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Abstract. The Rapid Refresh Forecast System (RRFS) is
currently under development and aims to replace the Na-
tional Centers for Environmental Prediction (NCEP) oper-
ational suite of regional- and convective-scale modeling sys-
tems in the next upgrade. In order to achieve skillful forecasts
comparable to the current operational suite, each component
of the RRFS needs to be configured through exhaustive test-
ing and evaluation. The current data assimilation component
uses the hybrid three-dimensional ensemble—variational data
assimilation (3DEnVar) algorithm in the Gridpoint Statistical
Interpolation (GSI) system. In this study, various data assim-
ilation algorithms and configurations in GSI are assessed for
their impacts on RRFS analyses and forecasts of a squall line
over Oklahoma on 4 May 2020. A domain of 3 km horizon-
tal grid spacing is configured, and hourly update cycles are
performed using initial and lateral boundary conditions from
the 3 km grid High-Resolution Rapid Refresh (HRRR). Re-
sults show that a baseline RRFS run is able to represent the
observed convection, although with stronger cells and large
location errors. With data assimilation, these errors are re-
duced, especially in the 4 and 6 h forecasts using 75 % of the
ensemble background error covariance (BEC) and 25 % of

the static BEC with the supersaturation removal function ac-
tivated in GSI. Decreasing the vertical ensemble localization
radius from 3 layers to 1 layer in the first 10 layers of the hy-
brid analysis results in overall less skillful forecasts. Convec-
tion is greatly improved when using planetary boundary layer
pseudo-observations, especially at 4 h forecast, and the bias
of the 2 h forecast of temperature is reduced below 800 hPa.
Lighter hourly accumulated precipitation is predicted better
when using 100 % ensemble BEC in the first 4 h forecast, but
heavier hourly accumulated precipitation is better predicted
with 75 % ensemble BEC. Our results provide insight into
the current capabilities of the RRFS data assimilation sys-
tem and identify configurations that should be considered as
candidates for the first version of RRFS.

1 Introduction

The increase in computational resources over the last sev-
eral decades has allowed a considerable increase in hor-
izontal resolution in numerical weather prediction (NWP)
(e.g., Bauer et al., 2015; Yano et al.,, 2018). Currently,
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many NWP centers have developed and use high-resolution
models operationally for short-range weather forecast guid-
ance (e.g., Bannister et al., 2020). These models have pro-
vided more realistic forecasts of hazardous weather events
where deep convection is explicitly resolved (e.g., Lean
et al., 2008). Typically, in models with grid spacing less
than 4 km, the deep cumulus parameterization is turned off
and convection is treated explicitly, although not necessary
completely resolved. Therefore, such configurations are of-
ten called convection-allowing models (e.g., Schwartz and
Sobash, 2019).

The current suite of operational convection-allowing mod-
els at the National Centers for Environmental Prediction
(NCEP) consists of multiple dynamical cores and physics
schemes, none of which have many shared components with
their global counterpart, the Global Forecast System (GFS).
At present, convection-allowing forecasts are produced by
the North American Mesoscale Forecast System (NAM)
3 km nests, High-Resolution Rapid Refresh (HRRR), and the
High-Resolution Window (HIRESW) systems. These sys-
tems are then combined into a convection-allowing ensem-
ble known as the High Resolution Ensemble Forecast sys-
tem (HREF; Roberts et al., 2020). The global modeling suite
is based on the Finite-Volume Cubed-Sphere (FV3) dynami-
cal core with a physics suite developed and tuned for global
applications, whereas the regional operational models are
based on unique physics suites and dynamical cores, such as
the Advanced Research Weather Research and Forecasting
model (WRF-ARW; Skamarock et al., 2008) and Nonhydro-
static Multiscale Model on the B-grid (Janji¢ et al., 2001).

Considerable human and computing resources and efforts
are required to maintain and improve such a variety of mod-
els in order to continuously provide successful numerical
guidance for different sectors of society (Link et al., 2017).
Therefore, the National Oceanic and Atmospheric Admin-
istration (NOAA) is currently transitioning toward the Uni-
fied Forecast System (UFS; https://ufscommunity.org/. last
access: 11 August 2021; EMC, 2018). A unified forecasting
system brings together advanced developments in weather
and climate models, maximizing collective efforts and re-
sources, while also connecting expertise across the scientific
community (e.g., Hazeleger et al., 2010; National Research
Council, 2012; Brown et al., 2012). Within the UFS frame-
work, the GFS was coupled with the WAVEWATCH III wave
model in the operational upgrade of March 2021 (NWS,
2021). The UFS application for convection-allowing fore-
casts is the Rapid Refresh Forecast System (RRFS; Alexan-
der and Carley, 2020). RRFS is under development and
aims to facilitate the unification of the regional convection-
allowing suite of models by subsuming the present suite of
multi-dynamic core modeling applications in the next opera-
tional upgrade (UFS-R20, 2020).

The FV3 dynamical core developed at the Geophysical
Fluid Dynamics Laboratory (GFDL; Lin, 2004; Putman and
Lin, 2007; Harris and Lin, 2013) was selected for UFS appli-
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cations after a thorough evaluation process (Ji and Toepfer,
2016). In the past several years, multiple studies have been
conducted using the FV3 dynamical core for convective-
scale NWP where it has demonstrated skill (e.g., Potvin
et al., 2019; Zhang et al., 2019; Snook et al., 2019; Zhou
et al., 2019; Harris et al., 2019, 2020b; Gallo et al., 2021;
Black et al., 2021). For example, the grid-stretching capa-
bility of an FV3-based global model (Harris and Lin, 2013)
was evaluated in Zhou et al. (2019). Small-scale structures
of the convective activity in a squall line case were cor-
rectly resolved, although an overprediction of the precip-
itation and radar reflectivity values was observed. In the
framework of the 2018 NOAA Hazardous Weather Testbed
Spring Forecasting Experiment, Gallo et al. (2021) discussed
the strengths as well as elements that need improvement in
FV3-based convection-allowing models when compared to
HRRR, highlighting the overproduction of high reflectivity
values (45 dBZ) in storms. A limited-area model (LAM) ca-
pability based on the FV3 dynamical core (FV3 LAM) has
also been developed, which reduces required computational
resources associated with having to run a global model to ac-
commodate a nest. Monthlong tests at convection-allowing
resolution with FV3 LAM show comparable performance
relative to a two-way nested domain at forecast lead times
of less than 24 h (Black et al., 2021). Additionally, develop-
ments on the UFS hurricane application using the FV3 LAM,
the Hurricane Analysis and Forecast System (HAFS), have
shown improvements of track and intensity forecasts com-
pared with GFS (Dong et al., 2020).

The RREFS is presently being built upon the UFS Short-
Range Weather (SRW) application (Alexander and Carley,
2020). The first version (v1.0.0) of the SRW (UFS Devel-
opment Team, 2021) was released on March 2021 and in-
cludes the FV3 LAM with preprocessing utilities, the Com-
mon Community Physics Package (CCPP), the Unified Post
Processor (UPP), and a workflow to run the system on a va-
riety of high performance computing platforms as well as
one’s own personal laptop (Wolff and Beck, 2020). Harrold
et al. (2021) investigated how the SRW represents convec-
tion and associated precipitation for varied model grid spac-
ing in two physics suites: (1) a suite based on GFS version 16
physical parameterizations and (2) a prototype of the RRFS
physics suite (henceforth called RRFS_PHYvla). For both
physics suites, it was found that a 3 km resolution yields a
more realistic representation of convection but with a cool
2 m temperature bias and an underforecast of low reflectivity
values. Kalina et al. (2021) also examined these two SRW
physics suites and demonstrated that they failed to depict
trailing stratiform precipitation in simulations of a squall line
and Hurricane Barry (July 2019). Preliminary results indi-
cate that this issue could be related to fewer ice crystals in
the model runs than in the radar-derived data. Moreover, the
same experimental configuration was used by Newman et al.
(2021) to investigate the land—atmosphere interactions using
a heat wave case and a winter cold air outbreak case. A cooler
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planetary boundary layer (PBL) with increased cloudiness
and less surface downward shortwave radiation were found
in the heat wave case simulations, while an increase is seen
in the 10 m wind speed in the cold air outbreak case.

NWP is an initial value problem, and convection-allowing
forecasts are no different. Forecasts at such scales strongly
depend on the quality of the initial conditions and the abil-
ity of the analysis algorithm to provide accurate state esti-
mates of fine-scale spatiotemporal structures that are of in-
herent interest in convection-allowing NWP, such as ongo-
ing convection, complex circulations associated with subtle
boundaries (e.g., dry lines), and so on. To achieve such analy-
ses with reasonable fidelity, dense and accurate observations
are needed in the data assimilation window. However, imple-
menting observation operators for the most dense observa-
tion types is often complex, such as radar reflectivity, as they
are often indirectly related to state variables. In addition, non-
linear model processes along with non-Gaussian error char-
acteristics are commonplace at the convective scale, both of
which encumber the accurate specification of error covari-
ance matrices and, to varying degrees, violate some of the un-
derlying parametric assumptions that are at the foundation of
most state-of-the-art analysis algorithms (e.g., Poterjoy et al.,
2017; Gustafsson et al., 2018; Yano et al., 2018; Bannis-
ter et al., 2020). Nevertheless, many studies have shown the
benefits of using data assimilation in improving convection-
allowing forecasts (e.g., Dixon et al., 2009; Brousseau et al.,
2012; Tong et al., 2016; Shen et al., 2017; Tong et al., 2020;
Gao et al., 2021).

