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Abstract. There are two basic methods for radial external load distribution calculation on 

rolling elements in a rolling element bearing: the discrete method and the integral method. 

Solving the discrete equilibrium equation using the Newton-Raphson scheme, more accurate 

results are derived than those based on the integral method, with small theoretical and 

computational efforts. The Sjövall’s radial integral factors, as well as some approximations 

proposed in the literature, for line- and point-contacts, are given. Numerical approximations 

for the Sjövall's radial integrals are proposed. The approximations’ errors with respect to the 

Sjövall’s radial integral’s numerical integration are shown. 

1 INTRODUCTION 

The performance of rolling bearing systems, as well as the life, load capacity, vibration 

level, noise, running accuracy, stiffness, depend on the geometry of the bearing, including the 

diametrical clearance, the materials that make up the parts, hardness of contacting surfaces 

and the load distribution of the external load. This work deals with the external radial load 

distribution on the rolling elements. 

Ref. [1] investigated the load distribution on rolling elements of a radially loaded ball 

bearing and found that the maximum ball load could be obtained by multiplying the medium 

external load by 4.37, for zero internal clearance. This number came to be known as 

Stribeck’s Constant or Number and, to account for nonzero diametrical clearance and other 

effects, Stribeck recommended rounding the Constant to 5.0. 

An integral method for load distribution calculation in bearings was proposed [2]. The 

relationship between the maximum loaded rolling element load and the bearing external load 

was established using Sjövall’s integrals. 

Ref. [3] stated that the theoretical value of Stribeck's Constant for roller bearings with zero 

internal clearance is 4.08 and suggested using Stribeck's recommended value of 5.0 for the 

Stribeck’s Constant for either ball or roller bearings having typical clearance. 

Ref. [4] showed how the Stribeck’s Constants were found. It’s also shown that the error 

when adopting the value 4.08 for roller bearing Stribeck’s Constant is 55.6 times greater than 

when adopting the value 4.37 for the ball bearing Stribeck’s Constant. 

A comprehensive mathematical model of bearings was developed in Ref. [5], which 

described methods for internal loading distribution in statically loaded bearings addressing 

pure radial; pure thrust (centric and eccentric loads); combined radial and thrust load, using 
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radial and thrust Sjövall’s integrals’ approximations; and for ball bearings under combined 

radial, thrust, and moment load. The load zone was described by the load distribution factor, 

ε, and the contact stress-strain relationship between the ring and any rolling element was 

achieved. The load distribution can be obtained by continuous iteration procedure. However, 

studies have shown [6, 7] that the results obtained by the Harris method [5] can’t rigorously 

satisfy the static balance. Pointing out that the problem of obtaining the load distribution in 

bearings with arbitrary radial clearance is to determine the number of rolling elements that 

participate in the transfer of the external radial load. 

A new approach in the mathematical modeling of rolling bearings was developed [6-8]. 

The approach considers two boundary cases of inner ring support on an even and/or odd 

number of rolling elements. In relation to these boundary conditions, Tomović derived the 

general equations for the calculation of the boundary deflection and internal radial load 

values, which are necessary for the inner ring support on a finite number of rolling elements. 

The effect of internal clearance on load distribution and fatigue life of radially loaded deep 

groove ball bearings was investigated [9, 10]. They found that life gradually decreases with 

increasing clearance’s absolute value and is maximum under small negative clearance. 

Furthermore, in radially loaded bearings, the rolling elements, which transfer the load – active 

elements –, are located below the meridian plane in the so-called loading zone. The quasi-

static analysis to derive the radial load distribution is based on the assumption that the inner 

ring, under load, moves radially in the direction of the external load, with respect to the outer 

ring, which rings are considered rigid. 

There are two basic methods for radial external load distribution determination on rolling 

elements, which participate in the load transfer between rings in a rolling element bearing. 

There is a discrete method, where the radial external load, the diametrical clearance, the load-

deflection relationships at the rolling elements-race contacts are known and assuming that the 

rolling elements are symmetrically and evenly distributed with respect to the radial external 

load direction, the rolling elements normal loads, the relative radial displacement between 

rings or the deflection at maximum loaded rolling element can be obtained by numerically 

satisfying the static equilibrium equation, which requires that the applied load must be equal 

to the sum of the rolling elements loads components parallel to the direction of the applied 

load. 

