
MNRAS 531, 4432–4443 (2024) https://doi.org/10.1093/mnras/stae1446 
Advance Access publication 2024 June 11 

Digitally filtered resonant arguments for deep learning classification of 

asteroids in secular resonances 

V. Carruba , 1 ‹ S. Aljbaae, 2 , 3 R. C. Domingos, 4 G. Carit ́a, 2 A. Alves 1 and E. M. D. S. Delfino 

1 

1 School of Engineering and Sciences, S ̃ ao Paulo State University (UNESP), Guaratinguet ́a, SP 12516-410, Brazil 
2 Postgraduate Division, National Space Research Institute (INPE), C.P. 515, S ̃ ao Jos ́e dos Campos, SP 12227-310, Brazil 
3 Make the Way, R. Elvira Ferraz 250 - FL Office 305/306, Vila Olimpia, S ̃ ao Paulo, SP 04545-015, Brazil 
4 S ̃ ao Paulo State University (UNESP), S ̃ ao Jo ̃ ao da Boa Vista, SP 13876-750, Brazil 

Accepted 2024 June 7. Received 2024 June 7; in original form 2024 May 6 

A B S T R A C T 

Node secular resonances, or s -type secular resonances, occur when the precession frequencies of the node of an asteroid and 

some planets are in commensurability. They are important for changing the proper inclination of asteroids interacting with them. 
Traditionally, identifying the asteroid resonant status was mostly performed by visual inspection of plots of the time series of 
the asteroid resonant argument to check for oscillations around an equilibrium point. Recently, deep learning methods based on 

convolutional neural networks (CNNs) for the automatic classification of images have become more popular for these kinds of 
tasks, allowing for the classification of thousands of orbits in a few minutes. In this work, we study 11 s -type resonances in the 
asteroid main belt and in the Hungaria region and focus on the four most dif fusi ve ones. Two secular resonances in the Hungaria 
region, the 2 · s − s 4 − s 6 and the s − 2 · s 6 + s 7 − g 6 + g 8 o v erlap, but this has negligible effects in terms of chaotic dynamics. 
Here, we obtained filtered images of the resonant arguments by filtering out all low-frequency signals with a Butterworth filter. 
A simple method based on amplitudes and periods of librations can perform a preliminary selection of asteroids in librating 

orbits. Our results show that CNN models applied to filtered images are much more ef fecti ve in terms of metrics like accuracy, 
Precision, Recall, and F1-score than those that use images of osculating resonant arguments. Filtered resonant arguments should 

be preferentially used to identify asteroids interacting with secular resonances. 
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 I N T RO D U C T I O N  

ecular resonances occur when there is a commensurability between
he precession frequencies of the longitudes of pericentre g and node
 of an asteroid and the fundamental frequencies of planetary theory
 i = �̇ i and s i = �̇i (Celletti & Perozzi 2020 ), where i is a suffix
dentifying the planet, going from 2 for Venus up to 8 for Neptune,
nd whose values are reported in Table 1 . The frequencies linked to
hese resonances must fulfill the equation: 

 ̇g + q ̇s + 

∑ 

i 

( p i ̇g i + q i ̇s i ) = 0 , (1) 

here the integers p , q , p i , and q i must satisfy the D’Alembert rules for
cceptable arguments: the sum of the coefficients must be zero, and
he sum of the nodal longitude frequencies must be even. ‘Pericentre
esonances’, or g -type resonances, and ‘node resonances’, or s -
ype resonances are common names for the combinations from
quation ( 1 ) that only involve the frequency of the asteroid perihelion
nd node, respectively. 

Asteroids affected by secular resonances can be identified using
arious methods. First, since s -type secular resonances appear as
orizontal lines in domains like ( a , s ), choosing asteroids in a
 E-mail: valerio.carruba@unesp.br 

n  

o

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( http:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
requency range can provide preliminary information on the more
ikely objects to be in resonant states. For instance, for the ν6 = g

g 6 resonance, one could search for asteroids with values of g =
 6 ± � g , where � g is a cut-off lev el. F or non-linear and higher
rder secular resonances, � g is usually assumed to be equal to
 . 2 ′′ yr −1 (Carruba 2009 ). One problem with this approach is that
roper frequency values are also affected by uncertainties. As a
onsequence, not all asteroids in the selected range of frequencies
re necessarily in resonant states. Their status needs to be confirmed
y a visual inspection of the time behaviour of the resonant argument.
For an s -type resonance like the ν16 = s − s 6 , the associated

esonant argument would be � − �6 . Objects in resonant states will
ave the resonant argument oscillate around an equilibrium point,
hich could be 0 ◦, 180 ◦, or another value. Orbits in these resonant

tates are called ‘librating’ ones, from the Latin word libratio , to
alance. For objects outside the resonance, the resonant argument
ill co v er all possible values, from 0 ◦ to 360 ◦ (we consider a

esonant angle limited to the range from 0 to 2 π ). These kinds of
rbits are classified as ‘circulating’, since the resonant arguments
irculates o v er all possible values. Finally, because of planetary
erturbations, objects near the resonance separatrix may alternate
hases of circulations and libration, even when a conserv ati ve
umerical integration scheme is adopted. These are the ‘switching

rbits’. 
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Table 1. The fundamental planetary frequencies in the Solar system. 

