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Abstract Outdoor optical mark recognition is an extre-

mely useful tool for recognition of large industrial equip-

ment and application of computer vision-based systems for

tracking and positioning. However, current algorithms rely

on thresholding and corner detection to identify checker-

board-like patterns, which is not appropriate for non-uni-

form lighting conditions. This paper presents a robust

methodology to identify optical markers in outdoor envi-

ronments. A GPU-based region filling algorithm automat-

ically detects all contiguous color regions without

computing seed points. Post-processing steps extract high-

level information from these regions. Analysis of identified

contiguous color region allows simultaneous identification

of all checkerboard and targets (concentric regions) in the

scene. Analysis of variance demonstrates that the proposed

methodology is robust to lighting, environment, perspec-

tive, and occlusion. Tests indicate that precision and recall

for checkerboard and target identification in outdoor con-

ditions are expected to be above 97%. The parallel algo-

rithm implementation using OpenCL yields better results

and is two times faster than previous region filling algo-

rithms, taking about 0.6 s to process a full-HD picture

using modern hardware

Keywords Computer vision � Optical mark recognition �
OpenCL � Parallel processing � Design of experiments �
Heterogeneous computing

1 Introduction

Robust object tracking in outdoor environments using

computer vision is a tool that can increase productivity and

reduce costs in the construction of large equipments, such

as pressure vessels, storage tanks, and oil platforms. This

task can be performed with markers using cameras and

optical mark recognition (OMR). Ideally, a set of cameras

strategically positioned could replace the manual labor of

tracking parts and alignment checks during the construc-

tion process. A challenging task, however, is that the

construction environment lacks environmental control that

would be available in laboratories and factories, such as

controlled lighting and fixed trajectory for parts.

This paper presents a robust methodology for outdoor

optical mark recognition, consisting of:

– a novel method of region filling that requires no seed

point and finds all contiguous color regions in a scene.

This implementation uses OpenCL to take advantage of

processing power of current graphics processing units

(GPUs) [13] using specific optimization strategies

[23, 24];
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– identification of characteristics of contiguous regions

(area, perimeter, center);

– detection of targets and checkerboards using concentric

region analysis and checkerboard regularity.

The main contributions of this work are the development of

the parallel filling algorithm in OpenCL, which allows the

proposed methodology to have acceptable performance for

field use (as discussed in Sect. 4.3), and the checkerboard

regularity analysis, which makes it robust to partial

occlusion. These features allow the use of commercially

available hardware to track and identify objects during field

construction and assembly procedures.

The proposed methodology intended application is

position feedback for robotic positioning of plates in large

construction and assembly environments, as shown in

Fig. 1. It could also be used as a reference for program-

ming by demonstration using stereo cameras as an alter-

native to the Kinect system [15], automatic control of

underwater robots [18], and addition of localization capa-

bilities to mobile robots used to inspect power lines [12].

Robust OMR in outdoor environments can be incorporated

in end-effector design along with other desirable charac-

teristics [10]. Plates, pipes, and other parts need to be

positioned within a tolerance of 3 mm because of welding

requirements. Currently, this process is time-consuming,

performed manually, and exposes personnel to risks.

Optical markers are a cheap alternative to object tracking,

since they require no special hardware attached to parts and

equipments. In addition, they can easily be printed and

replaced. This paper addresses the issue of identifying

optical markers under field conditions, in outdoor

environments.

This paper is organized as follows: Sect. 2 presents a

brief literature review of the current methods used to

identify markers under uneven lighting settings and opti-

mization strategies; Sect. 3 describes the implementation of

the proposed methodology; Sect. 4 presents an analysis of

the collected data; and Sect. 5 presents the work conclu-

sions with a brief overview of future improvements.