There is a second method - integral method -, where the rolling element normal load 

equivalent to a rolling element-race elastic hertzian contact deflection equal to the relative 

displacement between the rings can be given by multiplying the reciprocal of an integral 

factor and the applied external radial load averaged. Equivalently, the maximum rolling 

element normal load of the bearing can be given by multiplying the reciprocal of a second 

integral factor and the applied external radial load averaged. 

The integral methods described in the literature for normal rolling elements load 

distribution in a rolling bearing under radial external load require the integration, around the 

load zone, of a trigonometric function, which the cosine of the loading zone azimuth angle is 

the parameter – the Sjövall radial integral. This integral can be reduced to a standard elliptical 

integral by the hypergeometric series and the beta function, requiring reasonable theoretical 

effort. In applications, a numerical evaluation of the integral is used, therefore, an 

approximation of the exact solution. 
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The method described in this work obtain numerically the shift between rings – or the 

maximum elastic hertzian deflection at race-rolling element contacts - and, therefore, the 

normal rolling elements loads, using a single iterative numerical based Newton-Rhapson 

equation; and it was found that the method described in this work obtain results as accurate as, 

or even more accurate than the methods described in the literature, with little theoretical and 

computational effort. Then, in this work is described a simple, accurate numerical iterative 

Newton-Raphson based method for internal load distribution computation in statically loaded, 

single-row, deep grove, angular-contact ball bearings or cylindrical roller bearings, subjected 

to a known external radial load. The author didn’t find in the literature the resolution of this 

problem using the procedure here described. 

Many of the introductory subjects have already been addressed in other papers by other 

authors
 
and aren’t repeated here (geometry of ball and roller bearings, formulas for normal 

stresses and deflections calculations when two elastic solids are brought into contact, 

relationships between load and deflection for static loading). Symbols used in formulas are 

introduced as they appear in the text. The formulas for static loading of ball and roller 

bearings are presented, including equilibrium equations in the discrete and integral forms. The 

former presented as a sum of the normal rolling element loads components in the direction of 

the external load, and the last as an integral around the loading zone. 

The two Sjövall’s radial integral factors, relating the maximum loaded rolling element load 

and the average external load, are given, as well as approximations for radial integrals due to 

[9-11], for line- and point-contacts. The approximations’ errors with respect to the Sjövall’s 

radial integral’s numerical integration are shown. A numerical approximation for the Sjövall's 

radial integral is proposed, which fits the numerical integration properly for almost the entire 

load zone range, for both, line- and point-contact, which has shown to have smaller errors 

than other approximations for small load zones. 

In sequence, one iterative scalar equation for the radial total displacement between the 

rings using the Newton-Raphson method is introduced. Knowing the radial total displacement 

or the maximum deflection and the diametrical clearance, the other parameters can be found, 

for both ball and roller bearings: the distance between shifted groove curvature centers - 

considering that for this type of loading, the all balls contact angles are null; the normal load, 

maximum deflection and contact ellipse parameters for each ball of the ball bearing; 

maximum deflection and semiwidth contact parameters for each roller of the roller bearing. 

Numerical results of the presented Newton-Raphson based method are shown through plots, 

for 209, 210 and 218 deep groove or angular-contact ball bearings, and have been compared 

with Stribeck’s results, which consider null diametrical clearance for a complete range of the 

radial load; with an approximate iterative integration method described in Ref. [11], with 

results shown in Refs. [9, 10], and with approximations suggested in this work. 