g Value s Value 
Frequencies [ ′′ yr −1 ] Frequencies [ ′′ yr −1 ] 

g 2 7.456 s 2 −7.080 
g 3 17.365 s 3 −18.852 
g 4 18.002 s 4 −17.633 
g 5 4.257 – –
g 6 28.243 s 6 −26.345 
g 7 3.093 s 7 −2.996 
g 8 0.669 s 8 −0.692 
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A visual analysis of plots of resonant arguments is viable when 
he sample of asteroids to be studied does not exceed a few hundred.
t becomes rather tiresome if the number of asteroids greatly exceeds 
his value, and will not be viable at all when the Rubin Observatory
urv e y disco v er millions of new asteroids in the Solar system (Jones,
uri ́c & Ivezi ́c 2015 ), several thousands of which are expected to
e in resonant configurations. Methods based on computer vision 
nd the use of a perceptron artificial neural networks (ANNs) to 
utomatically classify images of asteroids’ resonant arguments were 
rst introduced in Carruba et al. ( 2021c ). Recently, Carruba et al.
 2022 ) used convolutional neural networks (CNNs) and their opti-
izations for classifying large image data bases. This was performed 

or the images of osculating resonant arguments. Ho we ver, such 
lots are affected by several low-frequency periods that may mask 
he long-term effect of libration around the equilibrium point and 
ake the process of identifying librating objects more cumbersome. 
ow-frequency signals can be eliminated using a low-pass filter in 

requency domains, like the Butterworth filter (Butterworth 1930 ). 
n this work, we aim (i) to study the most dif fusi ve s -type secular
esonances in the asteroid belt, i.e. the ones with populations of
esonant objects larger than 500 asteroids, and (ii) to apply deep 
earning methods to images of osculating and filtered resonant 
rguments, and compare the ef fecti veness of both approaches using
tandard e v aluating metrics in Machine Learning (ML). 

 s -TYPE  SEC U LAR  RESONANCES:  L O C AT I O N  

 -type resonances occur when there is a commensurability between 
he precession frequency of the longitude of the node of the asteroid
nd other frequencies of the planets. Recently, Kne ̌zevi ́c ( 2022 )
evised what secular resonances affect the largest populations of 
steroids, and made a model for their positions in proper ele- 
ent domains. A complete list of s -type resonances is available 

n Table 2 . Resonances for which the value of s is higher than
 6 = −26 . 345 ′′ yr −1 , the node precession frequency of Saturn, are
ocated in the Hungaria asteroid region. The Hungaria asteroids, 
lso known as the Hungaria group, are a population of asteroids
hat orbit the Sun in the inner region of the asteroid belt, primarily
etween the orbits of Mars and Jupiter. They are characterized by 
heir relatively small semimajor axes, which are typically less than 
.85 au, with orbits located closer to the Sun, compared to most
ther asteroids in the main belt. Their name comes after the largest
ember of the group, 434 Hungaria, which was disco v ered in 1898

Wolf 1898 ). Contrary to most secular resonances in the main belt,
 -type resonances in the Hungaria region also involve terrestrial 
lanets. An example is the linear resonance s − s 4 where there is
 commensurability with the nodal precession frequency of Mars. 

Three main secular resonances are observed for values of s lower 
han or equal to s 6 = −26.345 ′′ /yr −1 : the s − s 6 , the s − s 6 − g 5 + g 6 ,
nd the s − s 6 − 2 · g 5 + 2 · g 6 resonances. These resonances interact
ostly with asteroids in the inner and central main belt. Table 2

isplays the resonance identification used in this work, from 1 to 11,
he resonant argument in terms of proper frequencies, the resonant 
rguments in terms of linear arguments of secular resonances (so that
he s − s 4 is the ν14 resonance, and the s − s 6 − g 5 + g 6 is ν16 +
5 − ν6 resonance, with ν5 = g − g 5 and the suffixes 2, 3, 4, 5, 6, 7,
nd 8 identifying the planets from Venus to Neptune), the frequency
alue s where the resonance is found (for the s − s 4 resonance,
 = s 4 = −17 . 633 ′′ yr −1 ), and the number of numbered and multi-
pposition asteroids likely to be affected by the resonances. For the
ast two items, we use the criterion that s has to be found to within

0 . 2 ′′ yr −1 from the central value since the width of the librating
one for asteroids in non-linear secular resonance tends to be less
han this threshold (Carruba 2009 ). 

The location of these secular resonances is displayed in Fig. 1 in
he ( a , s ) plane for the main belt resonances and for the Hungarian
nes. This is a good reference plane for s -type resonance, since
n this domain, such resonances appear as horizontal lines, rather 
han having a three-dimensional structure typical of projections in 
he proper ( a , e ) or ( a , sin ( i )) domains (Carruba & Michtchenko
007 ). 
Not all the resonances listed in Table 2 may have a population of

steroids in librating states large enough to warrant a viable deep-
earning CNN model, which is of the order of at least a few hundred
steroids. To select the resonances most appropriate for our study, we
umerically integrate the first 200 asteroids that fulfill the frequency 
ut-off criterion under the influence of all planets for 10 Myr, using
he numerical set-up described in Carruba et al. ( 2021c ). At this
tage, we neglected the influence of massive bodies in the main
elt because the gravitational influence of these objects is not large
nough to significantly modify the position of secular resonances in 
roper elements domains, and the possible scattering caused by close 
ncounters with such bodies could needlessly complicate the problem 

f identifying images of resonant arguments (Carruba et al. 2024 ).
or each resonance with a preliminary population larger than 200 
steroids listed in Table 2 , we plotted the resonant arguments of the
00 simulated objects and verified the fraction of librators for each set
f the simulated objects. We then computed the mean fraction and the
ncertainty assumed equal to the standard deviation, for the whole set
f 200 objects and used this information to extrapolate the possible
ange of values for the librating population among numbered and 
ulti-opposition asteroids. The last two columns in Table 2 report 

hese data. 
Only three resonances have an estimated population of librators 

arger than 500, and are therefore suitable for modellization with 
omputer vision. These are the s − s 6 − 2 · g 5 + 2 · g 6 , the 2 ·
 − s 4 − s 6 , and the s − s 6 − g 5 + g 6 resonances, in descending
rder of estimated populations. We will concentrate our attention 
n these resonances hereafter, whose identifications are summarized 
n Table 3 . Interestingly enough, three resonances in the Hungaria
e gion hav e small populations of librators and could be interesting
ubjects for future dynamic studies. These are the s − 2 · s 6 +
 7 − g 6 + g 8 , s − 2 · s 8 + s 7 − g 5 + g 6 , and the s − s 6 − g 5 
 g 8 resonances. s -type secular resonances in the Hungaria region
 v erlap among themselv es, with cases of objects alternating phases
f libration in two or three different secular resonances. Because of
ts possible dynamical importance for its interaction with the 2 · s −
 4 − s 6 resonance, we will also study in this work the s − 2 · s 6 + s 7 

g 6 + g 8 resonance (see Table 3 ). 
Fig. 2 displays results for numbered objects. We only display 

steroids for which the errors in proper s are less than 0.2 arcsec
MNRAS 531, 4432–4443 (2024) 
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Table 2. The most dif fusi ve s -type secular resonances in the main belt, according to Kne ̌zevi ́c ( 2022 ). We report the resonant argument in terms of frequencies, 
in terms of combinations of linear secular resonances, the central value of the asteroidal s frequency associated with each resonance, the number of asteroids, 
numbered and multi-opposition, likely to be affected by the resonances, the fractions of librators among the first 200 numbered candidates, and the extrapolated 
number range of possible librators. 

