attribute of the @Param annotation.

<<abstract>>
DataType<T>
’ RandomSeedDataType ‘ ’ SecureRandomSeedDataType ‘ ’ NullDataType ‘ ’ IntegerDataType
<< bind >> = T << bind >> :: T
l RandomSeed ‘ l SecureRandomSeed ‘

Fig. 4. Class diagram of randomized objects

5 TDD with ReTest

Because to the difficulties presented in the introduction of this article, TDD is not
a technique normally used in the development of non-deterministic algorithms.

ReTest Framework 79

One of the goals of the ReTest framework is to make the use of this technique
feasible for these scenarios.

From the use of ReTest is possible complement the development cycle of
TDD as observed in Fig. 5. The steps of this new cycle consist of:

1. Create a new test that fails in at least one of its executions;

2. Store information of the failed scenarios to enable the verification if the
changes in the production code make the failed scenario to pass;

3. Develop the simplest solution that makes the test suite run successfully for
all inputs;

4. Run the test cases several times including new random generators with new
seeds and with seeds that falied in previous test executions;

5. Refactor, if necessary, to provide a better internal structure for the final
solution;

In this cycle, the steps of the original TDD are included, presented in Sect. 2.
New steps were added as extensions proposed by the use of the ReTest frame-
work, in order to ensure that TDD can be used as an application design technique
and as a regression testing tool for non-deterministic algorithms.

To illustrate the use of this TDD cycle, consider the creation of a method to
generate an array of “n” positions, with random numbers varying between 10
and —10, whose total sum of its elements is zero. This method receives as input
parameter a Random object (used by the method to generate random numbers)

and the size of the array to be generated.
“’ i
that fail

Yes |
5 - eliminate

redundancy .
No 3- make the code work
REFACTOR 4

4- Repeat the tests
multiple times to ensure
the largest number

of random decisions

Fig. 5. Adaptation of TDD to ReTest

80 A.A.S. Ivo and E.M. Guerra

The following items describe the steps used to develop this function using
TDD. Due to space limitations, the code for each of the steps will not be displayed
and refactoring steps will be omitted.

(a) The first test asks the method to create an array with size 1. Since there is
only one valid response for this case, which is 0, it is not necessary to use
any ReTest annotations;

(b) It is written as the method implementation the return of a fixed value, and
the test is executed successfully;

(c) The second test introduced invoke the method passing the parameter to cre-
ate a size 2 array, initially checking only if the response has the appropriate
array size. At first moment the test fails, because of the method in returning
an array of size 1;

(d) As an initial implementation, an array of the size passed as a parameter is
created and a random value generated within the range of —10 to 10 is set
for each position;

(e) When executed, the tests pass, but it is known that the validity of the
response is not being verified correctly;

(f) An auxiliary assertion method is then created to check the validity of the
output according to the requirements. This method checks if the array has
the expected size, if the value of each element is within range of —10 to 10,
and if the sum of the elements is equal to zero, as shown in Code Snippet 3;

Code Snippet 3. Method for evaluating rules

private void assertElements(int[] arr, int arraySize) {
int result = 0;
//verify if all
for (int i = 0; i < arraySize; i++) {
assertTrue(Carr[i] >= -10 && arr[i] <= 10);
result = result + arr[i];

}

//verify the sum
assertEquals (0, result);

}

(g) The test code for n = 2 is then modified so that it uses the assertion method
created. The @ReTest annotation is used for this test method to configure
the framework to execute it 10 times. The Fig. 6 shows the result of the test
execution. Note that in 3 out of 10 scenarios the test runs successfully. As
it is known that the implementation has not yet been performed, therefore
the information about the failed test should not be saved yet;

(h) The code is changed so that the last array value is not randomly generated,
but is the value that makes the sum to be equals to zero. The tests are run
and now all pass successfully;

(i) The test is then annotated with @SaveBrokenTestDataFiles and @LoadTest-
FromDataFiles so that, from this point, that information of failed tests are

()

()

ReTest Framework 81

stored and executed again, as can be seen in Code Snippet4; From this
point the test code for other methods is similar to this one, varying only the
parameter “n” passed to the function generate Array WithSumZero();

Code Snippet 4. Example of test method

@Test

@ReTest (10)

@SaveBrokenTestDataFiles(filePath = "/tmp/dataTest.csv")
@LoadTestFromDataFiles(filePath = "/tmp/dataTest.csv")

public void test2(@RandomParam Random r) {
int n = 2;
int[] result = ArrayFactory.generateArrayWithSumZero(r, n);
assertElements(result, n);