2 Related work

Detection of patterns in outdoor settings is a challenging

task that has deserved research attention in multiple fields,

from face recognition to calibration patterns located under

irregular lighting conditions [5, 17, 30]. Detection of

concentric regions is another robust approach proposed for

camera calibration in outdoor environments [16] as are 2D

markers [19, 20]. However, little attention has been given

to the problem of locating optical markers (not just for

camera calibration) in outdoor settings, where lighting may

vary not only in intensity but also color and global his-

togram distribution. Principles of machine vision tech-

niques have been proposed by [21], who claims that

accuracy of object detection is enhanced when optical

markers are used; however, no implementation is provided.

Edge detection is a preprocessing step used to segregate

color regions. Pre-filtering yields better results in edge

detection, which may or may not help depending on the

quality and noise-to-signal ratio of the camera. Advanced

denoising techniques have been presented in the literature

(e.g., [8]), [1, 28] and are used to improve edge detection

accuracy.

For field applications, performance is an important

consideration, because the identification algorithm has to

provide information to operators during construction and

assembly processes. A possible strategy in embedded sys-

tems is the use of FPGAs when custom hardware is made

for the application [27]. Another approach used to accel-

erate computation is to take advantage of high parallelism

and low cost of graphic processing units (GPUs) [4, 9]. In

this work, GPU implementation was chosen to allow

implementation of the robust optical mark recognition at a

very low cost, without using custom hardware.

Flood-filling algorithms analyzed require a seed point

and propagate regions from there. Many search strategies

and methods have been proposed to optimize the process

[7]. Flood-filling algorithms without edges are used to

detect regions of interest in outdoor images [14]. The

method, however, requires blurring images to a level that

would not be acceptable for optical marker recognition. A

pattern of dots was proposed to increase the robustness of

pattern identification [5]. The method entails binarization

of the image using Otsu method [25] followed by identi-

fication of neighboring dots, as shown in Figs. 2 and 3.

Kang et al. [5] show that Otsu’s method, as any bina-

rization, faces problems trying to split regions from a gray-

scale image under uneven lighting settings. The ellipses
Fig. 1 Optical markers being used for robotic plate positioning

system
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inserted into Fig. 3 mark regions from where noise sig-

nificantly reduces quality of dot identification. Moreover,

color cameras are widely available and there is no reason

not to take advantage of the extra information provided by

RGB pixel components. For the purpose of comparison, the

result of the algorithm developed in this work is shown in

Fig. 4, where blue color denotes background color and

adjacent regions of contiguous color are clustered together

in a group. This result is superior in the sense that no white

dots are lost in the binarization processes. Further details of

the proposed algorithm are provided in the following

sections.

It is also worth noting that Kang et al.’s [5] image sizes

were 640� 480 and their processing time was 1s using a

Pentium IV processor. The exact same image, using

modern hardware and GPU computing with a Radeon 7970

GPU, is processed in 0.13 s and better results are obtained.

Since no pre-filtering was applied in the original work, this

comparison also skipped the pre-filtering step.

OpenCV algorithm for checkerboard detection relies on

binarization of input image followed by morphologic pro-

cedures (erosion) and quadrant linking heuristics, which

have been proposed by Rufli et al. [26]. This procedure has

been designed for indoor camera calibration. Thus, for the

purposes of outdoor identification of large parts, a more

robust alternative is required. For comparison purposes, the

typical image (shown in Fig. 5) from [26] has been pro-

cessed using the proposed methodology, demonstrating

that no features are lost: as in the original work, all

checkerboard squares are detected. The proposed flood-

filling algorithm does not rely on morphologic procedures

and allows robust outdoor detection.

Fig. 2 Robust calibration pattern proposed by Kang et al. [5]

Fig. 3 Otsu binarization of source image, as obtained by Kang et al.

[5]

Fig. 4 Otsu binarization of source image, as obtained by [5]

Fig. 5 Comparison of proposed algorithm to OpenCV using the same

input image from [26]. Red crosses OpenCV output. Green circles

output of proposed algorithm (color figure online)
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3 Methodology for Robust OMR

In this work, a robust methodology has been developed for

OMR in outdoor environments. Figure 6 summarizes the

methods, tasks, and algorithms of the proposed methodol-

ogy. The rightmost column provides illustrations of infor-

mation retrieved during the recognition process.