Res. Res. argument Res. argument Frequency Numbered Multi-opp. Fract. of Extr. Number 
id. frequencies linear resonances value [ ′′ yr −1 ] ast. ast libr. of libr. 

1 s − s 4 ν14 −17.633 1 6 – –
2 2 · s − s 4 − s 6 ν16 + ν14 −21.989 1833 2135 28.5 ± 14.6 1131 ± 580 
3 s − 2 · s 4 + s 7 − g 6 + g 4 2 · ν14 − ν17 + ν6 − ν4 −22.029 1853 2129 0.0 ± 0.0 0.0 ± 0.0 
4 s − 2 · s 6 + s 7 − g 6 + g 8 2 · ν16 − ν17 + ν6 − ν8 −22.120 1925 2157 4.0 + 6 . 0 −4 . 0 163 + 245 

−163 
5 s − s 3 − g 5 − g 6 + 2 · g 4 ν3 + ν5 + ν6 − 2 · ν4 −22.357 1730 1857 0.0 ± 0.0 0.0 ± 0.0 
6 s − 2 · s 8 + s 7 − g 5 + g 6 2 · ν18 − ν17 + ν5 − ν6 −22.375 1741 1950 4 . 5 + 5 . 0 −4 . 5 166 + 188 

−166 
7 s − s 3 − g 8 + g 5 ν13 + ν8 − ν5 −22.439 1707 1841 0.0 ± 0.0 0.0 ± 0.0 
8 s − s 6 − g 5 + g 8 ν16 + ν5 − ν8 −22.758 1476 1530 7 . 0 + 8 . 0 −7 . 0 225 + 255 

−225 
9 s − s 6 ν16 −26.345 20 24 – –
10 s − s 6 − g 5 + g 6 ν16 + ν5 − ν6 −50.332 4899 3498 46.5 ± 15.7 3904 ± 1310 
11 s − s 6 − 2 · g 5 + 2 · g 6 ν16 + 2 · ν5 − 2 · ν6 −74.319 2588 2170 11.5 ± 9.9 547 ± 471 

Figure 1. Left panel: a projection in the ( a , s ) plane of the location of the three main s-type resonances in the main belt, as reported in Table 2 . Right panel: the 
same projection for the Hungaria asteroids’ region. The numbers in the figure identify the resonances, according to the nomenclature in Table 2 . Vertical red 
lines display the location of important local mean-motion resonances. 

Table 3. The most populated s -type secular resonances in the main belt, 
according to this study. We report the resonant argument in terms of 
frequencies and in terms of combinations of linear secular resonances. 

Res. Res. argument Res. argument 
id. frequencies linear resonances 

S2 2 · s − s 4 − s 6 ν16 + ν14 

S4 s − 2 · s 6 + s 7 − g 6 + g 8 2 · ν16 − ν17 + ν6 − ν8 

S10 s − s 6 − g 5 + g 6 ν16 + ν5 − ν6 

S11 s − s 6 − 2 · g 5 + 2 · g 6 ν16 + 2 · ν5 − 2 · ν6 

y  

r  

w  

a  

h  

i  

t  

w  

s  

d  

0  

r

 

(  

l  

o  

I  

o  

o  

w  

s  

l  

n  

s  

a
 

a  

f  

t  

(  

N  

(  

m  

f  

a  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/531/4/4432/7691268 by Instituto N
acional de Pesquisas Espaciais user on 18 July 2024
r −1 , which is the limit used to select asteroids affected by s -type
esonances. Results for multi-opposition asteroids are similar and
ill not be shown for the sake of brevity. The S2 resonance has
 dynamic effect on the asteroids that interact with it, producing a
igher number density of objects near its centre, which also translates
nto a higher number density of librating asteroids. As expected,
he higher order S4 resonance has a less marked dynamic effect,
ith a low number density of objects near its centre and a more

parse population of librating asteroids. Because of the very limited
istances in frequencies between the two resonances, of less than
.09 arcsec yr −1 , resonance o v erlapping is possible for these two
esonances. 
NRAS 531, 4432–4443 (2024) 
For instance, Fig. 3 shows the resonant arguments for the S2
left panels) and S4 (right panels) resonances, for an asteroid in
ibrating states of the S2 resonance (55844 Bicak, top panels) and for
ne inside the S4 resonance (262918 (2007 CA62), bottom panels).
t is possible for an asteroid to be in a resonant state of the S2
r S4 resonances, and to be in either a librating or a switching
rbit of the other resonance at the same time. For the S2 resonance,
e found among numbered asteroids 152 objects in pure librating

tates, 364 also in switching orbits of the S4, and 133 that were
ibrating in both resonances. For the S4 resonance, there were 84
umbered asteroids in pure librating states, 37 that were also in S2
witching orbits, and, again, the 133 librating in both states of the S2
nd S4. 

The superposition of secular resonances observed for these
steroids does not appear to produce any observable ef-
ect in terms of chaotic dynamics. We obtained Lyapunov
imes, as provided by the Asteroid Families Portal AFP
‘http://asteroids.matf.bg.ac.rs/fam/inde x.php’; Rado vi ́c et al. 2017 ;
o vako vi ́c et al. 2022 , accessed on No v ember 2023), and ACFI

Carruba et al. 2021a ) chaos indicator obtained by means of nu-
erical simulations for asteroids in pure S2 and S4 states and

or the 133 objects that are in both resonances. Lyapunov times,
lso known as Lyapuno v e xponents or characteristic Lyapunov
ime-scales, are measures used in the field of dynamic systems to
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Figure 2. Proper ( a , sin ( i )) and ( a , g ) projections of numbered asteroids with errors in proper s < 0.2 arcsec yr −1 for bodies in the S2 (top panels) and S4 
(bottom panels) resonances, in the Hungaria region. The vertical lines display the location of important local mean-motion resonances. Horizontal lines in the 
right panels show the location of the two secular resonances of interest, S2 and S4. 