2 ROLLING ELEMENT BEARINGS UNDER RADIAL LOAD 

Let a bearing with Z rolling elements (balls or rollers) symmetrically distributed about a 

pitch circle to be subjected to a radial load. Then, a relative radial displacement, δ, between 

the inner and outer ring raceways may be expected. Let ψ the azimuth angle measured from 

the load line, which passes through the most loaded element (Fig. 1). 
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Figure 1: Rolling elements angular positions in the radial plane, which is perpendicular to the bearing’s axis of 

rotation, Δψ = 2π/Z, ψj = Δψ(j − 1), j = 1, …, Z; Pd represents the diametrical clearance; do, di, D represent outer, 

inner raceway diameters, and rolling element diameter, respectively 

The original diametrical clearance, as a result of the bearing manufacturing process, may 

change after fitting and under temperature's radial gradients between rings and rolling 

elements, when in operation; and may result in clearance or interference (preloading). 

Therefore, I assume here that the resulting operational diametrical clearance can be positive, 

negative or zero. 

A loaded radially bearing with diametrical clearance Pd > 0, at which the load line passes 

through the most loaded rolling element’s center is shown in Fig. 2. In the concentric position 

shown in Fig. 2(a), a uniform radial clearance of Pd/2 is observed between the rolling 

elements and the raceways. The application of a small radial load to the shaft causes the inner 

ring to move a distance Pd/2 before contact between the rolling element located on the load 

line at ψ = 0 and the inner and outer raceways. 

However, if Pd < 0 in the concentric position, a uniform radial preload is observed and the 

application of a small radial load to the shaft causes the inner ring to move a distance |Pd|/2 

before release of the rolling element located on the load line at ψ = 180
o
 from the inner and 

outer raceways. 

The radial clearance or interference, cj, at a given azimuth angle ψj, if |Pd| is small 

compared to the radius of the tracks, can be expressed with adequate precision by 

1 cos
2

d d
j j

d

P P
c

P


 
  
 

.    (1) 

Note that Eq. (1) introduced in this work is slightly different from the equation proposed 

for the clearance on p. 21 of the Ref. [11], which is assumed positive. Eq. (1) allows working 

with the clearance sign easily. If Pd > 0, on the load line where ψ = ψ1 = 0
o
, the clearance is 

zero; but when ψ = 180º the clearance is Pd. If Pd < 0 the clearance is null at ψ = 180
o
 and Pd 

(interference) at ψ = 0
o
. 
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Figure 2: Radially loaded bearing with diametrical clearance Pd > 0, at which the load line passes through the 

most loaded rolling element’s center: (a) Concentric arrangement; (b) Initial contact; (c) Interference 

Source: [11] 

The application of further load will cause elastic deformation of the rolling elements along 

a 2ψl arc. If the further elastic interference or compression in the load line is max the 

corresponding elastic compression j of the rolling element along a radius at an angle ψj to the 

load line is given by 

max cosj j jc    ,     (2) 

which assumes that the rings are rigid. 

Substituting (1) in (2), yields 

cos
2

d
j j

P
    ,     (3) 

where 

max
2

dP
        (4) 

represents the total relative radial displacement between inner and outer rings. 

Substituting (3) in the load-deflection relationship, yields 

cos
2

n

d
j n jQ

P
K  

 
  

 
,    (5) 

where Qj is the normal load of the rolling element along a radius at an angle ψj to the load 

line, K is the load-deflection factor and n is the load-deflection exponent. 

For static equilibrium, the applied load Fr must be equal the sum of the components of the 

rolling-elements loads parallel to the direction of the applied load, that is, 

1
cos

Z

r j jj
F Q 


 .     (6) 

Substituting (5) in (6), yields 

1
cos cos

2

n
Z

d
r n j jj

P
F K   



 
  

 
 ,  (7) 

in which are not all rolling elements that work, but those in the angular extension of the 

bearing arc 2ψl, in which the rolling elements are loaded. This load zone is obtained by setting 

the expression between curved brackets in (5) equal to zero and solving for ψ, yields 
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1cos
2

d
l

P




  
 
 

.     (8) 

Therefore, (7) can be written in the integral form by 

 'n

r n r lF ZK J  ,     (9) 

where 

   ' 1
cos cos cos

2

l

l

n

r l lJ d



    

 
    (10) 

is known as the Sjövall’s radial integral. 