The main requirement posed is robustness, to find

markers in a wide range of lighting conditions. To allow

visualization of results, the following graphical elements

are created in processed images:

– A yellow circle is used to mark concentric region

centers along with an ID (identification) code.

– A circle of the same color is drawn at the center of

neighboring contiguous color regions.

– If requested, all pixels belonging to the same color

regions are painted using the same randomly generated

color. Pixels which belong to edges are marked in

yellow.

First color identified in the picture is forced to be blue

when identification of contiguous color regions is requested

(usually identifies the background). It is worth noting that

edge detection and region filling are crucial time-con-

suming steps for which parallel implementation using

OpenCL has been developed.

The methodology goes through the following steps:

– Identification of contiguous color regions Image bor-

ders are computed using a Sobel filter. Parallel filling is

performed (Sect. 3.1) to extract contiguous color

regions using pixel-to-region association.

– Extraction of high-level region information After

extracting pixels of each color region in the previous

step, properties such as area and perimeter of each

region is estimated (Table 1).

– Checkerboard identification Adjacent regions are

grouped together and their characteristics are analyzed

to predict outer position (using convex hull algorithm)

and inner squares position (testing multiple

Fig. 6 Robust outdoor OMR structure
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checkerboard sizes). Details of this procedure are

presented in Sect. 3.4.

– Target identification Region properties are used to

detect which color regions are circular (disk-shaped).

Then, circular regions whose center coincides are

grouped into a target, as described in Sect. 3.3.

3.1 Identification of contiguous color regions

With invariance to lighting conditions in mind and con-

sidering that GPU processing with OpenCL is a very effi-

cient tool to deal with color images, no binarization [5] or

seed point usage [16] is necessary. Instead, the proposed

methodology groups together all pixels of contiguous color

regions compute properties from these pixels and draw

higher level conclusions from this information. Identifica-

tion of regions method is constituted of the following steps:

1. run edge detection algorithm to split regions of

different colors;

2. sweep image pixels, clustering together regions which

are not separated by edges;

3. retrieve pixels that belong to each region and compute

useful region data such as center, area, and perimeter;

4. post process region data to extract higher level

information such as location of checkerboards and

concentric regions.

Robust edge detection is a crucial preprocessing step for

the proposed flood filling algorithm to correctly segregate

contiguous color regions. Multiple border detection algo-

rithms have been considered. Although Canny border

method [3] yields thinner edges, Sobel method [6] was

chosen because of its reasonably good accuracy [2]. In

addition, it requires a single pass and its GPU implemen-

tation is both robust in the sense that it is possible to

consider RGB components and fast, because texture sam-

plers will retrieve RGB components practically as fast as

they would retrieve a single value. The edge detection

algorithm implemented in this work computes Sobel edge

values as the maximum of absolute differences of each

RGB component. If the edge detection step fails, the pro-

posed methodology will fail to identify the optical marker;

however, in practice, for the experiments conducted, the

threshold values set for the Sobel edge detector were suf-

ficient to robustly identify the markers.

Following the edge detection, an adaptation of region

flood-filling allows the proposed algorithm to retrieve

contiguous color regions.

3.2 Parallel filling algorithm

In this work, a new parallel flood-filling algorithm is

developed to simultaneously identify all contiguous

regions without any seed points. The outline of this algo-

rithm is as follows:

1. Receive edge map and create color region map.

2. Initialize the region map by assigning each pixel a

unique color number.

3. Do until region map remains unchanged:

(a) Sweep region map from left to right, from right

to left, from top to bottom, and from bottom to

top in parallel.

(b) If current pixel is not located inside any edge

and its index is greater than previous pixel:

assign current pixel the same index than previ-

ous pixel.