Figur e 3. Resonant ar guments for the 2 · s − s 4 − s 6 (left panel) and s − 2 · s 6 + s 7 − g 6 + g 8 (right panel) for the asteroids 55844 Bicak (top panels) and 
262918 (2007 CA62) (bottom panels). 
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uantify the rate of e xponential div ergence of nearby trajectories in
 chaotic system. They provide a way to assess the predictability 
nd sensitivity to initial conditions in chaotic systems. The ACFI 
autocorrelation function indicator) is a chaos indicator that identifies 
haotic behaviour in dynamic systems. It is based on analysing 
he autocorrelation function of a time series generated by the 
ystem. Our results for the Lyapunov times are shown in Fig. 4 .
e applied the Kolgomorov–Smirnoff (KS, Kolmogorov 1933 ) test 

o the distributions of Lyapunov times for the asteroids in both 
esonances and for objects in pure S2 and S4 resonant states to verify
f they could come from different statistical distributions. Our results 
how that the two groups are statistically indistinguishable, with 
 -values quite abo v e the 0.05 level needed to confirm that the two
opulations could come from different distributions. ACFI values are 
lso consistent with this analysis; results will not be shown for the
ake of brevity. If there is any effect produced by secular resonance
 v erlapping for the S2 and S4 resonances, it is not observable in our
ata. 
MNRAS 531, 4432–4443 (2024) 
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Figure 4. Distribution of Lyapunov times for objects in pure S2 and in both S2 and S4 librating states (left panel). The right panel shows the same, but for 
asteroids in the S4 resonance. 

Figure 5. The same as Fig. 2 , but for the S10 and S11 resonances. 

 

t  

h  

c  

o  

m  

l  

m

3

S  

r  

�  

p  

r  

p  

p  

w  

f  

a  

f  

b  

m  

w  

a  

h
 

r  

p  

a  

t  

t  

f  

s
 

s  

N  

r  

c  

s  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/531/4/4432/7691268 by Instituto N
acional de Pesquisas Espaciais user on 18 July 2024
Concerning main belt resonances, in Fig. 5 , we report results for
he S10 and S11 resonances. The S10 resonance is a dynamically
ighly dif fusi ve resonance with a large population of libration
oncentrated towards the resonance central value in proper s . Most
f the librating population for this resonance is found in the central
ain belt. The S11 resonance is a less dif fusi ve resonance, with fewer

ibrating asteroids. Most of the S11 librators are found in the outer
ain belt. 

 IMAG ES  O F  R E S O NA N T  A R G U M E N T S  

ince we are interested in studying the s − s 6 − g 5 + g 6 secular
esonance, the associated resonant argument is � − �6 − � 5 +
 6 , where � is the longitude of the node, � is the longitude of

ericentre, and the suffixes 5 and 6 stand for Jupiter and Saturn,
espectively. From the output of the numerical simulations we can
roduce time series of the resonant argument. These will be the
roduct of superpositions of short- and long-period terms. Since
e are interested in secular effects, we can apply a low-pass filter in

requency domains, like the Butterworth filter (Butterworth 1930 ), to
llo w lo w-frequency signals to pass through while attenuating high-
NRAS 531, 4432–4443 (2024) 
requency signals. This filter will allow signals with frequencies
elow a specified cut-off frequency value to pass through with
inimal attenuation. The steepness of the roll-off in the stopband,
hich is the range of frequencies abo v e the cut-off frequency that are

ttenuated by the filter, is determined by the order of the filter. The
igher the order of the filter, the steeper the roll-off in the stopband. 
A Butterworth filter is designed to have a maximally flat frequency

esponse in the passband, which means that it has no ripple in the
assband and the transition from the passband to the stopband is
s smooth as possible. This gives the filter a very flat response in
he passband. At the same time, the filter has a steep roll-off in
he stopband, which means that it can ef fecti vely attenuate high-
requency noise or unwanted signals that may be present in the input
ignal. 

Since our data are sampled in time every 600 yr, the filter has a
ampling frequency of f s = 1 / (600 yr) = 1.67 × 10 −4 Hz. The
yquist frequency is the highest frequency that can be accurately

epresented in a digital signal processing system that samples a
ontinuous-time signal at a fixed rate. It is defined as half the
ampling rate or half the frequency at which the signal is being
ampled, which in our case is 8.3 × 10 −5 Hz. An appropriate
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Figure 6. The left panels display images of the osculating resonant argument of the s − s 6 + g 6 − g 5 secular resonance, while the right panels do the same for 
the filtered arguments. From top to bottom, we show images of resonant arguments for circulating, switching, and librating orbits. 
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ut-off frequency would have to be less than one-tenth of the 

yquist frequency. In our case, we use a cut-of f v alue of 1 × 10 −6 

z. 
Fig. 6 shows examples of the time behaviour of resonant angles for

he osculating case (left panels) and for the cases where we applied
ur low-pass filter (right panels). We show examples of asteroids in 
rbits for which the resonant argument circulates from 0 ◦ to 360 ◦,
lternates phases of circulations and oscillations around an equilib- 
ium point (‘switching orbits’), and of orbits for which the resonant
rgument oscillates around an equilibrium point at 180 ◦ (‘librating 
rbits’). Librating orbits tend to have a smaller oscillation amplitude 
nd longer periods of the resonant argument than circulating ones. 
witching orbits behaviour in terms of amplitudes and periods tend 

o be o v erlapping the circulating and librating cases. 
Based on these considerations, can a simple criteria for selecting 

ibrating orbits be defined in terms of amplitudes and periods to be
MNRAS 531, 4432–4443 (2024) 
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Figure 7. Histograms of libration amplitudes and periods for asteroids in 
librating, circulating, and switching states of the S10 resonance. The vertical 
dashed line represents the cut-off value of the maximum amplitude (left panel) 
and minimum period (right panel) for librating orbits. 
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Table 4. Classification in terms of accuracy, precision, recall, and F1-score 
for the population of the first 250 numbered asteroids inside the four studied s - 
type resonances, using the criterion based on maximum oscillation amplitude 
and resonant period (first four entries) and from the results of ML model 
optimized using genetic algorithms in the domain of proper s , Amplitude, 
and Period (last four entries). 