Defining the load distribution factor, 

 
1

1 cos
2

l  ,     (11) 

as being the ratio between the load zone projected on line load bearing diameter and the 

diameter, then (9) can be written by 

 maxr rF ZQ J  ,     (12) 

where 

   
1 1

1 1 cos cos
2 2

l

l

n

rJ d



   

 

 
  

 
 .  (13) 

Since n is a fractional power in the Eqs. (10) and (13), then these equations can be reduced 

to standard elliptical integrals by hypergeometric series and beta function [11]. 

The load carried by the most heavily loaded rolling element is obtained by substituting ψj = 

1 = 0
o
 in Eq. (7), dropping the summation sign, yields 

   max 1 cos 2
n nn n

n l nQ K K      ,   (14) 

which substituted in Eq. (12) shows that the integral in Eq. (13), when multiplied by the factor 

between curved brackets raised to the power n of the Eq. (14), results the integral in Eq. (10). 

For roller bearings n = 10/9, but if n is approached by 1, the integrals (10) and (13) can be 

approximate by [11] 

    ' 1
cos sin

2
r l l l lJ    


      (15) 

and 

       
211

cos 1 2 1 2 1 1 2
4

rJ    


      
  

. (16) 

The following fitting for the numerical evaluation of Eq. (13), 

0.40230.3268rJ  ,  0   < 0.5,    (17) 

10.245rJ  ,    = 0.5,   (18) 
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4 3 2 110.0852 0.5703 .3343 .71 75 0.077rJ       ,  0.5 <   2,  (19) 

was proposed in Refs. [9, 10] for a line contact. However, the proposed fitting for 0.5 <   2 

is inadequate, and, therefore, I propose the following fitting 

4 3 213.2288 15.2846 6.5712 1.5386 0.0268rJ        , 0   < 0.5,  (20) 

80.244rJ  ,    = 0.5,   (21) 

4 3 20.1070 0.6773 1.5169 1.3025 0.1082rJ        , 0.5 <   2,  (22) 

which best fits the results obtained numerically from the numerical integration of Eqs. (13) 

and (10), for n = 10/9, when the imaginary part is disregarded, as shown in Figs. 3(a) and 

4(a). 

For ball bearings n = 3/2, and the following fitting 

 

1/2 1/2
2 2

' cos 12.491 2.491 2
1 1 1 1

1.23 1.23

l
r lJ

 


 

            
             

             

,      (23) 

was proposed in Ref. [11] for the Eq. (10) evaluated numerically. 

The following fitting for the numerical evaluation of Eq. (13), 

0.41750.3076rJ  , 0   < 0.5,     (24) 

2290.rJ  ,   = 0.5,    (25) 

4 3 2 30. 20.0191 0.202 008 .063 7 0.6 5 21rJ         ,  0.5 <   2,  (26) 

was proposed in Refs. [9, 10] for a point contact. 

I propose the following fitting 

4 3 212.0191 13.8882 5.9563 1.4033 0.0244rJ        , 0   < 0.5,  (27) 

80.228rJ  ,    = 0.5,   (28) 

4 3 20.0446 0.3368 0.8843 0.8757 0.0318rJ        , 0.5 <   2,    (29) 

which has a similar precision to the Refs. [9, 10] approximation, as shown in Figs. 3(b) and 

4(b), but with a slightly wider application range. The Ref. [11] approximation turns out to be 

more accurate than the Refs. [9, 10] and Ricci’s approximations and fits the exact numerical 

solution to within 2 percent for a complete range of application. 

The Fig. 3(a) shows the integral of Eq. (13) calculated numerically for n = 10/9, the Ref. 

[11] approx. for n = 1 (Eq. (16)), the Refs. [9, 10] approx. (Eqs. (17)-(19)), and the Ricci’s 

approx. (Eqs. (20)-(22)); conjointly with the relative errors of the approximations with respect 

to the numerical integration, as functions of , for 0    2. 

The Fig. 3(b) shows the integral of Eq. (13) calculated numerically for n = 3/2, the Ref. 

[11] approx. (Eq. (23)) multiplied by the factor (2ε)
-3/2

, the Refs. [9, 10] approx. (Eqs. (24)-
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(26)), and the Ricci’s approximation (Eqs. (27)-(29)), together with the approximations’ 

errors with relation to the numerical integration, as functions of , for 0    2. Note that the 

Ref. [11] approx. fits properly only in the range 0    1. 