Note that step 3a is pivotal in this implementation, because

it allows offloading the algorithm to the GPU. Figures 7, 8

illustrate pixel-to-region association retrieved using the

proposed algorithm. The number of parallel workitems is

equal to the image height when sweeping columns and to

image width when sweeping lines, yielding over 1000

workitems in each case when processing a full-HD

(1920� 1080 pixels) image, which is appropriate for

latency hiding purposes. Sweeping in both directions (left–

right, right–left, top–down, and bottom–up) is required,

because edge index switch only happens when current

pixel color index is greater than previous pixel color index.

3.3 Target identification

After identifying contiguous color regions, it is possible to

extract and store region data, such as which pixels belong

to each region (list of [x, y] coordinates) and from there

Table 1 Region data properties

computed in the proposed

methodology

Region property Computation method

Area Count how many pixels belong to the region

Perimeter Count how many pixels are next to edges

Average color Compute color average among pixels which belong to this region

Center Compute coordinate ([x, y]) average among pixels which belong to this region

Mean size Compute average pixel distance to region center

Mean radius Compute standard deviation of pixel distance to center
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compute parameters presented in Table 1. Combinations of

these parameters allow identification of targets (concentric

regions—rings of the same color, whose center is close, as

shown in Fig. 9) and neighboring regions (adjacent color

regions without overlap, whose properties are approxi-

mately equal). Targets are identified by a string related to

their color sequence, according to the following key:

– W: white;

– P: black;

– R: red;

– G: green;

– B: blue;

– ?: unknown color (not identified as W, P, R, G, or B).

For example, a sequence RWP?G means that the color of

the inner region is red, followed by white, black, uniden-

tified color, and green.

3.4 Checkboard identification

Checkerboard identification can be accomplished by

counting the number of contiguous color regions in the

group as well as by checking the regularity of internal

places.

A post-processing step applied to the group of neigh-

boring region locates the corners of the checkerboard and

fits a rectangle to the point cloud as detailed below:

1. Compute the convex hull of contiguous color region

centers grouped to the same region.

2. For each vertex vn in the convex hull, compute the

angle between the lines formed by vn ! vn�1 and

vn ! vn�1.

3. Sort vertexes by their angle.

4. Keep the first four vertexes and discard regions, whose

opposing angles are too different.

The number of squares in checkerboards should not be

smaller than 5� 7, because the tests showed that cluttered

scenes are less likely to generate false positives starting

from this checkerboard dimension. Maximum dimension is

21� 21 squares, which is appropriate for field construction

and assembly applications.

3.4.1 Regularity analysis

Given checkerboard dimensions, it is possible to forecast

where the centers of its internal regions should be located.

The task of checkerboard regularity analysis is accom-

plished as follows:

Fig. 7 Example image in gray and unique color map initialization
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– Use convex hull to find edge squares.

– Compute and store predicted square locations using the

four outer black squares as a reference.

– Assign regions to their closest checkerboard position.

– Reject checkerboard if more than one region is

assigned to the same position.

Regularity analysis allows automatic identification of

checkerboard dimensions by successively trying to fit dif-

ferent sizes. It can also compensate partial occlusion,

which is desirable in field applications. Both features are

demonstrated in Fig. 10.

4 Results and analyses

4.1 Indoor and outdoor optical mark recognition

An experiment has been designed to check the robustness

of the proposed methodology. A total of 270 images con-

taining four checkerboard patterns and two concentric

regions containing five concentric regions (see Fig. 11)

were photographed using different cameras and settings

(see details in Table 2). The markers were printed using

regular ink and A4 paper to simulate worst case scenarios.

Fig. 8 Final configuration and visual identification of contiguous regions

Fig. 9 Identified targets with

proper label. Left cropped

picture. Right identified

contiguous color regions.