Res. id. Accuracy Precision Recall F1 

S2 82.4 60.4 88.7 71.9 
S4 53.6 15.7 100.0 27.1 
S10 82.8 70.5 98.0 82.0 
S11 60.8 17.8 95.5 30.0 
S2 80.0 100.0 37.5 54.5 
S4 98.0 0.0 – –
S10 92.0 82.4 93.3 87.5 
S11 88.0 60.0 42.9 50.0 
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1 Recent work showed that the accuracy of similar approaches can be improved 
by including additional parameters like the number of border crossings, the 
libration time, etc. (Smirnov 2023 ). This optimization, ho we ver, requires an 
ad hoc, more in depth study for each resonance, which, in our opinion, exceeds 
the purposes of this work. A more in-depth analysis remains an interesting 
topic for future research. 
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sed for selecting such cases? We selected a sample of the first 250
umbered asteroids affected by the S10 resonance, and applied our
ode to filter the resonant arguments and obtain their amplitudes and
eriods. Fig. 7 shows our results. To select librating asteroids, we
elected objects that (i) have amplitudes smaller than the maximum
bserved for librating objects and (ii) have periods larger than 8 Myr.
oth these conditions appear to characterize most of the identified

ibrating population. This procedure was repeated for the S2, S4, and
11 resonances. 
To quantify the performance of this method, we applied metrics

ommonly used in machine learning. A true positive ( TP ) in binary
lassification happens when the model predicts a positive class and
he real value is, in fact, positive. When the model predicts a positive
lass but the actual value is ne gativ e, this is known as a false positive
 FP ). When the model predicts a ne gativ e class but the actual value is
ositive, this is known as a false ne gativ e ( FN ). Lastly, when both the
xpected and actual values are negative, true negatives ( TN ) happen.
or our case, a positive result would be a librating object, and a
e gativ e a circulating or switching asteroid. This is not a generally
ccepted practice, and other authors assign switching orbits to the
ibrating class (Murray & Dermott 1999 ). Since previous experience
howed that most switching orbits tend to become circular ones
hen the Yarko vsk y force is considered, we prefer here to follow the
ractice introduced in previous works from our group (Carruba et al.
024 ). 
The classifier’s o v erall performance is generally measured by

ccuracy , which shows the percentage of accurate predictions. If
he data set is unbalanced, meaning one class predominates o v er the
thers. This could be deceptive if the data set is unbalanced, meaning
ne class predominates o v er the others. Accuracy is defined as 

c c uracy = 

T P + T N 

T P + T N + F P + F N 

. (2) 

his can also be computed as the fraction of correct predictions
ivided by the total number of predictions. The percentage of
ccurately predicted positive cases among all positively predicted
nstances is measured by a statistic called Precision . It highlights the
eal positives and shows how well the classifier can weed out false
NRAS 531, 4432–4443 (2024) 
ositives. The formula for Precision is as follows: 

 re c i s i on = 

( T P ) 

( T P + F P ) 
. (3) 

he percentage of accurately predicted positive cases among all
ctual positive instances is measured by Recall , which is sometimes
eferred to as sensitivity or true positive rate. Its main goal is to find
ll positiv e e xamples and stay a w ay from f alse ne gativ es. Recall is
iven by 

e c all = 

( T P ) 

( T P + F N ) 
. (4) 

inally, the F 1 score is the harmonic mean of precision and recall. It
rovides a balanced measure that combines both precision and recall
nto a single metric. The F1 score is calculated using the following
ormula: 

 1 = 2 ∗ ( P re c i s i on ∗ Re c al l ) 

( P re c i s i on + Re c al l ) 
. (5) 

he F1 score ranges from 0 to 1, where a value of 1 indicates the best
erformance, balancing precision, and recall. The first four entries
f Table 4 display our results for the four resonances, in terms of the
our metrics. Values of Precisions tend to be lower than Recall and
ccuracy . The method tends to retrieve a large fraction of the librating
steroids, but it also identifies as librators circulating and switching
rbits with low amplitudes and long periods. This approach tends
o perform better for ‘stronger’ secular resonances, i.e. resonances
or which there is a large fraction of librators, like the S2, and S10.
ccuracy and Precision are particularly low for the S4 and S11

esonances, which have fractions of librators below 15 per cent. 
Overall, this simple approach can be thought of as a base model. 1 

ny results of deep learning approaches will have to be better
han what this simpler criterion produces. Based on the analysis
f these results, which show the importance of computing periods
nd maximum oscillation amplitude, we decided also to devise an
L model that uses these quantities and the proper s value. Since

ibrating asteroids tend to cluster close to the central frequency
alue of each resonance, as listed in Table 2 , fourth column, we
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Table 5. We report the number of asteroids in class 0, class 1, and the 
imbalance ratios between class 0 and class 1 for the asteroid data bases 
studied in this work. 