 
(a) 

 
(b) 

Figure 3: Numerical integration of Eq. (13), approximations and relative errors with respect to the numerical 

integration, as functions of , for 0    2. (a) n = 10/9;  HA’s approx. for n = 1 (Eq. (16)); OZP’s approx. (Eqs. 
(17)-(19)); Ricci’s approx. (Eqs. (20)-(22)). (b) n = 3/2; HA’s approx. (Eq. (23)) multiplied by the factor (2ε)-3/2; 

OZP’s approx. (Eqs. (24)-(26)); Ricci’s approx. (Eqs. (27)-(29)). HA-Hamrock and Anderson; OZP-Oswald, 

Zaretsky and Poplawiski 

The Fig. 4(a) shows the integral of Eq. (10) calculated numerically for n = 10/9, the Ref. 

[11] approximation for n = 1 (Eq. (15)), the Refs. [9, 10] proposed fitting (Eqs. (17)-(19)), and 
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the the Ricci’s approx. in Eqs. (20)-(22), with last two approximations multiplied by the 

factor between curved brackets raised to the power n = 10/9 in the Eq. (14). In addition, the 

Fig. 4(a) shows the relative errors of the approximations with respect to the numerical 

integration, as functions of ψl, for 0
o
  ψl  180

o
. 

The Fig. 4(b) shows the integral of Eq. (10) calculated numerically for n = 3/2, the Ref. 

[11] approximation (Eq. (23)), the Refs. [9, 10] approximation (Eqs. (24)-(26)), and the 

Ricci’s approximation (Eqs. (27)-(29)), with last two approximations multiplied by the factor 

between curved brackets raised to the power n = 3/2 in the Eq. (14); together with the 

approximations relative errors with respect to the numerical integration, as functions of ψl, for 

0
o
  ψl  180

o
. 

 
       (a)                                                                                           (b) 

Figure 4: Numerical integration of Eq. (10), approximations and relative errors with respect to the numerical 

integration, as functions of ψl, for 0  ψl  180o. (a) n = 10/9; HA’s approx. for n = 1 (Eq. (15)); OZP’s approx. 
(Eqs. (17)-(19)) Ricci’s approx. (Eqs. (20)-(22)), with last two approximations multiplied by the factor between 

curved brackets raised to the power n = 10/9 in the Eq. (14);  (b) n = 3/2; HA’s approx. (Eq. (23)); OZP’s 

approx. (Eqs. (24)-(26)); Ricci’s approx. (Eqs. (27)-(29)), with last two approximations multiplied by the factor 

between curved brackets raised to the power n = 3/2 in the Eq. (14). HA-Hamrock and Anderson; OZP-Oswald, 

Zaretsky and Poplawiski 

Replacing Eq. (14) in Eq. (9) and from Eq. (12), yields 

 

 

 

   max ' '

1 co 1s 2l r r r

r l r l r

n n

F F F
Q

J Z J Z J Z

 

  



 ,  (30) 

which represent the ratios between the maximum rolling element’s radial load, Qmax, and the 

medium or average radial external load, Fr/Z. The factors multiplying the average radial 

external load are defined as the Stribeck’s Coefficients, St, for ball and roller bearings and 

differ from Stribeck’s Constants or Numbers, which are approximations for Stribeck’s 

Coefficients for a rolling element bearing with zero radial clearance [4, 12]. 

For n = 3/2, replacing Eq. (23), in Eq. (30), yields 

max
rF

Q
Z

 ,      (31) 
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where 

 
   

3/2

1/2
2 2

3/2

1/2

1 cos 2

cos 1 2
2.491 1 12.491 1 1

1.231.23

l

l

   

 




            
          
              

, (32) 

is a Stribeck’s Coefficients factor approximation for ball bearings. 