The SRW v1.0.0 does not include a data assimilation
capability; thus, initial conditions in recent studies are
purely from external models. As the SRW will under-
pin the RRFS, NOAA’s next-generation rapidly updated,
convection-allowing ensemble forecast system, it is imper-
ative that the data assimilation component behave as well as
or better than the current operational state of the art, which
is the HRRR version 4. However, the first and, to our knowl-
edge, only high-resolution convection-allowing data assim-
ilation study using the FV3 dynamical core is Tong et al.
(2020), who studied the impact of the direct assimilation of
radar radial velocity and reflectivity using the hybrid three-
dimensional ensemble—variational data assimilation (3DEn-
Var) and ensemble Kalman filter (EnKF) algorithms within
the Gridpoint Statistical Interpolation (GSI; e.g., Wu et al.,
2002; Kleist et al., 2009). Although results were for a sin-
gle case study, positive impacts of assimilating radar data
were found in all analyses and forecasts. Using hybrid 3DEn-
Var with 75 % of the ensemble background error covariance
(BEC) and 25 % of the static BEC showed storm structures
in the 2 h forecast comparable to when using EnKF, although
EnKF outperformed 3DEnVar in the first hour forecast. Both
methods, hybrid 3DEnVar and EnKF, showed higher equi-
table threat score (ETS) values when compared to 3DVar and
pure 3DEnVar during the 4 h forecast analyzed.
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Accordingly, this study seeks to describe the initial data
assimilation infrastructure and performance of a prototype
RREFS system. For the purpose of this paper, the prototype
RREFS used is called RRFS v0.1. The focus is on extensive
testing within the context of a case study to establish an un-
derstanding of baseline sensitivities, and an evaluation of var-
ious configurations and algorithms available in GSI is made
in order to investigate the impact of using data assimilation
on forecasts of convective storms. While single, determin-
istic forecasts are produced and evaluated in this study us-
ing RRFS v0.1, it should be noted that future RRFS imple-
mentations will produce convection-allowing ensemble fore-
casts. The 3DVar and hybrid 3DEnVar data assimilation algo-
rithms, supersaturation removal, PBL pseudo-observations,
and various weights of the ensemble BEC in the hybrid
EnVar analyses are assessed. A cycling strategy is config-
ured, and its effect on the cycled analyses is evaluated. A
case study that focuses on a severe convective weather event
is used to demonstrate sensitivities. The RRFS_PHYvla
physics suite is adopted for the numerical simulations. Ex-
perimental results are verified using Model Evaluation Tools
(MET), which is the unified verification package that will be
used by UFS applications (Brown et al., 2021). The results
obtained provide developers with an insight into the capabil-
ities of RRFS developments with respect to predicting con-
vection, as well as suggestions for the RRFS data assimila-
tion system framework. It is worth mentioning that, despite
some similarities with the work of Tong et al. (2020), the fo-
cus in this study is on the hybrid 3DEnVar method in GSI
and configurations used in operational Rapid Refresh (RAP)
and HRRR systems. For the operational RRFS, development
is underway to incorporate the EnKF into the hybrid data as-
similation system for its first implementation.

A brief description of each RRFS component and the cor-
responding workflow is presented in Sect. 2. In Sect. 3, the
case study, domain, data, and experiment configurations are
described. Results are presented in Sect. 4, and the summary
and final remarks are given in Sect. 5.

2 Rapid Refresh Forecast System (RRFS) components

In this section, the atmospheric model, physics, data assim-
ilation, preprocessing, and post-processing components of
the RRFS vO0.1 are briefly described. The workflow used to
streamline all components of the system and the cycling con-
figuration are also presented.

2.1 Atmospheric model

The FV3 dynamical core was implemented in GFS, replac-
ing the spectral dynamical core for an operational upgrade in
June 2019. The FV3 is a fully compressible, nonhydrostatic
core featuring a Lagrangian vertical coordinate and cubed-
sphere grid (Lin and Rood, 1996, 1997; Lin, 1997, 2004;
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Putman and Lin, 2007; Harris et al., 2020a). The Lagrangian
vertical coordinate allows for a unique, straightforward rep-
resentation of vertical motions directly through the relative
deformation of the vertical layers. This is in contrast with the
Eulerian framework presently featured in operational nonhy-
drostatic dynamical cores in use at the convective scale (Ska-
marock et al., 2008; Janji¢€ et al., 2001).

The FV3, originally a global model, features three types of
local refinement capabilities: stretching of the global grid us-
ing the Schmidt refinement technique (Harris et al., 2016),
one- and two-way nesting within the global grid (Harris
and Lin, 2013), and, recently, a LAM capability (Black
et al.,, 2021). The LAM capability eliminates the need to
run a concurrent global model and instead relies upon lateral
boundary conditions (LBCs) provided at prespecified inter-
vals from an external source. A more complete description
of the FV3 LAM and additional justification for limited-area
modeling in the context of operational, convection-allowing
NWP can be found in Black et al. (2021). In this study, the
focus is on the LAM capability, as it underpins the future
RRFS and requires fewer computing resources to achieve
similar forecast performance compared with a two-way nest-
ing method at lead times of less than 24 h (Black et al., 2021).
For the FV3 LAM, initial conditions (ICs) must also be pro-
vided at least once to initiate the forecast sequence for sub-
sequent data assimilation cycling.

2.2 Preprocessing

Preprocessing is performed by the utilities (UFS_UTILS) de-
veloped by NCEP’s Environmental Modeling Center (EMC;
https://github.com/NOAA-EMC/UFS_UTILS, last access:
12 July 2021) and other collaborators. UFS_UTILS can be
used to generate the model grid, orography, and surface cli-
matology (e.g., maximum snow albedo, soil, vegetation type,
and vegetation greenness). UFS_UTILS can also read from
external models and prepare ICs and LBCs for an FV3 LAM
model run.

2.3 Physics

The Common Community Physics Package
(CCPP; https://dtcenter.org/community-code/
common-community-physics-package-ccpp, last access:
18 August 2021) is a collaborative effort between scientists
at NOAA and the National Center for Atmospheric Research
(NCAR). The goal is to assemble parameterizations devel-
oped by different groups into a common framework to be
used interchangeably for numerical prediction at any scale
(Heinzeller et al., 2019). Hence, the CCPP contains a set of
physical schemes and a common framework that facilitates
the interaction between the physics parameterizations and
the dynamical core (Bernardet et al., 2020). The current
common framework was developed by the Developmental
Testbed Center (DTC). A number of physics suites are
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available, allowing great flexibility for a wide range of
users. A single-column model (CCPP SCM) option has
also been developed, which is available in the latest CCPP
release (version 5.0, CCPPv5). The CCPPvVS supports the
RRFS_PHYvla and GFS version 16 physics suites for
the SRW. The RRFS_PHYvla suite is based on physical
schemes implemented in the operational RAP, HRRR, and
GFS systems and is used in all simulations in this study. Ta-
ble 1 presents the RRFS_PHYvla physics parameterizations
and associated studies that describe each scheme, based on
CCPP (2021).

2.4 Data assimilation

GSI is a variational data assimilation system featuring the
3DVar (e.g., Wu et al., 2002; Kleist et al., 2009), hybrid
3DEnVar (e.g., Wang, 2010; Wang et al., 2013; Wu et al.,
2017), and hybrid 4DEnVar (e.g., Wang and Lei, 2014; Kleist
and Ide, 2015a) methods. It also includes an optional non-
variational, complex cloud analysis capability that executes
after the variational analysis as a method to specify cloud
and hydrometeor variables (e.g., Hu et al., 2006a, b; Ben-
jamin et al., 2021). GSI features the following standard con-
trol (analysis) variables: streamfunction, velocity potential,
temperature, surface pressure, and normalized relative hu-
midity following Holm et al. (2002). However, the choice
of control variable is flexible, and one may extend or modify
the standard set to include other fields, such as hydrometeors
or radar reflectivity (e.g., Wang and Wang, 2017). In 3DVar
and the associated hybrid variants, the static BEC is approx-
imated through the application of a recursive filter which
models the autocorrelations (Purser et al., 2003), while cross-
covariances are handled in the standard context through sta-
tistical balance relationships obtained via regression (e.g.,
Wu et al., 2002; Parrish and Derber, 1992). The analysis is
obtained by minimizing the incremental form cost function
through the preconditioned conjugate gradient method (Der-
ber and Rosati, 1989; Bathmann, 2021).

The extension of GSI from traditional 3DVar to hybrid
3DEnVar and to hybrid 4DEnVar is accomplished through
the extended control variable approach (e.g., Lorenc, 2003;
Wang, 2010; Kleist and Ide, 2015b, c). In this configuration,
one is able to incorporate flow-dependent covariance infor-
mation obtained from a complementary suite of ensemble
forecasts. Typically this ensemble is obtained from a com-
panion ensemble-based data assimilation system, such as the
EnKF; however, one may use any suitably available ensem-
ble. In fact, the regional operational data assimilation sys-
tems at NCEP have used the ensemble members from the
GFS Data Assimilation System directly in the hybrid 3DEn-
Var framework (Wu et al., 2017). Although the use of lower-
resolution global ensemble members may not be ideal for
the representation of the error characteristics at finer scales,
Wau et al. (2017) showed that considerable forecast improve-
ment can be obtained even if the ensemble provided is from
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Table 1. RRFS_PHYvla physics parameterizations and associated studies.