Data base Class 0 Class 1 Imbalance 
name # of ast. # of ast. ratio 

S2 1105 745 2.5 
S4 1539 311 4.9 
S10 3236 1653 2.0 
S11 2351 249 9.4 
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elieve that an ML approach based on these three variable could also
roduce a good outcome. Using genetic algorithms (Chen, Wang & 

ee 2004 ), we pick the top-performing ML techniques and the set of
ts free parameters, or hyperparameters, that perform best for our data 
et, following the steps outlined in Carruba, Aljbaae & Domingos 
 2021b ). Three iterations of the genetic algorithm process are applied
o a selection of asteroids, with a validation set of 20 per cent of the
raining data. The use of a validation set is advised to prevent the
roblem of o v erfitting, which arises when the model is very sensitive
o the minute details of the training set yet may perform poorly when
ealing with different sets of data. 
The four best-performing ML models for the S2, S4, S10, and S11

ata bases were the Gaussian Naive Bayesian, Decision Tree, Gra- 
ientBoostingClassifier (GBoost), and MLPClassifier, respectively. 
or the Gaussian Naive Bayesian model, we used a pipeline with the
electPercentile routine using the score func = f classif , and a per-
entile of 76, and the default version of the Gaussian Naive Bayesian
odel. For the Decision Tree we used the gini criterion, a max depth

f 3, a min samples leaf of 19, and a min samples split of 17.
or the GBoost method, we used learning rate = 0.5, max depth = 1,
ax features = 0.6, min samples leaf = 14, min samples split = 2,
 estimators = 100, subsample = 0.9. Finally, for the MLPClassifier
e used a pipeline with a RobustScaler() and StandardScaler rou- 

ines, and values of alpha = 0.0001 and learning rate init = 0.001 for
he MLPClassifier hyperparameters. Interested readers are referred 
o the reference page of the SCIKIT -learn PYTHON library (Pedregosa 
t al. 2011 ) for more details on the theory behind these classifiers
nd their hyperparameters. 

Our results are displayed in the last four entries of Table 4 . The
L model outperforms the simpler approach based on periods and 

mplitudes for the case of the strong S10 resonance in all metrics
ut Recall tends to perform more poorly for the other, weaker 
esonances. Overall, the simpler approach could be a better choice 
or a preliminary analysis of these kinds of data sets. 

In the next section, we will investigate the use of CNN models
or the problem of identifying resonant asteroids in s -type secular 
esonances. 

 C O N VO L U T I O NA L  N E U R A L  N E T WO R K  

O D E L S  

efore applying machine learning methods to the data bases of 
mages of resonant arguments obtained in this work, we checked 
f any of these data sets can be affected by a severe imbalance
etween the librating class of orbits, defined as 1, and the rest, class
. We define an imbalance ratio as the number of objects in class
 divided by the number of objects in class 1. Standard machine
earning approaches may not be working properly for data sets with 
 severe imbalance, which is a ratio higher than 100 (Brownlee 
020 ). Our results for numbered asteroids are shown in Table 5 . None
f the data sets is affected by a severe imbalance, and, also based
n experience with other data bases for asteroids interacting with 
esonant configurations (Carruba et al. 2023 ), none of the methods for
ealing with imbalanced data sets are likely to significantly impro v e
he outcome of ML models. 

We therefore turned our attention to methods for image classi- 
cation, to classify the data sets for the S2, S4, S10, and S11
esonances. Following the approach of Carruba et al. ( 2022 ), we
se three models of CNNs: the Visual Geometry Group (VGG) 
Simonyan & Zisserman 2014 ), the Inception (Szegedy et al. 2015 ),
nd ResNet (He et al. 2016 ) models to study two data sets of images
f resonant arguments, the osculating, and the filtered ones. We refer
nterested readers to Carruba et al. ( 2022 ) for details on the model’s
rchitectures. To a v oid possible misclassification issues caused by 
he filtering, which occasionally can transform circulating orbits into 
ibrating ones (see for instance the top panels of Fig. 6 ), the images’
abels are those obtained by the analysis of the osculating images. 

For all data bases, we divided our data sets into a training, a
alidation, and a test set, following the same approach of Carruba
t al. ( 2024 ) for the sizes of the data bases. Namely, the training set
ill be composed of numbered asteroids up to identification 500 000,

he validation set of asteroids with identification between 500 000 and
00 000, and the test set will have asteroids with identifications larger
han 600 000. The presence of a validation set is needed to ensure
hat the model is not o v erfitting. If values of accurac y and loss of
he training set are higher and lower than those of the validation set,
he model is learning all the fine details of the training set data, but
ay not be able to efficiently export its performance to other data

ets. Regularization methods like data augmentation and dropout, 
hich involve to artificially increase the size of a training data set
y applying various transformations such as rotation, translation, 
caling, flipping, and cropping to the input images or by randomly
etting a fraction of the output features of a layer to zero during
he training phase, can then be applied to a v oid o v erfitting issues.
nterested reader can find more details on the implementation of Data
ugmentation (DA) and Dropout (DO) in Carruba et al. ( 2022 ). 
Our results for the S10 resonance are shown in Table 6 . Similar

ables were obtained for the S2, S4, and S11 resonances and are
vailable in Appendix A. Generally, CNN performs much better in 
omains of filtered arguments than in spaces of osculating ones, and
etter for less imbalanced data bases like those of the S10 and S2
esonances. 

For each resonant data base, we selected the model that (i) most
utperformed the simple period–amplitude criterion discussed in 
ection ( 3 ), and (ii) was less affected by the problem of o v erfitting.
or the S10 resonance, for instance, four models applied to filtered

mages had a better performance in terms of accuracy and F1 score
han the period–amplitude criterion, which scored 82.6 in terms of 
1: VGG + DA (F1 = 85.7), ResNet (F1 = 90.0), VGG (F1 = 90.5),
nd Inception (F1 = 97.6). 

Fig. 8 displays the loss function and accuracy epoch-wise of the
wo top-performing models in the S10 resonance data base. Both 
odels are affected by o v erfitting, but the Inception model has a

igher F1 score. For this resonance, we therefore selected the Incep-
ion model. We then performed a similar analysis for the other reso-
ance data bases. All models for the S2 with filtered arguments had
he same performance, but the Inception + DA + DO model was the
ess affected by o v erfitting, and was the selected model for this reso-
ance. For the S4 resonance, the best-performing model both in terms
f scores and being less prone to o v erfitting was the VGG model.
inally, for the S11 resonance, the VGG model, although slightly 
ffected by o v erfitting issues was again the best-performing one. 
MNRAS 531, 4432–4443 (2024) 
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M

Table 6. Classification in terms of accuracy, precision, recall, and F1-score for the results obtained by CNN models for samples of unfiltered (U) and filtered 
(F) images of the S10 resonant arguments. The last three columns report the e x ecution time, memory, and maximum memory allocation observed using an 11th 
Gen Intel(R) Core(TM) i7-11700F @ 2.50GHz CPU. Memory allocations are measured in gigabytes (GB). 