}

The third test added uses as parameter n = 3, so that an array of size 3 is
generated. This test already receives the @ReTest annotation to be repeated
10 times. When performing the tests, some of the repetitions fail, because
in some cases this approach does not generate a valid response, as can be
observed in Fig. 7;

The TDD process follows by having all the test running in the 3-element
array generation scenario, and then placing the annotations so that failed
executions are stored and included in the regression tests;

The process is repeated in the introduction of new tests with the parameter
“n” assuming the values 10, 100 and 1000. Figure 8 shows the execution of
the tests for an array with 1000 elements, after successive changes in the

algorithm being developed;

From the example, it is possible to have a more concrete vision of how ReTest

can be used to support the use of TDD in the development of a non-deterministic
algorithm. Note that test cases are gradually being introduced and implementa-
tion is also occurring incrementally.

4 tests passed, 8 tests failed.(0.071 s)
¢ /% initial.case0l.Case0l Failed

@ testl passed (0.004 s)
!\ test2 ReTest[l] Failed: expected:<0> but was:<4>
/4 test2 ReTest[2] Failed: expected:<0> but was:<7>
/4, test2 ReTest[3] Failed: expected: <0> but was:<-12>
test2 ReTest[4] Failed: expected:<0> but was:<7>
!, test2 ReTest[5] Failed: expected: <0> but was:<1>
!\ test2 ReTest[6] Failed: expected:<0> but was:<-7>
/%, test2 ReTest[7] Failed: expected:<0> but was:<-1>
) test2 ReTest[8] pas
) test2 ReTest[9] (0.0 s
@ test2 ReTest[10] passed (0.0 s)

YYYTYTYTTYTY

ed (0.0 s)

Fig. 6. Result of using ReTest for 2-position array

82

A.A.S. Ivo and E.M. Guerra

19 tests passed, 9 tests failed.(0.219 s)
¢ /A initial.case01.Case0l Failed

o testl passed (0.002 s)

@ test2 ReTest[l] passed (0.002s)
0 test2 ReTest[2] passed (0.0 s)
€ test2 ReTest[3) passed (0.001 s
@ test2 ReTest[4] passed (0.0 s)
o test2 ReTest[S] passed (0.0 s)
€ test2 ReTest[6] passed (0.001 s)
@ test2 ReTest[7] passed (0.001 s
€ test2 ReTest[8] passed (0.0 s)
© test2 ReTest[9] passed (0.001 s)
@ test2 ReTest{10) passed (0.0 s)
€ test2 FILE:[1]testDataCase0l.csv{l]
0 test2 FILE:[1])testDataCase0l.csv(2]
@ test2 FILE:[1]testDataCase0l.csv(3)
0 test2 FILE:[1]testDataCase0l.csv(4)
0 test2 FILE:[1]testDataCase0l.csv(5]
0 test2 FILE:[1]testDataCase0l.csv(6]
0 test2 FILE:[1]testDataCase0l.csv{7]

A D A A 4
ol e o

6 @

test3 ReTest[7] passed (0.01 s)

TeY

passed
passed
passed
passed
passed
passed
passed

(0.0 s)
(0.0 s)
(0.0's)
(0.0 s)
(0.0 s)
0.001s
(0.0 s)

test3 ReTest[l] Failed: expected:<0> but was:<-1>
test3 ReTest[2] Failed: expected:<0> but was:<-18>
test3 ReTest[3] Failed: expected:<0> but was:<-8>
test3 ReTest[4] Failed: expected: <0> but was:<1>
test3 ReTest[5] Failed: expected:<0> but was:<12>
test3 ReTest[6] Failed: expected:<0> but was:<2>

!\ test3 ReTest[8) Failed: expected:<0> but was:<4>

test3 ReTest[9] Failed: expected:<0> but was:<8>
/4 test3 ReTest[10] Failed: expected:<0> but was:<-7>

Fig. 7. Result of using ReTest for 3-position array with previous

Al 28 tests passed.(0.226 s)