Physical process RRFS_PHYvla

Associated study

Shallow convection = Mellor—Yamada—Nakanishi—Niino—

eddy diffusivity—mass flux (MYNN-EDMF)

Nakanishi and Niino (2009) and
Olson et al. (2019)

PBL/Turbulence Mellor—Yamada—Nakanishi—Niino— Nakanishi and Niino (2009) and
eddy diffusivity—mass flux (MYNN-EDMF) Olson et al. (2019)
Microphysics Thompson Aerosol-Aware Thompson and Eidhammer (2014)
Radiation GFS Rapid Radiative Transfer Model for Milawer et al. (1997) and Tacono et al. (2008)

Global Circulation Models (RRTMG)

Surface layer GFS Surface Layer Scheme

Miyakoda and Sirutis (1986) and Long (1986)

Land

GFS Noah Multi-Physics Land Surface Model

Niu et al. (2011)

Gravity wave drag

Unified Gravity Wave Physics Scheme — Version 0

Alpert et al. (2019)

Ocean

GFS Near-Surface Sea Temperature Scheme

Li and Derber (2008) and Li et al. (2015)

Ozone GFS Ozone Photochemistry (2015)

McCormack et al. (2006, 2008)

Water vapor GFS Stratospheric H,O

McCormack et al. (2008)

a different system, which is consistent with findings in other
studies such as Hu et al. (2017). The present study focuses
on the 3DVar and hybrid 3DEnVar frameworks and uses the
global ensembles as described in Wu et al. (2017). Future
work on RRFS involves the extension to a convective-scale
ensemble in the EnKF, which will improve the representa-
tiveness associated with the forecast error covariance at finer
scales. However, such a change is not a panacea. Aside from
increased computational expense, the problem of rank de-
ficiency of the ensemble-derived error covariance becomes
more apparent with the expanded degrees of freedom associ-
ated with the finer spatial resolution. While localization helps
somewhat, a computationally affordable ensemble is one that
is often insufficiently sized. Therefore, future work also in-
cludes efforts to introduce multiscale data assimilation ca-
pabilities, such as scale-dependent localization (e.g., Huang
et al., 2021).

GSl s capable of assimilating a large suite of observations.
This includes (but is not limited to) satellite radiances (e.g.,
Zhu et al., 2014), derived Global Navigation Satellite Sys-
tem Radio Occultation (GNSS-RO) observations, radar ra-
dial velocity and reflectivity (e.g., Lippi et al., 2019; Chen
et al., 2021), Geostationary Lighting Mapper (GLM) light-
ning flash rates, web-camera-derived estimates of horizontal
visibility (Carley et al., 2021), and conventional observations
(Hu et al., 2018). After 2014, GSI became a community sys-
tem, maintained and supported by the EMC and the DTC
(Shao et al., 2016). Recently, it has been added as the anal-
ysis component to improve initial conditions for the RRFS
(Hu et al., 2021).

Presently, GSI is the data assimilation system used at
NCEP for all operational atmospheric data assimilation ap-
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plications (e.g., Wu et al., 2002; Kleist and Ide, 2015a; Hu
et al., 2017). It was initially developed by the EMC (Wu
et al., 2002) and implemented as the analysis component in
the operational GFS in May 2007 (Kleist et al., 2009) and in
the operational RAP in May 2012 (Benjamin et al., 2016).

2.5 Post-processing

UPP is used at NCEP in all operational models. A commu-
nity version is currently supported and maintained by the
DTC. UPP takes native output from the model grid points/-
cells and creates post-processed outputs including numer-
ous diagnostic quantities in the same model output grid and
model-native or isobaric vertical coordinate (UPP, 2021).
Post-processed outputs include diagnostic fields that are not
part of the model computation and have been developed for
different applications. These include, for example, precipi-
tation type, composite reflectivity, simulated satellite bright-
ness temperature, updraft helicity, storm motion, ceiling or
cloud-base height, vertically integrated liquid, and lightning,
among several others. More details on the diagnostic fields
developed for hourly updated NOAA weather models such as
RAP and HRRR, as well as how they are calculated, can be
found in Benjamin et al. (2020). These products are critical
for users in their forecast processes. UPP was selected as the
unified post-processing system for UFS, and modifications
have been made to work with FV3-based models. Currently,
it can be used in the UFS Medium-Range Weather and SRW
applications.

Geosci. Model Dev., 15, 6891-6917, 2022
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2.6 Workflow

The workflow ties all RRFS components together and
handles all system interdependencies. It is based on
the UFS SRW application v1.0.0 (UFS Development
Team, 2021) community workflow which uses the Ro-
coto Workflow Management System (https://github.com/
christopherwharrop/rocoto/wiki/Documentation, last access:
17 May 2021). In essence, it manages the cycling config-
uration, taking each task dependency and specification into
account. It oversees that the tasks to generate ICs and LBCs
only start if all of the required information is obtained from
the previous step. It manages how the data assimilation cy-
cle advances, i.e., by running the forecast to generate the first
guess and running the analysis once the first guess is com-
pleted. It handles the model execution by supervising the
availability of ICs and LBCs for the specific hour, and it con-
trols that model outputs only be post-processed if they exist
in the model run directory. It also manages crucial informa-
tion on the computational resource requirements to run each
task.

A schematic diagram of major tasks and the general
pipeline of the RRFS system is provided in Fig. 1. The “Make
fixed files” task generates the model grid, orography, and cli-
matological information needed for the model execution. The
“Make ICs” and “Make LBCs” tasks read data from exter-
nal models (such as GFS and HRRR); perform the necessary
calculation, interpolation, and conversion; and then generate
the appropriate ICs and LBCs for an FV3 LAM model run.
The “Run analysis” task (the gray shaded area in Fig. 1) ex-
ecutes the data assimilation system for an FV3 LAM run.
It ingests various types of observations and combines them
with a first guess (or background) to generate a best possible
atmospheric analysis for the initialization of the FV3 LAM
model integration. The first guess can be either an IC from
an external model (after the “Make ICs” task) or a short-term
forecast (1-6 h forecast, configurable to users) from a previ-
ous FV3 LAM model run. The first scenario is referred to
as a “cold start” (the blue box in Fig. 1), whereas the latter
is called a “warm start” (the red box in Fig. 1). In practice,
for an FV3 LAM “warm start,” the first guess comes from
“restart” forecast files generated by the FV3 LAM model.
The “Run model” task is to run the FV3 LAM model with
ICs and LBCs prepared from the previous steps. It is worth
mentioning that, besides the “cold start” and “warm start,”
an FV3 LAM model run can also start from an IC made di-
rectly from an external model without the data assimilation
step. This is also referred as a “cold start”. The “Run post”
task is to post-process the FV3 LAM forecasts and generate
all target model fields for downstream plotting and/or exam-
ination.
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2.7 Cycling configuration

The cycling configuration of the RRFS v0.1 is similar to the
one used in RAP (i.e., cold starts are performed every 12h
and warm starts are performed at all other cycles using the
1 h forecast from the previous cycle as background for the
analysis). RAP performs hourly updated continuous cycles
with cold starts at 09:00 and 21:00 UTC using the 1h fore-
cast from cycles initialized at 08:00 and 20:00 UTC in 6h
parallel hourly spin-up cycles. The parallel spin-up cycles are
cold started from GFS atmosphere analyses and RAP surface
fields at 03:00 and 15:00 UTC. Cold starts in RAP introduce
the atmospheric conditions while RAP land surface fields are
fully cycled in the continuous cycle (Benjamin et al., 2016;
Hu et al., 2017). Periodic updates of the large-scale atmo-
spheric conditions are needed in regional modeling systems
in order to account for corrections made by global obser-
vations over land and ocean and to avoid model drift from
those conditions (Benjamin et al., 2016). At the time of ex-
ecution of this research, not many RAP functionalities were
available for use in the RRFS data assimilation framework;
therefore, a simplified configuration with partial cycling is
used. Development currently underway includes establishing
a partial cycling capability for the inaugural operational im-
plementation, RRFS version 1, with subsequent plans to con-
sider a fully cycled version in later implementations lever-
aging recent advances discussed in Schwartz et al. (2022).
Figure 2 illustrates the RRFS cycling configuration from cy-
cles initialized between 00:00 and 12:00 UTC. In each cy-
cle, an 18 h free forecast is launched following the analysis,
with hourly outputs. A cold start is performed at 00:00 and
12:00 UTC, and warm starts are performed between 01:00
and 11:00 UTC using the FV3 LAM 1 h forecast from the
previous cycle as background for the analysis.

3 Methods

In order to achieve skillful forecasts comparable to the cur-
rent operational convection-allowing suite, each component
of the RRFS needs to be exhaustively tested to determine the
best configuration. This study focuses on the initial config-
uration of the data assimilation framework. In this section,
the case study, general setup of the experiments, description
of the experiments conducted, and verification methodology
are presented.

3.1 Case overview

A line of convective storms developed over northeastern Ok-
lahoma ahead of a southward moving cold front during the
afternoon of 4 May 2020. At 18:00UTC on 4 May 2020,
a surface low-pressure system was observed across west-
ern Oklahoma with a dry line extending over western Texas,
favoring an environment with low-level convergence, high
temperatures, and humidity over these areas. Between 19:00
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Figure 1. Schematic diagram of the RRFS tasks and workflow.

18h 18h

fest

18h
fest

18 h
fest

18 h
fest

18h
fest

I R

18 h
fest

|

18h
fest

18 h
fest

18 h
fest

18h
fest

] ] ]

fest
~

00:00
uTc

01:00
uTc

L

02:00
uTC

03:00
uTCc

04:00
uTc

05:00
uTtc

06:00
uTCc

07:00
uTtc

08:00
uTc

09:00
uTc

10:00
uTtc

11:00
uTC

J

I

Cold
start

Figure 2. RRFS cycling configuration diagram.

and 20:00 UTC, high values of mixed-layer convective avail-
able potential energy (MLCAPE) (3694 J kg™!) and effec-
tive bulk shear (48 kt for the surface to 3 km layers and 36 kt
for the surface to 6 km shear) were observed over northeast-
ern Oklahoma. The instability parameters are based on the
observed sounding at 19:00 UTC over Norman, Oklahoma
(KOUN; University of Oklahoma Westheimer Airport). This
environment provided favorable conditions for severe con-
vective storms with potential for strong updrafts and the de-
velopment of supercells (e.g., Weisman and Klemp, 1982;
McCaul and Weisman, 2001). At 20:00 UTC, convective
cells were first seen in the radar reflectivity observations over
that region (Fig. 3a); by around 22:00 UTC, a line of storms
extended across central Oklahoma along the pre-frontal wind
shift (Fig. 3c). The system evolved while slowly moving
southeastward. A supercell developed over far southwestern
Missouri at 00:00 UTC on 5 May (Fig. 3e), producing hail of
1.25 and 1.51in. (3.175 and 3.81 cm, respectively) in diame-
ter according to hail reports from the Storm Prediction Center
(SPC). Clusters of severe storms developed across south cen-
tral Oklahoma along the intersection of the cold front with
the dry line. The convection associated with the squall line
evolution resulted in several instances of large hail and high
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Warm start

winds, mostly over northeastern and south central Oklahoma,
southeastern Kansas, southwestern Missouri, and northwest-
ern Arkansas.