Model Accuracy Precision Recall F1 Time Memory Max. Memory 
[m:s] alloc. [GB] alloc. [GB] 

VGG (U) 72.0 61.5 80.0 69.5 10:50 3.98 10.29 
VGG + DA (U) 62.0 52.2 60.0 55.8 10:53 3.98 10.29 
VGG + DA + DO (U) 62.0 51.9 70.0 59.6 11:39 3.99 10.29 
Inception (U) 74.0 63.0 85.0 72.3 11:19 3.98 10.29 
Inception + DA (U) 62.0 51.6 80.0 62.7 11:21 3.99 10.29 
Inception + DA + DO (U) 62.0 51.6 80.0 62.7 12:05 4.34 10.29 
ResNet (U) 62.0 51.6 80.0 62.7 13:23 3.98 10.53 
ResNet + DA (U) 62.0 51.6 80.0 62.7 13:13 3.99 10.54 
ResNet + DA + DO (U) 62.0 51.6 80.0 62.7 14:16 4.34 10.86 
VGG (F) 92.0 86.4 95.0 90.5 11:01 3.98 10.29 
VGG + DA (F) 90.0 100.0 75.0 85.7 11:08 3.98 10.29 
VGG + DA + DO (F) 76.0 90.0 45.0 60.0 11:41 3.99 10.29 
Inception (F) 98.0 95.2 100.0 97.6 10:08 4.30 10.29 
Inception + DA (F) 76.0 83.3 50.0 62.5 11:37 3.99 10.29 
Inception + DA + DO (F) 82.0 100.0 55.0 71.0 11:48 3.99 10.29 
ResNet (F) 90.0 90.0 90.0 90.0 12:59 3.98 10.53 
ResNet + DA (F) 72.0 80.0 40.0 53.3 12:45 3.98 10.54 
ResNet + DA + DO (F) 86.0 84.2 80.0 82.1 13:36 4.30 10.86 

Figure 8. The behaviour in terms of the epoch of the loss function and accuracy for the two best-performing models for the S10 resonance data base. 

Table 7. The best performing CNN models for each resonance, classified in 
terms of F1 score and o v erfitting. 

Resonance Best-performing F1 Overfitting 
ID model score 

S2 Inception + DA + DO 80.0 No 
S4 VGG 54.5 No 
S10 Inception 97.6 Yes 
S11 VGG 83.3 Yes 
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Table 7 summarizes our results. The best-performing models tend
o be either VGG or Inception ones, all applied to filtered resonant
rguments. 

 C O N C L U S I O N S  

n this work, we investigated the asteroidal population that interacts
ith secular resonances of s -type. For each resonance, we selected

steroids whose values of s is within ±0 . 2 ′′ yr −1 from the central
alue. We then visually inspected the time behaviour of each resonant
rgument. Of the 11 s -type resonances listed by Kne ̌zevi ́c ( 2022 ),
nly four resonances, the 2 · s − s 4 − s 6 (identified in this work as
2 for brevity), the s − 2 · s 6 + s 7 − g 6 + g 8 (S4), the s − s 6 − g 5 +
NRAS 531, 4432–4443 (2024) 
 6 (S10), and the s − s 6 − 2 · g 5 + 2 · g 6 (S11) have a population of
ibrators larger than 500, and are therefore suitable for modellization
ith computer vision. 
The S2 and S4 secular resonances in the Hungaria region overlap

ith each other, and we found a population of objects in librating
tates of both resonances. This new kind of resonance o v erlapping is,
o we ver, not conducting to chaos. We computed Lyapunov exponents
nd ACFI chaos indicators for asteroids not in resonances and for
hose in librating states of both the S2 and S4 resonances. No
ignificant differences between the two populations were observed,
uggesting that this resonance o v erlapping does not introduce any
haos in the dynamics of the affected asteroids. 

We then turned our attention to deep learning models for identifi-
ation of asteroids interacting with secular resonances. We applied a
utterworth filter (Butterworth 1930 ) to eliminate short-period terms,
nd devised an approach to identify librating asteroids assuming that
i) their libration amplitude was smaller than the maximum amplitude
bserved for librating objects, and (ii) that they had periods larger
han 8 Myr. The efficiency of this simple approach, or base model,
as then measured using standard metrics of ML , like Accuracy ,
recision , Recall , and F 1 score. This approach performed best for
ore populated resonances, like the S2 and S10. 
ML methods optimized through the use of genetic algorithms were

hen used. For the case of the strong S10 resonance, the ML model
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ared better than the more straightforward method based on periods 
nd amplitudes in every metric except Recall ; ho we ver, it tended to
erform worse for the other, weaker resonances. For a preliminary 
xamination of these kinds of data sets, the more straightforward 
ethod might be preferable. 
Finally, CNN methods for computer vision, like the VGG (Si- 
onyan & Zisserman 2014 ), the Inception (Szegedy et al. 2015 ),

nd ResNet He et al. ( 2016 ) models were applied to the newly
eveloped data bases for both osculating and filtered elements. To 
 v oid o v erfitting issues, a validation data set was set apart, and
egularization methods like data augmentation and dropout, were also 
pplied consistently. In all cases, the performance of CNN models 
as superior when applied to images of filtered resonant arguments. 
ased on these results, asteroids interacting with secular resonances 

hould be identified using a computer vision approaches primarily 
hrough the use of filtered resonant arguments. 
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ata sets for osculating and filtered images of resonant arguments 
f asteroids interacting with the s − s 6 − g 5 + g 6 (S10) secular
esonance are available at the link: 

https://dr ive.google.com/drive/folders/1M5E-ejwS3r 49gMA88c 
Le3rhjPtCMmF8?usp=sharing 
A GitHub repository for the developed codes that produce images 

f filtered resonant arguments is available at this link: 
https://github.com/valer iocarr uba/Digital- filtering- for- deep- lear 

ing- classification- of- asteroids- in- secular- resonances- 
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Table A1. Classification in terms of accuracy, precision, recall, and F1-score for the results obtained by CNN models for samples of unfiltered (U) and filtered 
(F) images of the S2 resonant arguments. The last three columns report the e x ecution time, memory, maximum memory allocation observed using an 11th Gen 
Intel(R) Core(TM) i7-11700F @ 2.50GHz CPU. Memory allocations are measured in gigabytes (GB). 