GWBWP and RWPWG are

target color label strings,

denoting the sequence of colors

from the inside out
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In the tests performed, pre-filtering with a simple

homogeneous Gaussian filter was enough to reduce noise

while still maintaining edges identifiable at a negligible

computational cost due to use of GPU acceleration via

OpenCL. Median filtering provides the best noise removal

while still preserving borders and allows detection of pat-

terns from greater distances; simple Gaussian filter, how-

ever, still provided good results without the large

computational burden of median filter. In addition, camera

resolution and distance to optical markers can be controlled

in an outdoor industrial environment, eliminating the need

to identify very small regions.

Four lighting conditions were tested as a means to

simulate possible field conditions (Table 3). Worst case

scenarios are hard shadows and sunlight reflection on ink

(v. failed cases) and these should be addressed using low

pixel noise cameras and less reflective ink.

Figures 12, 13, 14 show sample images used to test the

methodology and the respective results. When using the

system for part identification, one is interested in optical

mark recognition as well as its unique identification. As

proposed in Sect. 3.3, the combination of targets and

checkerboards allows better identification and geometric

parameter estimation. Considering these factors, the

Fig. 10 Robust checkerboard identification under occlusion. Dimensions are identified automatically

Fig. 11 Checkerboard and target patterns used to test robustness of

the proposed methodology
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performance of the algorithms used to perform OMR has

been measured with criteria, as shown in Table 4.

4.2 Analysis of experiment

Table 5 summarizes identification performance of the

proposed OMR methodology. Hard shadows are not com-

mon field conditions; these could be corrected controlling

camera exposure and applying high dynamic range cor-

rections. These settings were included along with using no

special ink, paper or camera adjustment to test algorithm

robustness under worst case scenarios. For all these rea-

sons, performance figures excluding hard shadows are the

ones expected as worst case in the field.

Images obtained were analyzed to verify which of the

parameters from Table 2 are important for checkerboard

and target identification using performance criteria, as

presented in Table 4. One image was obtained for each

possible combination of parameters and analysis of vari-

ance tests allowed proper assessment of algorithm robust-

ness. Analysis of variance (ANOVA) [22] was then applied

to verify the influence of each parameter on algorithm

precision, recall, and F-score. Checkerboard F-Score

results are as follows:

Df Sum Sq Mean Sq F value Pr(>F)
environment 1 0.6277 0.6277 90.83 <2e-16 ***
lighting 3 0.7366 0.2455 35.52 <2e-16 ***
camBrand 2 0.0105 0.0053 0.76 0.469
filters 2 0.0216 0.0108 1.56 0.212
perspective 2 0.0048 0.0024 0.35 0.705
Residuals 259 1.7900 0.0069
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Table 2 Relevant parameters

for outdoor optical mark

recognition

Controlled variable Possible values

Camera brand Apple iPad 3 camera / Fuji W1 3D / Sony Cybershot DSC-WX7

Algorithm filter None/Gaussian/median

Environment Indoor/outdoor

Perspective Frontal/sid /skewed

Lighting Direct light/uniform shadow/soft shadow/hard shadow

Table 3 Field lighting conditions

Condition Lighting condition on marker Possible scenarios

Direct light Direct daylight Sunlight hitting marker directly

Uniform shadow Only ambient light Marker facing direction opposite to sun or cloudy environment

Soft shadow Smooth transition light / shadow Shadow from cloud/part partially cast on marker

Hard shadow Harsh transition light / shadow Shadow cast from cranes and robots on top of marker

Fig. 12 Sample test image:

WX7 camera, outdoor

environment, frontal

perspective, uniform shadow
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Fig. 13 Sample test image: Fuji

W1 camera, outdoor

environment, skewed

perspective, hard shadow

Fig. 14 Identification detail:

Fuji W1 camera, outdoor

environment, skewed

perspective, hard shadow

Table 4 Performance criteria

for the proposed identification

algorithm

Criterion Desired value per picture

True 5� 7 checkerboards 4

False checkerboards 0

Targets with five concentric regions 2

Correctly identified concentric region in targets (proper color ID) 10

False target with three or more concentric regions 0
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If hard shadow conditions are removed, the new analysis

yields:

Df Sum Sq Mean Sq F value Pr(>F)
environment 1 0.0014 0.001414 0.607 0.4369
lighting 2 0.0115 0.005765 2.475 0.0867 .
camBrand 2 0.0070 0.003517 1.510 0.2234
filters 2 0.0114 0.005685 2.440 0.0896 .
perspective 2 0.0033 0.001672 0.718 0.4892
Residuals 206 0.4799 0.002329
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

This analysis shows that it is important to prevent or

correct hard shadows should they happen in the field,

which is unexpected. The most important influence is filter

type which can be chosen to be the one that performs best

(Gaussian filter).

Concentric region F-Score:

Df Sum Sq Mean Sq F value Pr(>F)
environment 1 1.341 1.3411 29.272 1.43e-07 ***
lighting 3 4.321 1.4404 31.440 < 2e-16 ***
camBrand 2 0.542 0.2711 5.918 0.00307 **
filters 2 0.001 0.0003 0.007 0.99320
perspective 2 0.583 0.2914 6.360 0.00201 **
Residuals 259 11.866 0.0458
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Concentric region F-Score below (no hard shadow)

Df Sum Sq Mean Sq F value Pr(>F)
environment 1 0.0015 0.00154 0.116 0.7335
lighting 2 0.0559 0.02794 2.104 0.1245
camBrand 2 0.1133 0.05663 4.265 0.0153 *
filters 2 0.0002 0.00008 0.006 0.9938
perspective 2 0.0929 0.04644 3.498 0.0321 *

In the case of targets, camera brand has an important

influence. This is due to better optical systems leading to

well-defined edges and low noise inside color region.

When color identification is important, it is better to use

custom-made algorithms for each application and lighting

conditions instead of the absolute criteria used in the

implementation described herein.

The proposed methodology has limitations when shad-

ows or reflexes cause extremely abrupt variation in the

image, as shown in Figs. 15 and 16 . False negatives

occurred either because of light reflexes (glare) in the scene

or due to the presence of hard shadows. It is important to

note that identification errors mostly stemmed from the

tests carried out under very severe conditions and that the

resulting identification succeeded in the majority of the

cases. Light reflex is an important factor when illumination

is not uniform and special ink could mitigate these effects,

whereas images with hard shadows could be addressed

using high dynamic range techniques.

4.3 Considerations about running time

All algorithms have been implemented using Microsoft

Visual C# 2010 and OpenCL to offload workload to the

GPU. Table 6 shows computing times for a full-HD

(1920� 1080) picture and describes which hardware is

used for each step when extracting region data information

that is used for concentric region and neighborhood com-

putation. These figures were obtained using hardware that

was available for this research. Note that GPU computation

of Sobel borders takes negligible time in comparison with

the other steps. In addition, although computation of

median filter yields the best results, a simpler Gaussian

filter takes negligible time and still produces accept-

able results. Note that, while there are very fast optical

marker recognition algorithms that run even in smart-

phones, these are not designed to be robust under different

lighting settings or occlusion.

The proposed parallel filling algorithm for contiguous

color detection is designed to run in parallel and fits nicely

the SIMD (Single Instruction, Multiple Data) structure of

GPUs, since all workitems perform approximately the

same amount of computation per kernel launch.

Segregation of region pixels and computation of region

data properties, on the other hand, are more suited to the

MIMD (Multiple Instruction and Multiple Data) structure

Table 5 Summary of

identification performance of

the proposed algorithm

Parameter Global results (average) (%) Results excluding hard shadows (%)

Checkerboard precision 98.2 98.5

Checkerboard recall 94.5 98.8

Checkerboard F-Score 95.5 98.5

Target precision 92.0 98.0

Target recall 89.8 97.2

Target F-Score 90.3 97.2

Target color accuracy 79.5 83.5
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of the GPU considering that the number of pixels per

region may vary considerably.