3.2 Setup of experiments

For the simulation of this case, a domain is configured con-
sisting of 460 grid cells x460 grid cells centered on Fort
Smith, Arkansas, with a 3km horizontal grid spacing and
65 vertical layers. All simulations start at 00:00 UTC on
4 May 2020 and run hourly cycles until 06:00 UTC on
5 May 2020. Hourly 3km HRRR analyses and forecasts
are used to generate the ICs and LBCs for the FV3 LAM.
The observation data assimilated in each experiment are
the same as those used in the operational RAP system (Hu
et al., 2017) and include upper-air observations from rawin-
sondes, dropsondes, pilot balloons, aircraft, and wind pro-
filers; rawinsondes data from synoptic stations, METeoro-
logical Aerodrome Reports (METAR), and the Mesoscale
Network (MESONET); radar radial velocity and the verti-
cal azimuth display derived from radar radial velocity; At-
mospheric Motion Vectors (AMV) wind derived from satel-
lite observations; and the Global Positioning System (GPS)

Geosci. Model Dev., 15, 6891-6917, 2022
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Figure 3. Hourly Multi-Radar Multi-Sensor (MRMS) composite reflectivity and hourly hail (black stars), high wind (black squares), and
tornado (red circles) reports from the SPC, from 20:00 UTC on 4 May 2020 through 01:00 UTC on 5 May 2020.

Integrated Precipitable Water (GPS-IPW). The time window
used is 1 h, allowing for observations to be assimilated within
30 min before to 30 min after the central analysis time.
Experiments are conducted testing the GSI 3DVar and
3DEnVar systems. For the hybrid 3DEnVar analysis, the
Global Data Assimilation System (GDAS) 80-member en-
semble forecasts (9 h forecasts) are used to provide the en-
semble BEC (e.g., Wu et al., 2017). These forecasts have a
horizontal resolution of approximately 25 km and are avail-
able four times per day; therefore, the same 9h GDAS en-
semble forecasts are used for the 2h before and 3 h after
its valid hour. For example, the 9h GDAS ensemble fore-
casts initialized at 00:00 UTC (valid at 09:00 UTC) are used
for the cycles from 07:00 to 12:00 UTC. Similarly, the 9h
forecast GDAS ensemble initialized at 06:00 UTC (valid at
15:00 UTC) is used for the cycles from 13:00 to 18:00 UTC.
This follows the same strategy as in the RAP system (Hu
et al., 2017). As shown in Hu et al. (2017), using off-time
global and fixed ensemble-based BEC still produces better
results than only using the static BEC. In all experiments
with data assimilation, two outer loops with 50 iterations per
loop are performed to minimize the cost function and find
each analysis. In each outer loop a re-linearization is per-
formed (e.g., Kleist et al., 2009). The increment is zero for
the first outer loop; for the second outer loop, in contrast, it is
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updated with the solution found after the 50 iterations of the
first outer loop. The spatial resolution of the analysis is 3 km,
as in the forecast model.

3.3 Sensitivity experiments

GSI provides many functionalities and parameters, enabling
users to make the best data assimilation configurations for
different applications. A series of experiments are designed
to examine the impact of different configurations on the anal-
yses and forecasts. Some RAP configurations are tested in
the experiments following Hu et al. (2017). An experiment
with no data assimilation is provided, acting as the baseline
for all other experiments. This baseline experiment is called
“NoDA” and uses the same cycling configuration as experi-
ments with data assimilation, in terms of the cold and warm
start ICs. The 3 km ICs from the HRRR are consistent with
the 3 km grid spacing of the RRFS, such that fine-scale fea-
tures found in the HRRR are present in the RRFS ICs. Table 2
lists all experiments in this research.

In order to examine how different weights of the ensem-
ble BEC affect the results and what would be the best choice
for the RRFS analysis, experiments with different ensemble
weights are conducted. Only results from three experiments
are presented here: 3DVar, 100EnBEC, and 75EnBEC. The
experiment with 3DVar does not include any ensemble BEC
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part, 100EnBEC uses pure ensemble BEC and does not in-
clude the static part, and 7SEnBEC uses a combination of
75 % ensemble BEC and 25 % static BEC. The static BEC
for 3DVar is the same as currently used in RAP and HRRR
(Benjamin et al., 2016).

Ensemble localization length scales play an important role
in ensemble-based data assimilation algorithms, such as hy-
brid EnVar analyses (e.g., Campbell et al., 2010), as an ef-
fective way to mitigate sampling errors due to the relatively
small ensemble size available for hybrid EnVar and ensem-
ble analyses (Houtekamer and Mitchell, 2001; Hamill et al.,
2001), especially at convective scales (e.g., Gustafsson et al.,
2018). At this stage, it is important to determine how large
the localization radius needs to be for RRFS analyses. There-
fore, experiment “VLOC” was designed to examine the ver-
tical localization radius that yields more realistic forecasts
in RRFS. A separate study is underway in which the op-
timal horizontal localization for RRFS is also investigated;
therefore, it is not examined here. The localization function
in GSI is implemented as a single application of an isotropic
recursive filter (Purser et al., 2003), and the radius is spec-
ified as a Gaussian half-width, either in scale height (In p)
or in terms of the number of vertical layers. In this study,
the radius is specified in terms of the number of layers. In
VLOC, the vertical ensemble localization radius is changed
from 3 vertical layers for the whole atmosphere (used in all
other experiments) to a height-dependent localization setting:
1 vertical layer in the lowest 10 model layers and 3 layers for
other model layers. A comparison experiment (not shown)
was conducted reducing the vertical localization to 2 layers
in the first 10 model layers, but results showed neutral im-
pacts over VLOC.

The operational RAP system has developed a PBL pseudo-
observation function in order to obtain a better represen-
tation of the PBL in the analysis. This function was ini-
tially developed to further leverage the information provided
by METAR observations, extending their representativeness
through the PBL depth in the Rapid Update Cycle (RUC)
analyses. Improvements in the temperature, dew point, and
CAPE forecasts were found when spreading the innovations
from temperature, moisture, and wind in the layers above
the surface and below the top of the PBL (Benjamin et al.,
2004). Smith et al. (2007) also found a positive impact in the
3 h forecast of CAPE by using the PBL pseudo-observations,
and the impact was greatly increased when additionally as-
similating GPS-IPW. Benjamin et al. (2010) found a higher
positive impact during the summer, when the PBL is deeper.
This function has been used operationally since RAP ver-
sion 3 (Benjamin et al., 2016); therefore, it needs to be tested
and tuned for its potential use in RRFS analyses. To test
whether and how this function works for the RRFS vO0.1, the
“PSEUDO” experiment is designed, and the results of this
experiment are presented in Sect. 4.3.

The study of Tong et al. (2020) showed that, regardless of
the method used, the storm coverage was overestimated and
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reflectivity values were much higher than observed, which
is likely linked to the physics suite used. However, it is also
well known that nonphysical solutions (nonrealistic updraft/-
downdraft, negative humidity, supersaturation, etc.) can arise
as a result of the data assimilation procedure (e.g., Janji¢
et al., 2014; Tong et al., 2016). In this study, the “CLIPSAT”
experiment is conducted to analyze how the supersaturation
removal procedure available in GSI affects the storm fore-
casts of RRFS. This function constitutes a simple adjustment
in the background supersaturation during the cost function
minimization. More details on this function are presented in
Sect. 4.4.

Experiments VLOC, PSEUDO, and CLIPSAT are per-
formed using the hybrid 3DEnVar algorithm with 75 % of the
ensemble BEC and are compared against 7SEnBEC results,
due to the good results obtained for experiment 7SEnBEC
(see Sect. 4.2) and the consideration that RAP uses 75 % of
the ensemble BEC operationally (Hu et al., 2017).

3.4 Forecast verification

MET version 9.0 (Jensen et al., 2020) is used for forecast
verification. MET was developed at the DTC and has been
widely used by the NWP community. Upper-air and surface
observations are used to verify the vertical profiles of tem-
perature, specific humidity, and wind, as well as 2m tem-
perature and 2 m dew point, respectively. For upper-air ob-
servations, the verification time window is 1h and 30 min
before to 1h and 30 min after, whereas for surface obser-
vations, it is 15 min before to 15 min after the central time.
The root-mean-square error (RMSE) and bias are computed
and displayed with 95 % confidence intervals in Figs. 8, 10,
and 13. The confidence intervals are derived at each fore-
cast lead hour in every cycle using a bootstrap resampling
technique of 1000 replications with replacement, and with
bias-corrected percentiles (e.g., Wilks, 2006; Gilleland et al.,
2018). Upper-air statistics are further analyzed at 00:00 and
12:00 UTC valid times.

