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ABSTRACT: 
 
Pasture and croplands play an important role in Brazil’s economic and political scenarios, once its PIB (Raw Internal Product) is 
mainly based on what is exported from the rural production, such as meat and soybean, and government, with its regulations, is part-
responsible for the establishment and maintaining of the conditions so that the trades can go well. In addition, these two types of 
land use correspond together to aprox. one third of the country extension. Moreover, frequently lands occupation is subject of 
discussion concerning its potential use for the reason of conflicts including Brazilian traditional communities, landless people and 
big farmers. Considering it, mapping pasture and croplands accurately is crucial for the country administration, in both economic and 
political spheres. Certainly, remote sensing is the very manner to tackle this issue, although this may not be an easy task due to the 
spectral similarity between these patterns. This work, hence, aims to distinct pasture from croplands in an experimental subset area of 
Brazilian Cerrado biome, using remote sensing metric images derived from one-year time series of the Landsat 8 products. In order 
to achieve this goal, we utilized six bands of the OLI sensor and calculated seven metrics, attaining a compiled dataset with 42 
layers. We performed an object-based supervised classification with the Random Forest algorithm, considering both spectral and 
geometrical attributes. Results showed global accuracy of 80%, with Kappa index of 0.6, and the potential time series have in 
separating targets spectrally similar. 
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1. INTRODUCTION 
 
Pasture and croplands comprise two different types of land use, 
which are very important for Brazil, once its export matrix is 
mainly based on their production. Having these areas well 
mapped and accounted is then a strategic governmental action 
of knowing its territory, which allows making predictions of in 
and outcomes, acting like an ancillary for decision makers in 
protecting the country economy. Although their importance, 
and regarding this mapping is altogether conducted through 
remote sensing techniques, it is not an easy task to have these 
areas well mapped and distinguished due to their similarity in 
spectral response, causing confusion among samples in the 
feature space when a single date image is being used to produce 
the classification map. This generally results in a poorly 
classified map, where non-rare pasturelands are wrongly 
predicted as if they were crop areas, and crop areas as 
pasturelands. Incorporating time in scheme classification might 
be the solution for this issue, once each different surface pattern 
have its own behaviour along the time, and this is what differs 
the land use and land cover, although the similarity in spectral 
response they may present. Time series present then a very high 
potential in exploring temporal variations of pixels’ reflectance 

values in a sequence of satellite imagery, allowing the usage of 
this information for better discrimination of targets spectrally 
similar. 

Many researches has been conducted in order to analyse 
the distinction between patterns using time series, thus, 
exploring the temporal behaviour of the targets to assist the 
discrimination among them (Malaquias et al., 2017; Parente & 
Ferreira, 2017; Santos et al., 2017; Souza et al., 2017; Costa et 
al., 2018; Costa, 2019; Bendini et al., 2019). Parente et al. 
(2017) and Parente (2017) tried to map Brazil’s pasturelands 

using time series of the Landsat products for the year 2015. 
They used the bands of the OLI sensor to derive metric images 
as well as vegetation indexes and LSMM (Linear Spectral 
Mixture Model) fraction images so as to compose the feature 
space. Parente & Ferreira (2018) attempted to assess the 
dynamics of the pasturelands in Brazilian territory using time 
series from 2000 to 2016 of the products of MODIS satellite. 
Likewise, Parente et al. (2019) used time series derived from 
Landsat 8 products, this turn composing a historical series from 
1985 to 2017, to evaluate the pasturelands and livestock 
dynamics along the Brazilian territory through these years. All 
of these works culminated in an effort triggered by several 
crews and institutes, which intended to yield annual land-use 
and land-cover maps for the Brazil entire territory using the 
whole Landsat historical observation archive. This project was 
named Mapbiomas. 

However, these approaches have in common the fact that 
they did not consider the spatial correlation among the pixels 
during the classifying process (Assis et al., 2016), what may 
lead to classification inconsistencies such as salt-and-pepper 
noise, which is inherent to pixel-based classifications (Campos 
et al., 2013). At this aspect, geographic object-based image 
analysis (GEOBIA) may lend a set of tools to attend this 
demand, as it provides a manner to take in consideration the 
spatial correlation among the pixels (Hay & Castilla, 2008; 
Blaschke, 2010; Blaschke at al., 2014; Körting, 2012). Once we 
found this gap in literature, we tackled to obtain a satisfactory 
distinction between pasture and croplands in Brazilian Cerrado 
biome, using a set of metric images derived from one-year time 
series of Landsat 8 products, considering attributes both spectral 
and geometrical, extracted from the objects of a segmented 
dataset. 
 

