Close

1. Identity statement
Reference TypeJournal Article
Siteplutao.sid.inpe.br (namespace prefix: upn:33M4QT8)
Holder Codeisadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S
Identifier8JMKD3MGP3W/474NU7N
Repositorysid.inpe.br/plutao/2022/06.15.12.32.44   (restricted access)
Last Update2022:06.20.17.25.55 (UTC) lattes
Metadata Repositorysid.inpe.br/plutao/2022/06.15.12.32.45
Metadata Last Update2023:01.03.16.52.55 (UTC) administrator
DOI10.5194/isprs-annals-V-3-2022-255-2022
ISSN0924-2716
Labellattes: 4816443925174561 1 SilvaFerrQueiSant:2022:SPSESA
Citation KeySilvaSouzFerrQuei:2022:SpSeSa
TitleSpatiotemporal segmentation of satellite image time series using self-organizing map
Year2022
Access Date2025, Dec. 08
Type of Workjournal article
Secondary TypePRE PI
Number of Files1
Size33575 KiB
2. Context
Author1 Silva, Baggio Luiz de Castro e
2 Souza, Felipe Carvalho de
3 Ferreira, Karine Reis
4 Queiroz, Gilberto Ribeiro de
Resume Identifier1
2
3 8JMKD3MGP5W/3C9JHKN
4 8JMKD3MGP5W/3C9JHBC
Group1 CAP-COMP-DIPGR-INPE-MCTI-GOV-BR
2 SER-SRE-DIPGR-INPE-MCTI-GOV-BR
3 DIOTG-CGCT-INPE-MCTI-GOV-BR
4 DIOTG-CGCT-INPE-MCTI-GOV-BR
Affiliation1 Instituto Nacional de Pesquisas Espaciais (INPE)
2 Instituto Nacional de Pesquisas Espaciais (INPE)
3 Instituto Nacional de Pesquisas Espaciais (INPE)
4 Instituto Nacional de Pesquisas Espaciais (INPE)
Author e-Mail Address1 baggio.silva@inpe.br
2 lipecaso@gmail.com
3 krfgomes@gmail.com
4 gilberto.queiroz@inpe.br
JournalISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Volume3
Pages255-261
Secondary MarkA1_GEOCIÊNCIAS A2_INTERDISCIPLINAR A2_CIÊNCIAS_AMBIENTAIS B1_ENGENHARIAS_IV B1_BIODIVERSIDADE C_CIÊNCIAS_AGRÁRIAS_I
History (UTC)2022-06-15 12:50:15 :: lattes -> administrator :: 2022
2022-06-20 17:24:31 :: administrator -> lattes :: 2022
2022-06-20 17:25:57 :: lattes -> administrator :: 2022
2023-01-03 16:52:55 :: administrator -> simone :: 2022
3. Content and structure
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
Content TypeExternal Contribution
Version Typepublisher
KeywordsSpatiotemporal Segmentation
Satellite Image Time Series
Land Use and Land Cover Changes
Unsupervised Classification
Clustering Algorithms
Earth Data Cubes
AbstractNowadays, researchers have free access to an unprecedentedly large amount of remote sensing images collected by satellites and sensors with different spatial, temporal, and spectral resolutions. This scenario has promoted the use of satellite image time series for spatiotemporal analysis. This paper presents a methodology for spatiotemporal segmentation of satellite image time series. Spatiotemporal segmentation finds homogeneous regions in space and time from remote sensing images based on spectral features. The proposed approach is unsupervised based on the self-organizing map (SOM) neural network and hierarchical clustering algorithm. It was implemented and applied to a region in the Mato Grosso state, Brazil. The results were evaluated using qualitative and quantitative approaches. In the qualitative approach, visual analysis was performed based on the land use and land cover map of the TerrraClass Cerrado project. In the quantitative approach, supervised and geometric metrics were used to analyze the quality of the produced segments. The results obtained are promising since the segments produced were homogeneous and with a low occurrence of over-segmentation.
AreaSRE
Arrangement 1urlib.net > BDMCI > Fonds > Produção pgr ATUAIS > CAP > Spatiotemporal segmentation of...
Arrangement 2urlib.net > BDMCI > Fonds > Produção pgr ATUAIS > SER > Spatiotemporal segmentation of...
Arrangement 3urlib.net > BDMCI > Fonds > Produção a partir de 2021 > CGCT > Spatiotemporal segmentation of...
Arrangement 4urlib.net > BDMCI > Fonds > Produção a partir de 2021 > CGIP > Spatiotemporal segmentation of...
doc Directory Contentaccess
source Directory Contentthere are no files
agreement Directory Contentthere are no files
4. Conditions of access and use
Languageen
Target Fileisprs-annals-V-3-2022-255-2022.pdf
Reader Groupadministrator
lattes
Visibilityshown
Archiving Policydenypublisher denyfinaldraft24
Read Permissiondeny from all and allow from 150.163
Update Permissionnot transferred
5. Allied materials
Next Higher Units8JMKD3MGPCW/3F2PHGS
8JMKD3MGPCW/3F3NU5S
8JMKD3MGPCW/46KUATE
8JMKD3MGPCW/46KUES5
Citing Item Listsid.inpe.br/bibdigital/2013/10.18.22.34 - 47
sid.inpe.br/bibdigital/2013/10.12.22.16 - 39
sid.inpe.br/bibdigital/2022/04.03.22.23 - 34
sid.inpe.br/bibdigital/2022/04.03.23.11 - 25
sid.inpe.br/mtc-m21/2012/07.13.14.49.22 - 8
sid.inpe.br/mtc-m21/2012/07.13.14.53.08 - 6
URL (untrusted data)https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2022/255/2022/
DisseminationWEBSCI; PORTALCAPES; COMPENDEX; SCOPUS.
Host Collectiondpi.inpe.br/plutao@80/2008/08.19.15.01
6. Notes
Empty Fieldsalternatejournal archivist callnumber copyholder copyright creatorhistory descriptionlevel e-mailaddress format isbn lineage mark mirrorrepository month nextedition notes number orcid parameterlist parentrepositories previousedition previouslowerunit progress project rightsholder schedulinginformation secondarydate secondarykey session shorttitle sponsor subject tertiarymark tertiarytype usergroup
7. Description control
e-Mail (login)simone
update 


Close