Precipitation forecasts are verified against the hourly Stage
IV precipitation product (Lin and Mitchell, 2005) in terms of
the ETS and frequency bias (FBIAS) for different thresholds,
but only > 0.01in.h~! (0.254 mmh~!) for lighter precipita-
tion and > 0.25in.h~! (6.35 mm h™!) for heavier precipita-
tion are presented here. The grid-to-grid approach in MET is
used.

Hourly MRMS composite reflectivity mosaics (optimal
method) observations (Zhang et al., 2016) are used to ver-
ify the composite reflectivity forecasts using the Method for
Object-Based Diagnostic Evaluation (MODE) in MET. In or-
der to quantitatively identify the experiment configuration
that yielded better forecasts, the median of maximum inter-
est (MMI (F+0)) (Davis et al., 2009) is analyzed. This met-
ric results from the median between the maximum interest
from each observed object with all predicted objects (MIF)
and the maximum interest from each predicted object with all
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Table 2. List of experiments presented in this study.

Background error

Experiments - .
covariance weights

Supersaturation removal

Vertical ensemble

PBL pseudo-observations N
localization scale

NoDA

No data assimilation

0 % ensemble

3DVar 100 % static False False 3 layers
100EnBEC 100% en semble False False 3 layers
0 % static
75EnBEC 5% ens:cmble False False 3 layers
25 % static
CLIPSAT 5% ense.:mble True False 3 layers
25 % static
PSEUDO > %o ensemble False True 3 layers
25 % static
VLOC 75 % ensemble False False 1 layer in first 10 layers

25 % static

and 3 layers above

observed objects (MIO). It takes all attributes used in the to-
tal interest calculation into account, summarizing them into
a single value. The forecast in greatest agreement with the
observations will give MMI (F+O) values closer to one; oth-
erwise, the values will be closer to zero.

4 Results and discussions
4.1 Examination of analyses

Observation availability and coverage play an important role
in the data assimilation process. Therefore, the number and
type of observations available for this squall line case are
examined. Figure 4 shows the spatial distribution of assim-
ilated temperature observations at the 19:00 UTC cycle on
4 May 2020 for experiment 3DVar (other cycles and experi-
ments have similar distributions and are not shown here). The
analysis residuals (OmA) are also depicted in Fig. 4 using red
and blue color depth for positive and negative values, respec-
tively. In this analysis, assimilated temperature observations
include those from aircraft, surface marine synoptic stations,
METAR, and MESONET observations. There are a total
of 3307 observations, which are well distributed across the
limited model domain. Among these observations, 1545 are
from aircraft, which concentrate around a few major airports
as flights descend or ascend, and spread along flight paths.
Moreover, a substantial amount of MESONET surface ob-
servations are also assimilated. There are far fewer METAR
observations, but they are distributed evenly in the domain.
A very limited number of surface marine synoptic stations
are found near the coast on the Gulf of Mexico. The analysis
residuals for temperature are generally small for aircraft and
METAR observations, mostly less than &+ 1 °K in magnitude,

Geosci. Model Dev., 15, 6891-6917, 2022

3DVar Analysis: 19:00 UTC

T
® Aircraft [1545, 0.74] m Synoptic [46, 1.31] » METAR [482, 1.12] + MESONET [1545, 1.51]

N

&

/’\:-\ e
La Total: 3618 -10
RMS(OmA): 1.18

Figure 4. Spatial distribution of temperature observations and anal-
ysis residuals (OmA) for the analysis at 19:00 UTC on 4 May 2020
from experiment 3DVar. The color scale to the right indicates the
magnitude of analysis residuals. The legend of observation-type
markers is shown at the top along with brackets listing the asso-
ciated counts and root-mean-square error (RMSE) for the OmA.

whereas some MESONET observations have large analysis
residuals. As pointed out in Morris et al. (2020), while some
MESONET stations are well maintained, the majority do not
meet siting standards and maintenance protocols; therefore,
these sites are assigned a higher observation error via a sta-
tion blacklist. As expected, larger residuals are found from
these observations when compared with other observation
networks.
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In order to check how results of the RRFS analysis be-
have at different cycles and whether the RRFS analysis ex-
ecutes correctly, Fig. 5 presents time series of the RMSE
and bias for the backgrounds (1 h forecasts) as well as the
analyses, verified against temperature observations (includ-
ing all surface and upper-air data, as mentioned in Sect. 3.2).
Results presented are for experiments 7SEnBEC (Fig. 5a)
and 3DVar (Fig. 5b). Verification is conducted by utilizing
the observation innovations (OmB) and the analysis resid-
uals (OmA) generated by GSI for assimilated observations.
Based on these OmB and OmA data, the RMSE and bias
for the background and analysis are computed. It can be
seen from Fig. 5 that the analyses have smaller RMSEs
and biases compared with the background in both experi-
ments. This means the analyses fit the observations more
closely, although (owing to observation error) not perfectly,
which is expected from a correctly executed data assimila-
tion procedure. There is a noticeable jump in the RMSE val-
ues of the OmB from 00:00 UTC (12:00 UTC) to 01:00 UTC
(13:00 UTC) on 4 May 2020. This is because 00:00 and
12:00 UTC are cold started from HRRR analyses. On the
contrary, at 01:00UTC (13:00 UTC) on 4 May, the back-
ground used is from the FV3 LAM 1 h forecast. Therefore,
forecasts used to initialize cycles at 01:00 and 13:00 UTC
undergo a spin-up process. The FV3 LAM 1 h forecasts are
still in this spin-up process and, hence, yield larger RMSEs.
In Fig. 5a, the background RMSE increases steadily from
14:00 to 23:00 UTC, compared with the relatively gentle in-
crease between 02:00 and 11:00 UTC on 4 May. This may be
due to the fact that there is active convection during the after-
noon hours; hence, it is harder to obtain good forecast skill.
Figure 5b has a much larger increase in the RMSE of OmB
than that in Fig. 5a during the same time period from 14:00
t0 23:00 UTC, indicating that 7SEnBEC performs better than
3DVar. Results from 100EnBEC are similar to 7SEnBEC and
are not shown here.

4.2 The impact of hybrid ensemble weights and
ensemble localization radius

4.2.1 The impact of hybrid ensemble weights

The hybrid EnVar data assimilation method is now widely
used by NWP centers (e.g., Bannister, 2017; Gustafsson
et al., 2018) and the research community. It combines the
static and ensemble BEC, taking advantages from both the
variational method and the EnKF method. It is robust, allows
the use of flow-dependent BEC, avoids the development and
maintenance of a tangent linear and adjoint model, and, thus,
has gained mainstream practice. In this hourly updated RRFS
system, the hybrid 3DEnVar method is tested. One of the ma-
jor concerns is to how to obtain the optimal weight for the
ensemble BEC in the hybrid 3DEnVar analysis. A series of
weighting sensitivity experiments were conducted in order to
find the best option for this study.
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Figure 6 shows the specific humidity and temperature
analysis increments for the 19:00 UTC cycle on 4 May 2020
for experiments 100EnBEC, 75EnBEC, and 3DVar. The
analysis conducted at 19:00 UTC is during a cycling period
using warm starts and is close in time to the initiation of
convection in the afternoon hours. Forecasts initialized by
this analysis cover the squall line evolution from its initia-
tion to decay stages. Therefore, this cycle is selected to show
the analysis increments and storm forecasts in the following
sections. The analysis increments from experiment 3DVar
(Fig. 6c, f) are smoother compared with those from 75En-
BEC (Fig. 6b, e), which exhibits some flow-dependent fea-
tures. As it goes into pure ensemble BEC (Fig. 6¢, d), more
flow-dependent increments are obtained.

Figure 7 shows the 2, 4, and 6h forecasts of composite
reflectivity from the 19:00 UTC cycle on 4 May 2020, with
5dBZ (solid lines) and 35 dBZ (dash lines) reflectivity obser-
vation contours overlaid for experiments 100EnBEC, 75En-
BEC, 3DVar, and NoDA. The regridding tool in MET is
used to interpolate the MRMS composite reflectivity obser-
vations to the same grid as the model forecasts. Additionally,
MMI (F+O) results for reflectivity values larger than 35 dBZ
for each experiment are shown in the lower right corner of
each panel. All experiments predict the general evolution of
the squall line, from the initial stage to maturity, with over-
forecasting of high reflectivity values and underforecasting
of spatial coverage. At the 2 h forecast, the experiments cap-
ture the convective initiation around northeastern Oklahoma,
but the extent and intensity of the cells are overpredicted
(Fig. 7a, d, g, j). The initial cells are represented and lo-
cated more accurately in the experiments with data assimila-
tion, especially 7SEnBEC with a MMI (F+O) value of 0.540
(Fig. 7d). In the 4 h forecast, the squall line enters its mature
stage, and a line of storms ranges from southwest Missouri
to central Oklahoma (Fig. 7b, e, h, k). Every experiment pre-
dicts a squall line, but there is substantial location and cov-
erage error in the NoDA experiment. 3DVar improves a lit-
tle over NoDA; however, due to the difference in the cov-
erage predicted, a decrease in the MMI (F+O) value from
0.632 to 0.556 is observed. 7SEnBEC does well to predict the
squall line at the correct location with the larger MMI (F+O)
value of 0.698, although the storm near the southwest tip of
the observed squall line is still missing, as it is in all other
experiments (Fig. 7e). I00EnBEC overproduces the convec-
tion associated with the squall line, but it still improves over
3DVar and NoDA at this forecast hour. In the 6 h forecast, the
squall line moves eastward and covers from southern Mis-
souri and northwestern Arkansas to southeastern Oklahoma.
At this time, 3DVar again performs better than NoDA with
very close MMI (F+O) results, and 7SEnBEC still makes the
best forecast among all experiments (Fig. 7c, f, i, 1). However,
in terms of the MMI (F+O) values, 7SEnBEC shows a slight
degradation for the forecast of reflectivity values larger than
35dBZ, and 100EnBEC shows the best MMI (F+O) value
of 0.555. Overall, data assimilation introduces evident, posi-
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Figure 5. The root-mean-square (RMS), bias, and count of the temperature background (OmB) and analysis (OmA) against all observation
types for analyses in all cycles performed for experiments (a) 7SEnBEC and (b) 3DVar. Black arrows highlight the time period from 14:00

to 23:00 UTC.