���������������	
�������
	��������������� �����������

Authorized licensed use limited to: INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. Downloaded on December 08,2020 at 18:04:47 UTC from IEEE Xplore.  Restrictions apply. 



 

2. MATERIAL AND METHODS 
 
2.1 Data and study area 
 
In this work, the methodological approach was implemented in 
a stepwise guided by the stages depicted in Figure 1. Landsat 8 
satellite imagery (Roy et al., 2014) was used as data source and 
six bands of the OLI sensor were elected to perform the 
procedures, which are the bands 2 to 7. In order to achieve the 
objectives, methodology was led by a first step of images 
download followed by bands election. 
 

 
Figure 1. Methodological approach flow chart. 

This work was conducted in a subset of Brazilian Cerrado 
biome and comprises an area of approximately 625 km², with 
sides roughly of 25 km long. The subset is placed over Goiás 
state and includes portion of four municipalities: Cachoeira 
Alta, Caçu, Itarumã and Paranaiguara. As the Landsat archive is 
set to the Northern hemisphere, all data was reprojected to the 
Southern hemisphere, changing the datum from WGS84 to 
SIRGAS2000, which has a better adjustment to the South 
American continent, although they both use the same GSR-80 
revolution ellipsoid. 

Study area was intentionally located in the overlaying 
swath of two Landsat adjacent orbits (Luiz et al., 2015), 
intending to boost the time series by twofolding the number of 
observations, once the analysis was done considering a year, 
which was 2018. We chose this year to perform the analysis 
because it is the latest entire year of Landsat imagery by the 
time of this work. In addition, to get a complete year of 
phenological characteristics of the targets. This way, we went 
from 22-23 images (the amount of Landsat observations in a 
unique scene a year, due to its 16-days revisit time) to 45 
images, increasing the time series observations. Thus, study area 
comprises images of both 222/73 and 223/73 scenes (Figure 2). 
All images were then clipped to the subset limits to enclose the 
data into the study area. 
 

 
Figure 2. Overlaying Landsat swath and study area. 

2.2 Spectral similarity 
 
Once the study area holds other types of land cover, 

beyond the ones herein analysed, it was needed to take these 
areas off of the data. To do so, we used the Mapbiomas land 
cover map to mask non-pasture and non-croplands patterns in 
study area. Figure 3 depicts the other types of land cover that 
were masked using Mapbiomas classification as reference. 
Regarding the objective of this work, it was necessary to do 
because having other types of land cover in the study area could 
cause a non-holistic analysis between the separation concerning 
pasture and croplands specifically, once other classes might 
interfere with omission/commission errors due to their spectral 
response, rendering a misunderstanding of the confusion 
between pasture and croplands (Müller et al., 2015). 

Aiming to deeply exam the confusion between the patterns 
above cited , we checked the spectral similarity among them by 
means of analysing their spectral signature besides their 
appearance in a true colour image. Figure 4 presents a dry 
season image clipping of the study area, extracted from Google 
Earth (GE), together with two panels, one showing an enlarging 
of a pasture area, and the other one, an enlarging of a cropland. 
Figure 5, by its turn, presents the spectral curves of both pasture 
and croplands patterns, yielded from several samples of each, 
considering the OLI sensor bands herein explored. 
 

 
Figure 4. Dry season true colour image of the study area. 

 
Figure 5. Spectral profiles of pasture (left) and cropland (right). 

As it can be seen, both true colour image and spectral 
profiles show the similarity between pasture and croplands, and 
it is especially important for the latter, once those are the 
information that the classifier algorithms use to perform the 
classification, and where the confusion arise. Spectral curves of 
both patterns are practically the same, except concerning the 
croplands sixth band (SWIR 2), for which the reflectance values 
are slightly higher. It implies that during the classification 
process, dry pasture may be confused with fallow areas, which 
hold different land use and cannot be ensembled in the same 
class. Although this analysis have been done for the dry season, 
in the wet season the same occurs, however regarding the 
greenness of both pasture grasslands and growing croppings. 
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Figure 3. Land use and Land cover in the study area according to the Mapbiomas classification, and masking stages. 