When the diametrical clearance Pd is zero, from Eq. (8), ψl = π/2, and from Eqs. (30) and 

(10) 

 max '
4

1

/ 2
.37r r

r

F F
Q

J Z Z
 .     (33) 

Stribeck [1] obtained 𝒵 = 4.37. He then derived the famous Stribeck equation for static 

load capacity, writing a more conservative value of 5, for take account the diametrical 

clearance, for the theoretical value of 4.37, that is, 

max
5

r

Z
F Q .      (34) 

Nowadays, digital computers are quite widespread and hence it is not necessary to 

calculate radial integrals or to obtain approximations as proposed by Stribeck, Sjövall, 

Palmgren, Harris, Hamrock and Anderson or Oswald, Zaretsky and Poplawski to obtain the 

load distribution in a bearing under radial load. This can be achieved easily using a single 

iterative scalar equation for δ or max. Given Fr, Kn, Pd, and ψj, j = 1, ..., Z, Eq. (7) can be 

solved numerically for  by the Newton-Raphson method. The iterative equation to be 

satisfied is 

1

1 1

2

1

cos cos
2

cos cos
2

n
Z

d
r n j i j jj

i i n
Z

d
n j i j jj

P
F K

P
n K

  

 

  



 



 
  

  
 

 
 





,   (35) 

in which the convergence is satisfied when i+1  i becomes essentially zero. Having 

obtained  the normal ball load is easily obtained by Eq. (6). 

3 NUMERICAL RESULTS 

Chosen a rolling bearing, as input, geometric parameters: di, do - or da, db - D, Z, and f; and 

elastic properties: Ea, Eb, νa and νb, must be given. Next, the following parameters must be 

derived: de, ψj, j = 1,…, Z, E´and Pd. 

The interest here is to observe the behavior of a deep grove, angular-contact ball bearing, 

under radial load. With the purpose of comparing the numerical results of the Newton-

Raphson algorithm based method, developed in this work, with those of the literature, the 

values 1/R|i, 1/R|o, Γi, Γo, ki, ko, Ki, Ko, Ei, Eo, Ki, Ko and Kn, which are functions of the 

contact angle, are calculated [5]. Since the contact angles are null for this type of loading, 

these values are constants for all balls angular positions. Initially was given δ estimates for 



Mário C. Ricci 

 11 

each external radial load varying from zero up to 10,000 N. The news δ values are compared 

with old ones and if relative errors are greater than a minimal error, new δ values are derived. 

If relative errors are lesser than the minimal error, the program ends. 

To show an application of the theory developed in this work numerical examples are 

presented here. I have chosen the 209, 210, and 218 deep grove or angular-contact ball 

bearings, which were also used in Refs. [5, 9, 10, 11]. Thus, the results obtained here can be 

compared to a certain degree with the results of the authors’ papers cited. The input data for 

these rolling bearings are shown in Table I. 

Table I: Input data for ball bearings used as examples 

 209 210 218 

Bore diameter, db [m] 0.045 0.05 0.09 

Outer diameter, da [m] 0.085 0.09 0.16 

Pitch diameter, de [m] 0.065 0.07 0.125 

Race conformity, f 0.52 0.52 0.5232 

Ball diameter, D [m] 0.0127 0.02223 

Number of balls, Z 9 10 16 

Modulus of elasticity for both balls and races, E [N/m2] 2×1011 2.059×1011 2.075×1011 

Poisson’s ratio for both balls and races, υ 0.3 

The Fig. 5 shows the relative total rings radial displacements computed using the Eq. (35) 

and the approximations of Stribeck [1], Hamrock and Anderson [11], Oswald, Zaretsky and 

Poplawski [9, 10], and Ricci, as radial external load functions, ranging from zero to 10,000 N, 

for the 209, 210 and 218 ball bearings. Since the Stribeck’s method applies to bearings with 

zero radial clearance, the nominal radial clearances were added to the Stribeck’s results, for 

the entire radial external load range. Then, the results using Stribeck, Hamrock and Anderson, 

Oswald, Zaretsky and Poplawski, and Ricci’s approximations can be compared with the result 

of Eq. (35). The dashed lines represent the relative errors of the approximations with respect 

to the discrete method solved using the Newton-Raphson technique. In the plots of Fig. 5 the 

ordinate on the left side represents the values of the total radial displacement between the 

rings derived by all methods and the ordinate on the right side represents the errors, in 

percentage, of the values of the total radial displacement between the rings obtained by the 

approximate methods in relation to the obtained by solving Eq. (35). 