100EnBEC

Figure 6. Analysis increment for (a—c) temperature (K) and (d—f) specific humidity (gkg™ 1y at the first model hybrid level above the surface
for 19:00 UTC on 4 May 2020, using 100 % ensemble BEC (a, d), 75 % ensemble BEC (b, e), and 3DVar (c, f).

tive impacts to the storm forecasts in terms of the squall line
location, orientation, and coverage, although different assim-
ilation strategies yield different impacts. The improvement
from 3DVar is somewhat limited, while hybrid 3DEnVar is
seen to perform much better. Among the experiments, the
75 % ensemble BEC gives the best overall forecasts.
Vertical profiles of RMSE and bias with 95 % confidence
intervals for the 2 h forecast of temperature, specific humid-
ity, and wind at 00:00 and 12:00 UTC valid hours (from cy-
cles initialized at 22:00 and 10:00 UTC on 4 May, respec-
tively) are shown in Fig. 8. The confidence intervals help
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to highlight where the differences between the experiments
are statistically significant. Experiments show a consistent
warm bias at both 00:00 and 12:00 UTC in most vertical lev-
els (Fig. 8a, d). A cold temperature bias is present in the
layers between 850 and 650 hPa at 00:00 UTC and at 1000
and 150hPa at 12:00 UTC in all experiments. Experiment
75SEnBEC has smaller temperature RMSE values between
400 and 250 hPa at 00:00 UTC and between 550 and 400 hPa
at 12:00 UTC. The improvements for the temperature bias
at 00:00 UTC are statistically significant between 500 and
400 hPa. Experiment 100EnBEC shows a smaller RMSE at
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Figure 7. The 2, 4, and 6h forecasts of composite reflectivity from experiments 100EnBEC (a-c), 7SEnBEC (d-f), 3DVar (g-i), and
NoDA (j-1), initialized at 19:00 UTC on 4 May 2020. Solid and dashed black lines are the 5 and 35 dBZ reflectivity observation con-
tours, valid at the forecast time, respectively. MMI (F+O) results for reflectivity values larger than 35 dBZ are shown in the lower right corner

of each panel.

850 hPa at both valid hours. All experiments with data as-
similation have a smaller temperature RMSE and bias be-
low 850 hPa for 00:00 UTC which are statistically significant
as shown by the confidence intervals, indicating the positive
impact of data assimilation in the lower atmosphere. The im-
pact of the analysis on the 2h temperature forecast valid at
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12:00 UTC is less clear. Similarly, the specific humidity fore-
casts show improved RMSE and bias values from data assim-
ilation with statistically significant differences below 900 hPa
at 00:00 UTC and between 750 and 500 hPa at 12:00 UTC in
the bias results (Fig. 8b, e). The 2 h forecast of wind profiles
has a positive bias in the lower levels at both valid hours, but
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this is mostly negative above 850 hPa (Fig. 8c, f). The posi-
tive impact of using data assimilation is clearly observed in
the winds close to the surface for levels below 950 hPa, where
there are statistically significant differences in bias between
the experiments with data assimilation and NoDA. The wind
RMSE results do not clearly indicate which experiment is
best, but I00EnBEC generally shows the lowest values when
considering all vertical levels. These results may indicate that
the static BEC matrix used may not be optimal for RRFS
v0.1, and efforts are underway in order to obtain a better BEC
matrix. Moreover, an online estimation approach may be ex-
plored for the specification of the hybrid weighting param-
eter, such as the method proposed by Azevedo et al. (2020)
in which a geographically varying weighting factor alpha is
defined and the ensemble spread is used for the assignment
of the weights.

Figure 9 presents the RMSE and bias for the 2 h forecast of
2 m temperature (Fig. 9a, ¢) and 2 m dew point temperature
(Fig. 9b, d) for experiments 100EnBEC, 7SEnBEC, 3DVar,
and NoDA. The 2 m temperature and 2 m dew point RMSE
values are evidently larger between cycles initialized at 16:00
and 23:00 UTC in all experiments. This may be related to
the initiation and development of convection in many areas
of the domain. During this period, all data assimilation ex-
periments have smaller 2m temperature and 2 m dew point
RMSEs compared with the NoDA experiment, demonstrat-
ing the positive impact of data assimilation. Further, experi-
ments 75SEnBEC and 3DVar perform better than 100EnBEC
between cycles initialized at 16:00 and 20:00 UTC (18:00
and 22:00 UTC valid hour) (Fig. 92). Among them, 75En-
BEC produces the smallest 2m temperature and 2m dew
point RMSE. From 16:00 to 23:00 UTC valid hour, the 2h
forecasts from all experiments show a warm and dry bias.
Data assimilation experiments helped to reduce this warm
and dry bias to some extent.

To summarize, experiment 7SEnBEC performs reasonably
better among all experiments discussed in this section. It
gives the smallest 2 m temperature and 2 m dew point RMSE
during the afternoon storm hours and a better representation
of the storm at all forecasts lengths. Therefore, all subsequent
experiments use the 75 % ensemble BEC.

4.2.2 The impact of the vertical ensemble localization
radius

Ensemble-based systems need a large number of ensemble
forecasts in order to estimate a full rank covariance matrix.
However, this is computationally impractical for operational
and research activities. The ensemble-based covariances can
be very noisy when using a small ensemble size which results
in inaccurate analyses (e.g., Hamill et al., 2001; Gustafsson
et al., 2018). The vertical and horizontal localization scales
determine how the ensemble covariance varies with distance
(Buehner, 2005). Gustafsson et al. (2018) pointed out that the
localization needs to be large enough to not disrupt the large-
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scale balance but small enough to represent fluctuations at
the convective scale. Thus, unlike at global scales, the opera-
tional RAP and HRRR systems use a horizontal localization
radius of 110 km in combination with a vertical localization
radius of three layers, which gives optimal forecast skill in
RAP applications (Hu et al., 2017). In addition, Hu et al.
(2017) tested a vertical localization radius of nine layers,
but using this larger localization radius degraded the fore-
cast when compared with three layers. Knowing the expected
results for a relatively larger vertical localization value us-
ing an 80-member ensemble, this study looks at the impact
of reducing the vertical localization radius from three grid
points to one in the lowest 10 vertical model levels (experi-
ment VLOC). This reduction is adopted to capture finer ver-
tical features of the low atmosphere from observations close
to the surface and below the PBL.

Figure 10 presents the RMSE and bias with 95 % con-
fidence intervals for vertical profiles of the 2h forecast of
temperature, specific humidity, and wind valid at 00:00 and
12:00 UTC for experiments VLOC and 75EnBEC. For the
temperature forecasts, VLOC has a lower RMSE between
800 and 550 hPa and smaller bias in the lower atmosphere
between 1000 and 900 hPa and between 800 and 700 hPa
during the late afternoon (valid hour 00:00 UTC) (Fig. 10a).
At valid hour 12:00 UTC, VLOC gives a lower RMSE be-
tween 950 and 900 hPa and between 350 and 300 hPa as well
as a lower bias in the upper atmosphere between 450 and
250 hPa (Fig. 10d). For specific humidity, the RMSE and bias
are improved at all levels above 650 hPa at 00:00 UTC with
VLOC. However, a degradation is observed in the RMSE in
the lower levels below 700 hPa. Degradation is also seen in
the bias between 950 and 800 hPa (Fig. 10b). At valid hour
12:00 UTC, not much improvement is shown in either the
RMSE or bias from VLOC (Fig. 10e). Most of the differ-
ences between these experiments are not statistically signif-
icant, as indicated by the confidence intervals. Meanwhile,
a general positive impact is observed in the RMSE and bias
for the winds above 650 hPa, being statistically significant at
300 hPa for both, and in the RMSE and bias results at valid
hour 00:00 UTC. A negative impact is found in lower levels
(Fig. 10c). At 12:00 UTC valid hour, slight improvements are
shown for VLOC in the RMSE between 650 and 500 hPa, in
the RMSE at 400 hPa, and in the bias at 550 and 350 hPa, but
the differences are not statistically significant (Fig. 10f).

The change in vertical localization slightly improves the
extent and intensity of convection over northeastern Okla-
homa in the 2h forecast; however, MMI (F+O) values in-
dicate that the experiment 7SEnBEC is still more skillful at
representing reflectivity larger than 35 dBZ, with a decrease
from 0.540 in 75EnBEC to 0.528 in VLOC (Fig. 11a). An un-
derforecast of the convection over central and eastern Okla-
homa is observed in VLOC in the 4 h forecast, with a smaller
MMI (F+O) value of 0.587 (Fig. 11b), and an overforecast
over north central Arkansas and south central Missouri is
observed in the 6h forecast, with a slight improvement in
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the MMI (F+0O) value from 0.544 in 7SEnBEC to 0.563 in
VLOC (Fig. 11c). While reducing the vertical localization
scale did produce small improvements at some vertical lev-
els and larger forecast lengths, degradation dominated the
overall signature, indicating that this variation of localiza-
tion scale produces overall less skillful storm forecasts. The
analysis cycling technique and multivariate relationships in
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the BEC spread the impact of the observations throughout
different levels and locations, which could have led to the
slight positive impact above 650 hPa instead of the lower at-
mosphere where the modification in the vertical localization
is made. This suggests a vertical ensemble localization radius
of three layers is already a good choice, if not the best.
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4.3 The impact of PBL pseudo-observations

The impact of adding PBL pseudo-observations to the anal-
ysis based on surface temperature and moisture observations
is evaluated in experiment PSEUDO. This function first iden-
tifies the PBL height using the background (FV3 LAM 1 h
forecast). Using METAR observations, it then computes the
2m temperature and 2 m moisture observation innovations
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(OmB) such that they are inserted at multiple vertical lev-
els, from the surface to the level corresponding to 75 % of
the PBL height and spaced every 20hPa (Benjamin et al.,
2016). This technique works as if additional PBL observa-
tions are available at those levels and, thus, more observa-
tion innovations can be computed. Therefore, they are called
“PBL pseudo-observations”. This function is tested with the
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PBL pseudo-observation configuration used in the opera-
tional RAP system.