2.3 Data cube, time series and cloud coverage 
 
Next, we created a data cube (Appel & Pabesma, 2019) 

containing six dimensions, which are represented by the bands 
prior mentioned. Time series, hence, will have six dimensions 
as well. In our methodological approach, feature space is 
composed by the values of metric images calculated from the 
time series of each band. Each one of the bands along the time 
were aggregated into one single image (Gregory, 2003), which 
represents a calculated metric. Seven metrics were calculated: 
mean, median, maximum, minimum, range, standard deviation 
and sum (Körting, Câmara & Fonseca, 2013). Then, we 
gathered all resulted data in a unique dataset containing 42 
metric images, in which further procedures were applied. 

We observed that cloud coverage is quite present in our 
time series. From the total of 45 images, 37 are affected by 
some cloud cover. In order to analyse the impact of cloud 
coverage in the time series, we divided the images in six groups 
according to the level of coverance: (i) free at all; (ii) rather 
free; (iii) low medium; (iv) high medium; (v) almost total; and 
(vi) total, as depicted in Figure 6. It is worth mentioning that 
this coverage index was not created based on percentage levels, 
but in the visual appearance. Table 1 shows the coverence 
classes and the amount of images embedded in each, as well as 
its percentile. 

 
Figure 6. Cloud coverage levels. 

Coverance Observations Percentile (%) 
Total 7 15,56 
Almost total 7 15,56 
High medium 8 17,78 
Low medium 9 20,00 
Rather free 6 13,33 
Free at all 8 17,78 

- 45 100,00 
Table 1. Cloud coverage index and its related image amount. 

Intending to analyse the magnitude impact of the cloud 
coverage over the data, hence trying to avoid a great reduction 
in the time series, we tested what it would be like calculating 
the metrics with the clouds though, creating different datasets 
with each one of the groups of cloud coverance. First, we 
gathered only free at all images in a new dataset, then free at all 
and rather free, then free at all up to low medium, and so on. 
After all these datasets were created, we calculated the mean 
and created an image with this metric for each dataset. As a 
result, we observed that no matter the cloud coverage level, 
magnitude of cloud coverance over the time series is still an 
issue, even if considered only low coverance (rather free 
images). 

Therefore, we reduced the amount of images composing 
the time series due to the quality of images, thus, decreasing the 
number of observations, going from the 45 initials, to eight 
images free at all of clouds, which were the images actually 
available to compose the time series. Thus, the image metrics 
were recalculated, now using only the eight images just 
mentioned, and the benchmark dataset was recreated. Despite 
this decrease in the time series observations, the amount of 
images composing the final compiled dataset remained the 
same, 42, once the number of bands and metrics calculated from 
them kept likewise the same. 

 
2.4 Object-based classification and feature selection 

 
In our methodology, we focused in an object-oriented 

supervised classification, so as to consider spatial correlation 
among the pixels, beyond the spectral information only. 
Compiled dataset underwent a segmentation process driven in 
the eCognition © software. It created 7344 objects well fitted to 
the features on the surface. To do so, it was used the 
multiresolution segmentation algorithm (Baatz & Schäpe, 
2000), with scale parameter of 100, shape 0.1 and compactness 
0.5. This step is followed by the feature extraction. Figure 7 
depicts the methodological approach in a more detailed way. 

 
Figure 7. Detailed methodological approach flow chart. 
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83 Attributes Classification 37 Attributes Classification 
Geometrical Attributes Spectral Attributes Geometrical Attributes Spectral Attributes 

Area 
Length/Wdth (only 
main line) 

Border Contrast 
Mean of 
inner border 

Area 
Number of edges 
(polygon) 

Brightness 

Area (excluing 
inner polygons) 

Main direction Brightness 
Mean of 
outer border 

Area (excluing 
inner polygons) 

Number of inner 
objects (polygon) 

Max. diff. 