Runtime of the proposed algorithm was compared to

that presented in [7]. Their reported runtime to identify a

100 pixel radius circle, a 100� 100 square, and a random

pattern (their three test cases) that they created was 38017

ms, although that is probably a typo and their real result is

380 ms. To fully exploit GPU parallelism, a joint image

with multiple circles, squares, and pattern was created. Its

dimensions are 1200� 1000 pixels, whose region filling is

presented in Fig. 17. Note that the proposed methodology

requires no seed points and runs in 523 ms using the Intel

HD 4000, 482 ms in the Tesla C1060, and 282 ms in the

Radeon 7970, which is 380=ð282=24Þ ¼ 32 times faster

Fig. 15 False checkerboard and

target negatives

Fig. 16 False negatives color

region analysis. Left edges were

not properly identified. Right

light reflex impairs edge

detection

Table 6 Algorithm runtime

when processing full-HD

(1920� 1080) images

Algorithm step and Core i5-3317U Xeon X5650 Core i7 3820

execution hardware 1.7GHz ? Intel HD 2.66 GHz ? Tesla 3.6GHz ?

4000 GPU C1060 Radeon 7970

Median filter (GPU) 0.45 0.18 0.1

Contiguous color 0.29 0.14 0.1

detection (GPU)

Pixel list per color region 0.19 0.14 0.15

(CPU?GPU)

Region data information 0.41 0.26 0.22

(parallel CPU)

Total time 1.34 0.72 0.57

Times in seconds
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despite the extra time spent filling background pixels which

alone would probably take way longer than filling the

patterns due to its having as many pixels as the other

regions combined.

To compare results from the proposed algorithm with

RegionCount, Tracing method, classical recursive method,

and column method presented in [11], results from Table 6

obtained with the Radeon 7970 were downscaled to

512� 512, which was the image size used in these algo-

rithms. Table 7 shows that, despite not needing any seed

points, the proposed algorithm is significantly faster than

the other methods.

4.4 Experiments in relevant environment

To demonstrate robustness of the method in a relevant

environment, under conditions closer to a real application,

experiments were conducted at Petrobras’ Research Center

(CENPES— Fig. 18) and demonstrated that, even though a

simple phone camera1 was used, it was possible to identify

markers from a distance. A custom designed system, with

better optics and less distortions than a consumer-level

system, is expected to have be able to handle even greater

distances using industrial cameras with better optical sys-

tem and controllable zoom capabilities.

In all tested settings, the obtained results were satis-

factory in terms of identifying the presence of the optical

markers and their position in the image. Figures 19, 20

show that markers are identified even in the presence of

shadows cast by the equipment directly on top of it. Fig-

ure 21 demonstrates that the methodology is robust to

partial occlusion in a real setting. Figures 22, 23 present

correct OMR in curved surfaces under nonuniform light-

ing. It is worth noting that the placement of the markers for

these tests was chosen to test these limit cases. In a real

application, the use of industrial cameras and placement

and marker placement in uniform regions will increase

system accuracy.

4.5 Preliminary optical marker detection

In real applications, machine learning techniques can be

used to allow detection of optical markers that appear small

in the image and guide the camera automation system to

Fig. 17 Region filling image

for runtime comparison

purposes

Table 7 Performance comparison of the proposed flood-filling

algorithm in a 512� 512 image

RegionCount Tracing Classical Column OpenCL (proposed)

126.1 144.7 175.9 5681.2 72.1

Times in ms

1 13 MP Samsung Galaxy S4 without any special features
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zoom into image locations, where optical markers are

likely to be found, by providing bounding boxes. To obtain

a preliminary bounding box of the optical marker, a single

hidden layer feed-forward neural network was trained to

recognize optical markers. Color Haar features are

extracted from from the pictures using an OpenCL imple-

mentation of image integrals [29], as shown in Fig-

s. 24 and 25. This method has the advantage of that it does

not require edge information, but precise optical marker

location still requires the refinements implemented in the

proposed methodology to be able perform OMR robustly.