The 2, 4, and 6 h composite reflectivity forecasts from ex-
periments PSEUDO and 75EnBEC are presented in Fig. 12.
PSEUDO clearly predicted more convection than 7SEnBEC
in the 2h forecast, with a smaller MMI (F+O) value of
0.533 in comparison with 0.540 in the experiment 7SEnBEC
(Fig. 12a). However, noticeable improvements in the cover-
age and positioning of the storm are found in 4 and 6 h fore-
casts, with a corresponding increase in the MMI (F+O) val-
ues when compared with 7SEnBEC (Fig. 12b, c). Especially
at 4 h, the representation of the squall line over Oklahoma
is greatly improved after adding PBL pseudo-observations
with a better coverage of the squall line, although an in-
crease in the intensity of the convective cores is also noted
(Fig. 12b). Spurious convection also appeared over northwest
Oklahoma and Texas in the 4 h forecast and over Texas in the
6 h forecast. These results indicate the potential of using PBL
pseudo-observations in RRFS to improve the representation
of convection.

The RMSE and bias vertical profiles for the 2h forecast
of temperature, specific humidity, and wind against sound-
ing observations at the 00:00 and 12:00 UTC valid hours are
presented in Fig. 13. The use of PBL pseudo-observations
gives subtle positive impacts at both valid hours and most
vertical levels for the RMSE and bias of temperature and spe-
cific humidity (Fig. 13a, b, d, ). Improvements in the RMSE
and bias of temperature are observed below 900 hPa at valid
hour 00:00 UTC. The positive impact in the bias extends to
800 hPa, indicating the better representation of the lower at-
mosphere in the experiment PSEUDO (Fig. 13a). A slight
degradation is observed in the middle levels at the same valid
hour. For wind, the RMSE shows more promising results
with a positive and statistically significant impact between
500 and 550 hPa at 00:00 and 12:00 UTC valid hours. This
positive impact is also significant at 300 hPa in the RMSE
and bias results at 00:00 UTC (Fig. 13c). At 12:00 UTC, the
bias shows more subtle improvements in 750 and 300 hPa
(Fig. 13f).

Similar to the upper-air verification, the RMSE and bias
of 2m temperature and 2 m dew point temperature for the
2h forecast in PSEUDO show an overall neutral impact.
A degradation in the RMSE of 2m temperature is ob-
served between cycles initialized at 21:00 and 00:00 UTC
(Fig. 14a) and in the bias between cycles initialized at
17:00 and 21:00 UTC. A subtle improvement is seen in the
bias of 2m temperature between cycles initialized at 21:00
and 23:00 UTC. Slight improvements are observed in the
RMSE and bias of 2 m dew point temperature between cycles
initialized at 19:00 and 23:00 UTC. Adding PBL pseudo-
observations helps to mitigate near-surface dry bias during
afternoon hours, makes upper-air forecasts better in some
levels of the middle and upper atmosphere, and clearly im-
proves the storm forecast in the 4 and 6 h forecasts. Never-
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theless, more tuning and testing of this function are needed
before applying this technique in the RRFS.

4.4 The impact of supersaturation removal

GSI has a function to remove supersaturation in the back-
ground by capping specific humidity to its saturation value
in each outer loop during the minimization of the cost func-
tion, as calculated using the background fields (CIMSS,
2014). Figure 15 shows the difference in the specific humid-
ity (g kg~!) analyses between the 7SEnBEC analysis and the
75EnBEC analysis with the supersaturation clipping function
activated (7SEnBEC vs. CLIPSAT) for the 19:00 UTC cycle
on 4 May 2020. As more moisture is present in the lower
atmosphere, model hybrid level 15 (located in the lower at-
mosphere at around 850 hPa) is selected to show this result.
Positive (negative) differences in Fig. 15 indicate that more
(less) specific humidity is found in the 7SEnBEC analysis
than in CLIPSAT. The figure suggests that supersaturation
is removed in the CLIPSAT analysis mostly over southwest-
ern and northwestern Missouri, southeastern Kansas, north-
ern Arkansas, and Oklahoma. It is worth mentioning that the
computational runtime of the analyses in CLIPSAT is quite
similar to 7SEnBEC (not shown).

The 2, 4, and 6 h composite reflectivity forecasts are shown
in Fig. 16 for experiments CLIPSAT and 75SEnBEC. When
the supersaturation removal function is activated in the anal-
yses, a better evolution of the squall line is observed in the
4 and 6h forecasts (Fig. 16b, c). The displacement errors
are reduced, and less spurious convection is seen over south-
ern Missouri and northern Arkansas at these forecast hours
(Fig. 16b, c, e, f). As seen in Fig. 15, the CLIPSAT anal-
ysis shows less specific humidity content over these areas
than in 7SEnBEC. However, less spatial coverage of the con-
vection is forecast over eastern Missouri, and the spurious
convection for values lower than 35dBZ is increased over
southwestern Missouri at the 2 h forecast in CLIPSAT com-
pared with 7SEnBEC (Fig. 16a, d). Nevertheless, both exper-
iments overforecast the reflectivity values larger than 35 dBZ
over that area. The MMI (F+O) values show more skill-
ful forecast of reflectivity larger than 35dBZ for all fore-
cast lengths in the experiment CLIPSAT. These values are
greatly increased at 2 h forecast, from 0.540 in 7SEnBEC to
0.811 in CLIPSAT, due to a better positioning and coverage
of the reflectivity above 35dBZ in areas over southeastern
Missouri. Overall, more spurious convection over northwest-
ern Missouri is shown in 7SEnBEC which led to the lower
MMI (F+0O) at this forecast hour (see the blue and red circles
over this area in Fig. 16a and d, highlighting improvement
and degradation, respectively, for each experiment). At 4h
forecast, MMI (F+O) results show an increase from 0.698 in
75EnBEC to 0.793 in CLIPSAT, with a reduction of the spu-
rious convection between north central Arkansas and south
central Missouri in CLIPSAT. Nevertheless, most of the spu-
rious convection shown in 7SEnBEC over other regions is
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Figure 13. As in Fig. 8 but for experiments 7SEnBEC and PSEUDO.

also observed in CLIPSAT, which may have penalized the
MMI (F+O) values in the last experiment. At 6h forecast,
more similar MMI (F+O) values are found, but still less spu-
rious convection is observed for lower reflectivity thresholds
in CLIPSAT. Results from CLIPSAT indicate the presence
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of longer-term bias that is being corrected to some extent in
this experiment. However, because the atmospheric state is
periodically refreshed with the large-scale conditions as part
of the partial cycling procedure, the model bias cannot be
fully examined. Further investigation involves adapting the
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Figure 14. As in Fig. 9 but for experiments 7SEnBEC and PSEUDO.
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Figure 15. Difference in specific humidity (g kg_l) fields for the
19:00 UTC cycle on 4 May 2020 between analyses without and with
supersaturation clipping activated (7SEnBEC — CS), at model hy-
brid level 15.
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approach employed by Wong et al. (2020) in which forecast
tendencies are used to investigate systematic model biases in
a continuously cycled experiment.

4.5 Quantitative precipitation forecast verification

To further evaluate the experiments conducted, the
FV3 LAM 1h accumulated precipitation is also ana-
lyzed. Precipitation forecasts remain a challenge for NWP
models at various spatial and temporal scales. Because of
their complexity, precipitation forecasts are frequently used
to evaluate model performance.

As mentioned in Sect. 3.4, precipitation forecasts are
verified against Stage IV precipitation observations at var-
ious thresholds. Figure 17 shows the ETS and FBIAS
for 1h accumulated precipitation greater than 0.01in.h~!
(0.254mmh~!) (Fig. 17a, ¢) and 0.25in.h~! (6.35mmh~")
(Fig. 17b, d) for all experiments at each forecast lead hour.
These verification measures are based on the two-by-two
contingency table used for categorical (dichotomous) vari-
ables (e.g., Jensen et al., 2020). ETS is based on the threat
score or critical success index and is commonly used to
examine the performance of precipitation forecasts. Perfect
forecasts have ETS values close to one, while forecasts with-
out skill have ETS values close to zero. Meanwhile, FBIAS
indicates when an event is forecast more or less often than
it is observed. FBIAS greater than one indicates an event is
overforecast, whereas less than one suggests an event is un-
derforecast. An FBIAS equal to one indicates that the event
is predicted as frequently as it is observed (e.g., Wilks, 2006).
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Figure 16. As in Fig. 7 but for experiments CLIPSAT (a—c) and 7SEnBEC (d—f). The red (blue) circle in panel (d) (panel a) indicates forecast
convection that penalized (improved) the MMI (F+O) value in experiment 7SEnBEC (CLIPSAT) at 2 h forecast.