Area (incluing 
inner polygons) 

Maximum 
branch length 

Circular 
Mean 

Min. pixel value 
Area (incluing 
inner polygons) 

Number of pixels Mean 

Asymmetry 
Number of edges 
(polygon) 

Circular 
StdDev 

mode(Minimum
) 

Asymmetry Perimeter (polygon) mode(Minimum) 

Average branch 
length 

Number of inner 
objects (polygon) 

Circular 
StdDev/Mean 

Number of 
brighter objects 

Average length of 
edges (polygon) 

Polygon self-inter- 
section (polygon) 

quantile(50) 

Average length of 
edges (polygon) 

Number of pixels 
Contrast to 
neighbor pixels 

Number of 
darker objects 

Border index 
Radius of largest 
enclosed ellipse 

Standard daviation 

Avrg. Area represen-
ted by segments 

Number of segments 
Edge Contrast of 
neighbor pixels 

quantile(50) Border Length 
Radius of smallest 
enclosed ellipse  

Border index Perimeter (polygon) 
HSI Trans-
formation Hue 

Ratio Compactness Rectangular Fit 
 

Border Length 
Polygon self- 
intersection (polygon) 

Max. diff. Ratio to scene 
Compactness 
(polygon) 

Rel. Border to 
Image Border  

Compactness 
Radius of largest 
enclosed ellipse 

Max. pixel value 
Ratio to 
super-object 

Density Roundness 
 

Compactness 
(polygon) 

Radius of smallest 
enclosed ellipse 

Mean diff. to bri-
ghter neighbors 

Rel. border to 
brighter objects 

Eliptic Fit Shape index 
 

Curvature/length 
(only main line) 

Rectangular Fit 
Mean diff. to 
darker neighbors 

Skewness Length 
Stddev of length of 
edges (polygon)  

Degree of skeleton 
branching 

Rel. area to 
super-object 

Mean Diff. to 
neighbors (abs) 

Standard 
daviation 

Length of longest 
edge (polygon) 

Thickness 
 

Density 
Rel. Border to 
Image Border 

Mean Diff. 
to neighbors 

StdDev diff. to 
super-object 

Length/Thickness Volume 
 

Distance to super- 
object center 

Rel. inner border 
to super-object 

Mean diff. 
to scene 

StdDev Ratio to 
super-object 

Length/Width Width 
 

Eliptic distance to 
super-object center 

Rel. rad. position 
to super-object 

Mean diff. to 
super-object 

StdDev. to 
neighbor pixels 

Main direction 
  

Eliptic Fit Roundness Mean 
Is center of 
super-object 

Shape index 
     

Is end of super-object 
Stddev Curvature 
(only main line)      

Length 
Stddev of area repre-
sented by segments      

Length of longest 
edge (polygon) 

Stddev of length of 
edges (polygon)      

Length of main line 
(no cycles) 

Thickness 
     

Length of main line 
(regarding cycles) 

Volume 
     

Length/Thickness Width 
Length/Width Width (only main line) 

Table 2. Both geometrical and spectral attributes used in the classifications. 

With the aim of enhance the classification results, feature 
extraction was conducted considering both spectral and 
geometric contexts. Thus, it was selected spectral attributes, 
such as mean and standard deviation of the pixel values in each 
polygon (object), as well as geometrical attributes, such as area 
and border length of each polygon likewise. After the feature 
extraction, these attributes were involved in a data mining 
process (Fayyad, Piatetsky-Shapiro & Smyth, 1996) in the 
Weka software. In the same platform, the Random Forest 
algorithm (Breiman, 2001) was elected to perform the 
classification due to its ability to deal with large data not 
overfitting. The model was trained using 100 trees to compose 
the forest depth. 

 
2.5 Methodology assessment and classifying validation. 

 
We tackled the analysis by means of quantity of attributes 

involved in the classification. In order to assess the contribution 
of the attributes quantity in the algorithm performance, we did 
the classification twice, on the one hand considering 83 
attributes, among spectral and geometrical, and on the other 

hand, we decreased the quantity, using 37 attributes, among 
spectral and geometrical as well. List of the attributes, both 
spectral and geometrical, utilized in the classifications can be 
consulted in the Table 2. 