¢ @ initial.case01.Case01 passed
o testl passed (0.003 s)
€ test2 ReTest[l] passed (0.0
€ test2 ReTest[2] passed (0.0
0 test2 ReTest[3] passed (0,001 s)
@ test2 ReTest[4] passed (0.0
@ test2 ReTest[5] passed (0.0
€ test2 ReTest[6) passed (0.003
@ test2 ReTest[7] passed (0.002
@ test2 ReTest(8] passed (0.0 s)
@ test2 ReTest[9) passed (0.0)
€ test2 ReTest[10] passed (0,001 s)
0 test2 FILE:[1]testDataCase0l1.csv([1]
0 test2 FILE:[1]testDataCaseOl.csv([2]
€ test2 FILE:[1]testDataCase01.csv[3]
0 test2 FILE:[1]testDataCase0l.csv([4]
o test2 FILE:[1]testDataCaseOl.csv([5]
@ test2 FILE:[1]testDataCase0l.csv[6]
O test2 FILE:[1]testDataCase0l1.csv(7]
@ test3 ReTest[1] passed (0.012s)
€ test3 ReTest[2] passed (0.014 s)
0 test3 ReTest[3) passed (0,011 s)
@ test3 ReTest[d] passed (0.011 s)
0 test3 ReTest[5) passed (0,011 s)
@ test3 ReTest[6] passed (0.011 s)
€ test3 ReTest[7) passed (0011 s)
0 test3 ReTest[8) passed (0,016 s)
€ test3 ReTest[9]) passed (0,011 s)
€ test3 ReTest[10) passed (0,011 s)

»

»

passed
passed
passed
passed
passed
passed
passed

(0.0 s)
(0.0 s)
(0.0 s)
(0.001 s)
(0.0 s)
(0.001 s)
(0.001 s)

Fig. 8. Final result of the example with all tests running

tests

ReTest Framework 83

The first point to emphasize is that when a test that needs to be repeated
is executed, its execution is only considered correct when in all cases success
is obtained. Note in Fig. 6, for example, that some executions always execute
successfully, not because the implementation is correct, but because randomness
leads to the correct solution in some cases. In this case, the repetition function-
ality of the framework is important because in each execution of the test suite
it is possible to repeat the same test several times.

Another important point is in storing the seeds that generated failed test sce-
narios. Although it has not been commented, in the development of the example,
in some cases modifications in code lead previous tests to fail in some scenarios.
In this case, it was important to have the same test scenarios executing again to
make sure that the problem was solved.

6 Conclusion

The goal of this work is to propose a test framework that facilitates the use of
TDD for the development of non-deterministic algorithms. Some of the exist-
ing difficulties were to repeat exactly the same test cases flow that had failed
previously and to be possible to have the test running successfully only in some
executions. These difficulties are linked to the random decisions made during
the execution of these algorithms.

The use of the ReTest framework makes it possible to use TDD for this
type of algorithm, since it can repeat the same test several times and manage
the seeds in order to repeat the failed test scenarios. The example presented
in Sect.5 showed how these functions can help us to follow the TDD flow to
incrementally develop these algorithms.

As future work, we will evaluate the use of this framework for the development
of a real non-deterministic algorithm using TDD. In addition, it is also intended
to conduct an experiment with several developers to evaluate if they can use
TDD in this way to develop such kind of algorithm.

References

1. Guerra, E., Aniche, M.: Achieving quality on software design through test-driven
development. In: Mistrik, I., Soley, R., Ali, N., Grundy, J., Tekinerdogan, B. (eds.)
Software Quality Assurance, pp. 201-220. Elsevier Inc., Amsterdam (2016)

2. Beck, K.: Test-Driven Development by Example. Addison-Wesley, Boston (2002)

3. Astels, D.: Test-Driven Development: A Practical Guide. Prentice Hall, Englewood
Cliffs (2003)

4. Floyd, R.W.: Nondeterministic algorithms. J. ACM 14, 636-644 (1967)

5. Mackinnon, T., Craig, P., Freeman, S.: Endotesting: unit testing with mock objects.
In: Succi, G., Marchesi, M. (eds.) Extreme Programming Examined, pp. 287-301.
Addison-Wesley Longman Publishing Co., Redwood City (2001)

6. Freeman, S., Mackinnon, T., Pryce, N., Walnes, J.: Mock roles, objects. In: Com-
panion to the 19th Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems, pp. 236—246. ACM (2004)

84

10.

A.A.S. Ivo and E.M. Guerra

Beck, K.: Extreme Programming Explained. Addison-Wesley Professional, Boston
(2004)

Martin, R.: Agile Software Development, Principles, Patterns, and Practices. Pren-
tice Hall, Englewood Cliffs (2002)

Freeman, S., Pryce, N.: Growing Object-Oriented Software, Guided by Tests.
Addison-Wesley Professional, Boston (2009)

Beck, K., Gamma, E.: JUnit test infected: programmers love writing tests. In:
Dwight Deugo, pp. 357-376. More Java Gems (2000)