4 CONCLUSIONS 

It has been shown that it is possible to easily and accurately obtain the radial external load 

distribution applied to a rolling element bearing by solving the quasi-static equilibrium 

discrete scalar equation using the Newton-Rhapson scheme. Approximate methods based on 

Sjövall integrals - as functions of the load zone or load factor - were compared with the 

discrete method Newton-Rhapson solution and the errors were quantified as a function of the 

loading. An approximate method was proposed that fits the solutions of the numerical 

solutions of the Sjövall integrals within a range of ±2%, which has shown to have better 

performance than other approximations for small load zones, as shown in Fig. 5(c). 
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(a) 

 

(b) 

 

(c) 

Figure 5: Displacement between rigid rings of the deep-groove or angular-contact ball bearing, as a function of 

external radial load, for five different methods. Results presented in the literature also are shown: (a) 209, 0.12 < 

ε < 0.44, 41.4° < ψl < 83.37°; (b) 210, 0.14 < ε < 0.44, 43.53° < ψl < 83.06°; (c) 218, 0 < ε < 0.09, 0°< ψl < 34.14°. 

HA-Hamrock and Anderson; OZP-Oswald, Zaretsky and Poplawiski 



Mário C. Ricci 

 13 

5 ACKNOWLEDGMENTS 

The author thanks the collaboration of the following institutions: National Council for 

Scientific and Technological Development (CNPq); Coordination for the Improvement of 

Higher Education Personnel (CAPES); Research Support Foundation of the State of São 

Paulo (FAPESP); Ministry of Science, Technology and Innovation (MCTI); National Institute 

for Space Research (INPE).  

6 RESPONSIBILITY FOR INFORMATION 

The author is solely responsible for the information included in this work. 

REFERENCES 

[1] Stribeck, R. Ball Bearings for Various Loads. Trans. ASME (1907) 29:420-463. 

[2] Sjövall, H. The Load Distribution within Ball and Roller Bearings under Given External 

Radial and Axial Load. Teknisk Tidskrift, Mek (1933), h.9. 

[3] Palmgren, A. Ball and Roller Bearing Engineering. 3
rd

 ed., Burbank, Philadelphia, (1959). 

[4] Ricci M. C. On the Stribeck’s numbers in radially loaded rolling element bearings. 

Proceedings CREEM2022 (2022). https://abcm.org.br/proceedings/view/CRE2022/0038 

[5] Harris, T. A. Rolling Bearing Analysis. 4
th
 ed., John Willey & Sons Inc., New York, 

(2001). 

[6] Tomović, R. Calculation of the boundary values of rolling bearing deflection in relation to 

the number of active rolling elements. Mechanism and Machine Theory (2012) 47:74-88. 

[7] Tomović, R. Calculation of the necessary level of external radial load for inner ring 

support on q rolling elements in a radial bearing with internal radial clearance. 

International Journal of Mechanical Science (2012) 60:23-33. 

[8] Tomović, R., Miltenović, V., Banić, M. and Miltenović, A. Vibration response of rigid 

rotor in unloaded rolling element bearing. International Journal of Mechanical Sciences 

(2010) 52(9):1176-1185. 

[9] Oswald, F. B., Zaretsky, E. V. and Poplawski, J. V. Effect of Internal Clearance on Load 

Distribution and Life of Radially Loaded Ball and Roller Bearings. NASA/TM-2012-

217115, (2012). 

[10] Oswald, F. B., Zaretsky, E. V. and Poplawski, J. V. Effect of Internal Clearance on Load 

Distribution and Life of Radially Loaded Ball and Roller Bearings. Tribology 

Transactions (2012) 55(2):245–265. 

[11] Hamrock, B. J. and Anderson, W. J., Rolling-Element Bearings. NASA RP 1105, 

(1983). 

[12] Ricci M. C., On load distribution factors in radially loaded rolling element bearings, to 

be published, (2022). 

https://abcm.org.br/proceedings/view/CRE2022/0038