Training phase was done by means of electing specific 
polygons for each class from the segmentation archive 
considering GE images as reference (Olofsson, et al., 2014). 
These images are dated from 25th July 2018, therefore, 
according to the date of our methodological approach. Thus, we 
used GE images to classify manually the selected polygons, 
which would be then utilized as samples to train the automated 
classifier algorithm. 

Likewise, accuracy assessment was made considering GE 
images. We plotted 200 points, randomly spread along the study 
area, and classified each one of them according to their actual 
land cover as it was seen in GE images. This way, GE images 
were considered as our ground truth. After all accuracy points 
were classified, we performed the accuracy assessment by 
means of cross validation.  It is also worth mentioning that these 
validation procedures were applied to both classifications using 
the same set of points (Colditz, 2015). 
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Figure 8. Comparison between: a) Mapbiomas classification; b) 83 attributes classification; and c) 37 attributes classification. 

 
3. RESULTS AND DISCUTION 

 
The results evaluation was conducted by means of both analysis 
of the confusion matrices values and comparison of the 
classification results with the Mapbiomas classification map, 
which is being considered in this work as reference of accuracy. 
Global accuracies and kappa indexes of both classifications 
were very similar, although they were slightly higher for the 37 
attributes classification. These values for the 83 attributes 
classification were 80% and 0.6, respectively, whereas for the 
37 attributes classification were 81% and 0.61. In the same way, 
user/producer accuracies and commission/omission errors of the 
classes were close to, ranging no more than three percentile 
points. 

For the sake of the proximity concerning the accuracy 
values, this may not be the best method to assess which one of 
the classifications had the best performance. In fact, considering 
the comparison between the results depicted in Figure 8, they 
appear to be alike, although there has been uncertainties 
between them. Despite their likeness, 83 attributes classification 
visually seems to be closer to the Mapbiomas classification, 
rather than the 37 attributes classification. Although there had 
been misclassification, polygons of the first approach matches 
to the reference better than the latter ones. 

This approaching between the results reveals that 
increasing the number of attributes feeding the classifier do not 
yield better results. It seems like reaching a specific number of 
attributes, classification achieves a level of performance, that 
increasing them do not corroborate for bettering the results. 
However, regardless the accuracy in terms of values, we saw a 
tendency of an increasing in the rightness of the classification 
with the increase of the number of attributes. Thus, there may 
be in actual gains in the classification results increasing the 
quantity of attributes, and the coincidence in the accuracy 
values may be accounted to statistical issues regarding the 
sampling strategy. 
 
 

4. CONCLUSIONS AND FINAL REMARKS 
 
With this work, we showed the potential of the time series, 
coupled with the use of geometrical attributes, in separating 
targets spectrally similar during the classification process. It is 
also important to highlight the contribution that working on the 
overlaying swath of Landsat orbits had in the increasing of the 
number of observations. With this strategy, we could retain in 
the time series a quantity of images that were still favourable to 

the classifier algorithm to identify the temporal behaviour of the 
targets and thus differentiate between them. If instead of it were 
used images of only one scene, maybe we would not have 
consistent images to compose the time series due to the 
reduction owed to the cloud coverage. 

Of course, the reduction that time series underwent for the 
sake of cloud coverage contributed for the underrated 
predictions that both classifications went through, given the 
misclassification we observed in both cases. In spite of it, we 
still observed a consistency in the results, regarding the 
correspondence between them and the classification reference. 
This points to the potential contribution of this methodology 
and implies that with a wider and denser time series we might 
reduce the impact of cloud coverage, once we might have more 
images free of clouds. Thus, we might yield classifications 
much more faithful and loyal to the ground truth, as a higher 
quantity of temporal characteristics of the targets would be 
preserved. 

Finally, it is worth to say that working on the overlaying 
swaths, intending to obtain more robust time series, may restrict 
the area of analysis, once swaths overlay in a relatively narrow 
path, around 20 km wide close to Equator, increasing toward 
the poles. To solve this issue, strategies of integrating data from 
different sensors using harmonizing techniques, therefore, 
magnifying the number of observations, allow the execution of 
the analysis not only in the overlaying swaths, but in any area 
where these techniques are implemented. 
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