Model Accuracy Precision Recall F1 Time Memory Max. Memory 
[m:s] alloc. [GB] alloc. [GB] 

VGG (U) 72.0 71.4 65.2 68.2 5:05 1.54 4.11 
VGG + DA (U) 62.0 58.3 60.9 59.6 6:41 1.75 4.32 
VGG + DA + DO (U) 58.0 53.6 65.2 58.8 7:12 1.54 4.11 
Inception (U) 54.0 – – – 5:58 1.75 3.51 
Inception + DA (U) 54.0 – – – 6:22 1.75 3.51 
Inception + DA + DO (U) 54.0 50.0 43.5 46.5 3:54 1.55 3.51 
ResNet (U) 64.0 60.0 65.2 62.5 7:55 1.54 8.09 
ResNet + DA (U) 46.0 45.8 95.7 62.0 7:30 1.75 8.31 
ResNet + DA + DO (U) 62.0 59.1 56.5 57.8 7:53 1.55 8.10 
VGG (F) 82.0 81.8 78.3 80.0 5:05 1.54 4.11 
VGG + DA (F) 82.0 81.8 78.3 80.0 7:23 1.75 4.31 
VGG + DA + DO (F) 82.0 81.8 78.3 80.0 7:06 1.55 4.11 
Inception (F) 82.0 81.8 78.3 80.0 5:54 1.54 3.51 
Inception + DA (F) 82.0 81.8 78.3 80.0 6:17 1.75 3.51 
Inception + DA + DO (F) 82.0 81.8 78.3 80.0 5:43 1.55 3.51 
ResNet (F) 82.0 81.8 78.3 80.0 7:38 1.54 8.09 
ResNet + DA (F) 82.0 81.8 78.3 80.0 7:15 1.55 8.10 
ResNet + DA + DO (F) 82.0 81.8 78.3 80.0 7:46 1.55 8.10 

Table A2. Classification in terms of accuracy, precision, recall, and F1-score for the results obtained by CNN models for samples of unfiltered (U) and filtered 
(F) images of the S4 resonant arguments. The format is the same as Table A1 . 

Model Accuracy Precision Recall F1 Time Memory Max. Memory 
[m:s] alloc. [GB] alloc. [GB] 

VGG (U) 90.0 0.0 0.0 – 7:10 1.60 4.16 
VGG + DA (U) 90.0 0.0 0.0 – 6:08 1.60 4.17 
VGG + DA + DO (U) 90.0 0.0 0.0 – 6:49 1.82 4.38 
Inception (U) 84.0 14.3 33.3 20.0 8:23 1.60 3.68 
Inception + DA (U) 94.0 – – – 6:42 1.61 3.68 
Inception + DA + DO (U) 94.0 – – – 6:30 1.61 3.68 
ResNet (U) 94.0 – 0.0 – 6:30 1.60 8.16 
ResNet + DA (U) 94.0 – 0.0 – 7:57 1.60 8.16 
ResNet + DA + DO (U) 94.0 – 0.0 – 8:48 1.60 8.16 
VGG (F) 90.0 37.5 100.0 54.5 7:15 1.60 4.16 
VGG + DA (F) 88.0 20.0 33.3 25.0 6:23 2.36 4.92 
VGG + DA + DO (F) 84.0 0.0 0.0 – 6:44 1.82 4.39 
Inception (F) 86.0 25.0 66.7 36.4 7:44 1.82 3.68 
Inception + DA (F) 90.0 33.3 66.7 44.4 6:38 1.82 3.68 
Inception + DA + DO (F) 92.0 33.3 33.3 33,3 6:26 1.82 3.68 
ResNet (F) 94.0 50.0 100.0 66.7 8:34 1.60 8.16 
ResNet + DA (F) 94.0 – 0.0 – 7:56 1.60 8.16 
ResNet + DA + DO (F) 94.0 – 0.0 – 8:31 1.60 8.16 
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Table A3. Classification in terms of accuracy, precision, recall, and F1-score for the results obtained by CNN models for samples of unfiltered (U) and filtered 
(F) images of the S11 resonant arguments. The format is the same as Table A1 . 

Model Accuracy Precision Recall F1 Time Memory Max. Memory 
[m:s] alloc. [GB] alloc. [GB] 

VGG (U) 88.0 100.0 14.3 25.0 8:24 2.13 5.29 
VGG + DA (U) 86.0 – 0.0 – 6:59 2.34 5.29 
VGG + DA + DO (U) 86.0 – 0.0 – 8:56 2.13 5.29 
Inception (U) 86.0 50.0 14.3 22.0 10:23 2.49 5.29 
Inception + DA (U) 86.0 – 0.0 – 9:23 2.14 5.29 
Inception + DA + DO (U) 86.0 – 0.0 – 9:56 2.14 5.29 
ResNet (U) 86.0 – 0.0 – 11:18 2.13 8.69 
ResNet + DA (U) 86.0 – 0.0 – 11:30 2.14 8.69 
ResNet + DA + DO (U) 86.0 – 0.0 – 13:24 2.14 8.69 
VGG (F) 96.0 100.0 71.4 83.3 8:34 2.13 5.29 
VGG + DA (F) 88.0 100.0 14.3 25.0 7:26 2.14 5.29 
VGG + DA + DO (F) 84.0 0.0 0.0 – 9:04 2.34 5.29 
Inception (F) 86.0 25.0 66.7 36.4 9:53 2.34 5.29 
Inception + DA (F) 92.0 100.0 42.9 60.0 9:35 2.49 5.29 
Inception + DA + DO (F) 90.0 100.0 28.6 44.4 9:19 2.34 5.29 
ResNet (F) 90.0 100.0 28.6 44.4 11:38 2.13 8.69 
ResNet + DA (F) 84.0 0.0 0.0 – 11:24 2.14 8.70 
ResNet + DA + DO (F) 76.0 36.8 100.0 53.8 12:53 2.14 8.69 
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