Considering that optical markers are designed to be

easily identified, a very high accuracy is expected. In fact,

using a neural network with a single hidden layer yields

99.5% accuracy. The classifier’s precision is 100% and

recall is 90% which indicates that, taking into considera-

tion the higher performance of neural networks in visual

tasks, this approach is valid for initial bounding box

extraction prior to refinement using the proposed

methodology to obtain more precise optical marker posi-

tion and orientation.

5 Conclusions

This paper has presented a robust methodology for Outdoor

Optical Mark Recognition. The OMR methodology applied

to planar checkerboard detection allows robust identifica-

tion under extremely variable lighting conditions and par-

tial occlusion. Experiments demonstrated that, excluding

hard shadow scenes, the technique is robust to variations in

camera brand, lighting conditions, perspective, and indoor/

outdoor environments. Under normal outdoor conditions

without hard shadows being projected on top of the optical

markers, precision and recall are expected to be above

97%.

Previous methods use binarization and thresholding

techniques to identify points of interest in images

Fig. 18 Optical markers placed

in simulated industrial

environment at Petrobras’

Research Center (CENPES).

Left storage tank. Center

pressure vessel. Right heat

exchanger

Fig. 19 Correct marker

identification in a heat

exchanger

Fig. 20 Detail of identification

of optical marker in the

presence of shadow cast by the

equipment
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containing optical markers, notably corners, and white

regions [5]. The proposed approach takes advantage of

GPU texture processing hardware via heterogeneous

computing with OpenCL to implement faster edge detec-

tion and region filling algorithms. In particular, the pro-

posed parallel region filling algorithm requires no seed

points, identifies all contiguous color regions, and runs at

least two times faster than previous methods using color

images. Higher level information processing is done using

the CPU, because its computing time is small in compar-

ison with edge detection/region filling and its data-depen-

dent structure is more suited to MIMD architectures. This

CPU/GPU combination allows robust OMR to be per-

formed under 3 s using current hardware, which is appro-

priate for field use when positioning large parts.

Experiments conducted at Petrobras’ Research Center

(CENPES) demonstrated that the methodology is capable

of performing OMR in an outdoor industrial environment.

Preliminary classification of optical markers using neural

networks in Haar image features can provide bounding

boxes for marker candidates. This information may be used

to guide the camera system to zoom in those areas and for

detailed information extraction using the proposed

methodology, thus allowing for optical marker identifica-

tion even when they are small in the original image.

Further investigation is necessary to check whether light

reflexes or hard shadows affects the use of the OMR

methodology in real applications. However, it is expected

that the approach will be even more robust in real settings

considering that it was tested in severe conditions, where

cameras were used in fully automatic mode and optical

markers were printed using regular ink and paper. Future

work will also analyze how to utilize region color infor-

mation for arbitrary image registration.

Although the methodology is capable of detecting small

checkerboards and targets in pictures, the influence of their

size in identification has not been assessed; because optical

markers can be printed in a size comparable to equipment

parts and industrial computer vision systems, specification

can include high-resolution cameras and high zoom

Fig. 21 Top marker not

identified due to severe

occlusion. Bottom marker

recognized in the presence of

partial occlusion

Fig. 22 Correct identification

of optical markers in a curved

surface, subject to shadow and

exposed to light
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capabilities. Results demonstrate that the OMR methodol-

ogy performance is not affected by camera brand, prepro-

cessing filters, and perspective (orientation) of the optical

markers, which means that there is no special requirement

with regard to their positioning considering OMR

performance.

Fig. 23 Details of correct OMR

when marker is exposed to light,

soft shadow, and object

curvature

Fig. 24 Extracted images containing samples of the environment

3118 J Braz. Soc. Mech. Sci. Eng. (2017) 39:3103–3120

123



The proposed methodology can be used with high-res-

olution high-quality cameras and optical markers to con-

struct a robust, computer vision-based system for outdoor

part identification and positioning.
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