For this case study, ETS values decrease as the precipi-
tation threshold increases in all of the experiments assessed
(Fig. 17a, b), indicating the difficulty in predicting heavier
precipitation events. Most of the experiments with data as-
similation have higher ETS scores for precipitation greater
than 0.01in.h~! (0.254 mmh~!) compared with NoDA dur-
ing almost the entire 18 h forecast (Fig. 17a). This shows the
positive impact of data assimilation in the analyses and sub-
sequent lighter precipitation forecasts. Experiments 100En-
BEC, CLIPSAT, 75SEnBEC, and PSEUDO show higher ETS
values in the first 4h of the forecast. Between 4 and 16h
forecast, experiment CLIPSAT shows the best performance
among all experiments, followed by 100EnBEC, 75EnBEC,
and PSEUDO, which shows very close results to 7SEnBEC.
In terms of FBIAS, 100EnBEC shows better scores until the
11 h forecast lead (Fig. 17¢). Between 2 and 8 h forecast, ex-
periment VLOC shows the greatest underforecast among all
experiments. The verification of 1h accumulated precipita-
tion greater than 0.25in. (6.35 mm) consistently shows that
using hybrid and pure ensemble BEC in data assimilation
improves the precipitation forecasts in the first 13 h forecast,
with 7SEnBEC outperforming 100EnBEC within the first4 h
(Fig. 17b). After the 13 h forecast, experiment NoDA per-
forms better, which shows that data assimilation mainly im-
proves the short-term forecast and that the major factor for
a good long-term forecast is the quality of the background
from the outside model as well as the FV3 LAM model itself.
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For the 0.25in.h™! (6.35mmh™") threshold, precipitation
is overforecast in experiments 100EnBEC and NoDA in the
first 3 h and underforecast in experiments 3DVar, 7SEnBEC,
PSEUDO, VLOC, and CLIPSAT. All experiments under-
forecast accumulated precipitation greater than 0.25in.h™!
(6.35 mmh™!) after the 9 h forecast (Fig. 174d).

5 Summary and final remarks

The capability of a prototype RRFS with data assimila-
tion, the RRFS v0.1, to simulate convection is investigated
through a case study of a squall line that occurred over Ok-
lahoma during the afternoon of 4 May 2020. Various data
assimilation parameters and algorithms are tested and evalu-
ated in order to find the best configuration to produce more
realistic convection forecasts. This case study shows that
the FV3 LAM with the RRFS_PHYvla physics suite has
good potential for storm forecasts. Overall, the configura-
tions tested are able to capture the main characteristics of
the major convective systems during the execution period.
Howeyver, the convection in the RRFS v0.1 tends to be over-
estimated with respect to intensity and underestimated with
respect to its extent, as found in previous studies on FV3-
based convection-allowing models (e.g, Tong et al., 2020;
Gallo et al., 2021).

As expected, data assimilation makes the analyses fit the
observations more closely in all cycles. However, the RM-
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(b) >0.25 inches h™!
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Figure 17. ETS (a, b) and FBIAS (¢, d) for 1 h accumulated precipitation forecasts greater than 0.01in. (0.254 mm) (a, ¢) and 0.25in.
(6.35 mm) (b, d) from experiments CLIPSAT, PSEUDO, VLOC, 100EnBEC, 75EnBEC, 3DVar, and NoDA for 18 h forecasts.

SEs of the OmB show distinguishable spikes in cycles where
FV3 LAM 1h forecasts are initialized from an external
model as background for the analyses, which indicates that
the FV3 LAM is still under spin-up in this situation. There-
fore, a cycling configuration including a spin-up period for
cycles using external model forecasts may be considered. At
present, work is underway at NOAA’s Global Systems Labo-
ratory (GSL) and EMC to determine the best cycling strategy
for this system.

The data assimilation configurations tested show different
impacts to the storm forecasts in terms of the squall line lo-
cation, orientation, and coverage, but experiments with data
assimilation show an overall positive impact compared with
the experiment without data assimilation. The data assimi-
lation using pure ensemble BEC (100EnBEC) performs bet-
ter at 2 h forecasts for the storms, but 75 % ensemble BEC
(75SEnBEC) produces better forecasts at all forecast lengths
with a better positioning of the squall line evolution, espe-
cially at 4 h forecast. Lower RMSE and bias values are also
found in experiment 7SEnBEC for the analyzed surface vari-
ables and most vertical profiles with significant statistically
differences below 800 hPa at 00:00 UTC valid hour.

Reducing the vertical localization from 3 layers to 1 layer
in the lowest 10 layers of the analysis grid generally leads to a
less skillful forecast. This suggests that the vertical localiza-
tion configuration used in RAP is already a good choice and
should be used in RRFS. Nevertheless, the RMSE and bias
of the 2h forecast of specific humidity are reduced above
600 hPa at 00:00 UTC valid hour in experiment VLOC com-
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pared with 7SEnBEC. In addition, compared with 7SEnBEC,
the negative bias present at 1000 hPa in specific humidity and
temperature is improved in VLOC as are the high reflectivity
values at larger forecast lengths.

Convection is greatly improved when using PBL pseudo-
observations from surface 2 m temperature and 2 m moisture
observations based on RAP configurations, especially at 4 h
forecast with a better coverage and positioning of the con-
vection. The promising results found in this study for the
storm forecast indicates the potential of the PBL pseudo-
observations function in future versions of RRFS. The 1h
accumulated precipitation in PSEUDO also depicts this char-
acteristic for most of the forecast hours. The verification of
the temperature vertical profiles shows a reduction of the bias
of the 2 h forecast of temperature below 800 hPa at valid hour
00:00 UTC, but the experiment PSEUDO shows overall neu-
tral impact over 7SEnBEC at 12:00 UTC and for specific hu-
midity vertical profiles at both valid hours. On the other hand,
wind results show a statistically significant positive impact in
the RMSE in the middle atmosphere at valid hours 00:00 and
12:00 UTC. Although, at valid hour 00:00 UTC, the RMSE
and bias show degradation below 650 hPa.

Supersaturation clipping in GSI can improve specific hu-
midity fields in the analyses, allowing for more realistic
storm and precipitation forecasts at longer forecast lengths.
At shorter forecast lead hours, it produces more skillful fore-
casts with a better positioning and coverage of the reflectivity
above 35dBZ, and precipitation forecasts are as good as in
experiments 7SEnBEC and 100EnBEC. Although this func-
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tion imposes a nonphysical constraint to remove the super-
saturation from the background when minimizing the cost
function, it leads to overall more skillful forecasts without
an increase in the computational cost. These results agree
with what has been found in previous studies: the use of con-
straints in the analyses has led to more skillful forecasts (e.g.,
Tong et al., 2016, using a divergence constraint). This is a
common practice in order to preserve non-negativity in the
analyses but also comes at the cost of violating mass conser-
vation (e.g, Janji¢ et al., 2014, 2021).

FV3 LAM hourly accumulated precipitation forecasts for
different thresholds indicate that heavier precipitation (>
0.25in., 6.35mm) is more difficult to predict than light
precipitation (> 0.011in., 0.254 mm). The data assimilation
clearly improves precipitation forecasts up to 13h for both
thresholds analyzed. The experiment using 100 % ensem-
ble BEC shows the best 1 h accumulated precipitation fore-
cast quality in the first 4 h forecast for lighter precipitation,
whereas experiment 7SEnBEC performs better for 1 h accu-
mulated precipitation greater than 0.25 in..

Although this is a single case of a squall line and RRFS
components are under development, this study provides valu-
able insights into the performance of the RRFS v0.1 with var-
ious configurations. More extensive testing of RRFS, cover-
ing a wider variety of cases, a larger domain, and a longer
period of time, is needed to demonstrate whether the results
found here are robust or may be case dependent. Although
further testing and evaluation are warranted in addition to the
options tested here, data assimilation proves to be crucial to
improve short-term forecasts of storms and precipitation in
RRFS.

Code and data availability. The source code repository of SRW
version 1.0.0 is available at https://github.com/ufs-community/
ufs-srweather-app (last access: 22 January 2021). The source code
for the GSI analysis system used can be found at https://github.
com/NOAA-EMC/GSI, branch gsi_fv3regdcoldstart (last access:
26 June 2020). The frozen versions of the codes that comprise
RRFS v0.1 can be found at https://doi.org/10.5281/zenodo.5546592
(Banos et al., 2021a). As the RRFS is under development, the codes
of the different components are constantly evolving. Therefore, for
up-to-date and supported codes, readers are referred to the appropri-
ate GitHub repositories. The source code repository of MET version
9.0.0 is available at https://github.com/dtcenter/MET/tree/main_v9.
0 (last access: 21 July 2021). ICs, LBCs, and RAP observations used
to perform the experiments and verify the forecasts were obtained
from NOAA’s High Performance Storage System (HPSS) archives.
Stage IV precipitation observations were downloaded from the
NCAR Earth Observing Laboratory data server at https://data.eol.
ucar.edu/cgi-bin/codiac/fgr_form/id=21.093 (last access: 2 Decem-
ber 2020). Hourly MRMS composite reflectivity mosaic (optimal
method) observations are available from the Iowa Environmental
Mesonet archives at https://mesonet.agron.iastate.edu/archive/ (last
access: 27 February 2021). Storm reports were obtained from the
SPC archives available at https://www.spc.noaa.gov/climo/reports/
200504 _rpts.html (last access: 14 July 2021). The namelist files

Geosci. Model Dev., 15, 6891-6917, 2022

I. H. Banos et al.: Assessment of the data assimilation framework for the RRFS v(.1

used to cold or warm start the model, for the analyses in each ex-
periment, and for the generation of the model grid, topography, and
surface climatology are provided online along with the model con-
figuration file, the file used in the analyses to read the horizontal and
vertical scales from an external file, all scripts used to execute every
task of the workflow, all scripts used to process model outputs with
MET, and all scripts and data used to create all figures in the paper,
via Zenodo (https://doi.org/10.5281/zenodo.5226389, Banos et al.,
2021b).
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