
2
nd
 International Conference on Engineering Optimization 

September 6 - 9, 2010, Lisbon, Portugal 

 

 

 

 

1 

Experimental Optimization of Control Techniques to Design a Flexible Satellite Attitude 

Controller 

 
Luiz Carlos Gadelha de Souza

1
, Anna Guerman

2
 and Gueorgui Smirnov

3
   

 
1INPE, S J dos Campos, SP, Brasil, gadelha@dem.inpe.br 

2UBI, Covilhã , Portugal, anna@ubi.pt 
3UP, Porto, Portugal, gsmirnov@fc.up.pt 

 

Abstract  

Placing a rigid-flexible satellite or any other spacecraft in orbit is a risky and expensive process; years of 

researching and a lot of money are transformed into equipments that will be beyond any possibility of maintenance 

in case something goes wrong. Besides, Attitude Control System (ACS) for flexible space satellites demands great 

reliability, autonomy and robustness. These flexible structures face low stiffness due to minimal mass weight 

requirements.  Satellite ACS design usually based on computer simulations without experimental verification can 

face instability and/or inefficient controller performance due to model uncertainties,. In that context, experimental 

validation of new equipment and/or control techniques through prototypes is the way to increase system 

confidence. Experimental set up also allows verifying a variety of control techniques dealing with stabilization, 

identification, attitude control and robustness that need to be validated and implemented in order to improve ACS 

performance. In this paper one investigates the robustness and performance of two different multivariable 

methodologies in designing the ACS for a rigid-flexible satellite. The first one is the traditional time domain 

approach called LQG (Lineal Quadratic Gaussian) and the second one is the frequency domain H–Infinity 

approach. Although these control techniques have their particular characteristics, this investigation tray to 

highlighted the advantages and benefits of each technique as for the control algorithm implementation. The 

satellite ACS design is performed initially in a computer simulation environment, following experimentally 

verification of the same control algorithm using Quanser rotary flexible link module. The controller performance 
was investigated considering its capacity of maneuvering the rigid-flexible link to a desired angle position at the 

same time that the link's vibrations are eliminate maintaining the maneuver as fast as possible.  This preliminary 

investigation has shown that the controller performance based on the simulation model can be degraded when 

applied in an experimental set up. Besides, the control algorithm complexity is function of the control 

methodology; therefore, its implementation in the satellite onboard computer must take into account its simplicity. 

Keywords: Experimental optimization, flexible satellite, attitude control. 

 

1. Introduction 

There are several methodologies to investigate the satellite ACS performance, depending on the investigation 

objectives; computer simulation cannot be the appropriate one. The use of experimental platforms has the 

important advantage of allowing the satellite dynamics representation in laboratory, from which is possible to 

accomplish experiments and simulations to evaluate satellites ACS.  Experimental test has also the possibility of 

introducing more realism than the simulation, however, it has the difficulty of reproducing zero gravity and torque 

free space condition. Examples of experimental platforms for investigating different aspects of the satellite 

dynamic and control system can be found in [1] and [2]. A classic case of a phenomenon that was not investigated 

experimentally before launch, was the dissipation energy effect that has altered the satellite Explorer I rotation [3].  

Several institutes and universities [4] are investigating and testing the ACS performance through prototypes. The 

great difficult in experimental test of equipment and/or control techniques is to reproduce all the space 

characteristics on Earth [5]. An important aspect that must be first identified through experimental procedure is the 

platform inertia parameters [6]. An attempt to simulate such an environment on Earth can be done by air bearings, 

which provide an environment nearly torque free, perhaps as close as possible to the space, which makes this setup 

a preferred technology to investigate the attitude dynamics and control system [7]. An experimental apparatus was 

used in [8] and [9] to investigate the dynamics and the control laws for a satellite composed of rigid and flexible 

parts. The influence of the non-linearity introduced by the panel’s flexibility in the parameters variation, indicating 

the need of robust controller was investigated in [10].  The controller design for a rigid-flexible structure was 

developed by [11], the controller was designed using the H-infinity technique for the telescope Very Large 

Telescope (VLT), located in Chile. One disadvantage of the resulting controller was that it had order superior to 

controllers obtained by others methods, implying in the application of a method for reducing the controller order. 

The H-infinity controller was tested experimentally using the Rotary Flexible link Quanser© Flexgage equipment 
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[12].  The investigation has showed that the controller was able to control the rigid motion of the hub and eliminate 

the flexible vibration with a quick response. A method for controlling a flexible structure using a bang-bang 

controller with the goal of minimizing the time and the residual energy of the flexible modes was done by [13]. The 

vibration modes was eliminated by placing a concentrated mass along the flexible appendage, changing the 

dynamics of the system and ensuring that the control does not excite the flexible modes of the structure. Numerical 

simulations and experiments showing the efficiency of the proposed control method have been done. Another 

interesting work, using the Quanser© equipment was done by [14], which uses a flexible framework for studying 

the movement of liquid propellants in rocket motors, assuming that the dynamic behavior the structure and fluid 

are similar. The digital controller designed based on Compensed Inverse PID (CIPID) technique combines three 

individual controllers in parallel, tuned to the frequencies of the flexible modes. The system was implemented in a 

Quanser© Rotary Flexible Link System also, the CIPID controller performance was compared to a simple 

proportional controller. In [15] it was showed that the influence of the non-linearities introduced by the panel’s 

flexibility and the system parameters variation can degrade the control system performance, indicating the 

necessity of new robust control technique. In this paper one investigates and compare experimentally the 

robustness and performance of two different multivariable methodologies in designing the ACS for a rigid-flexible 

satellite, using Quanser rotary flexible link module. The first one is the traditional time domain approach LQG 

(Lineal Quadratic Gaussian) and the second one is the frequency domain H–Infinity approach [16].  This 

preliminary investigation has shown that the controller performance based on the simulation model can be 

degraded when applied in an experimental setup [17]. Besides, these results have shown that the H-infinity 

controller has the disadvantages of having superior order than the plant, although it can be robust against 

uncertainties like the nonlinearties of the model [18], since it takes into account all sources of uncertainties in the 

controller design.  

 

2. Rotary Flexible Link Model  

Figure 1 shows the rotary flexible Link that consists of a clamped thin stainless steel flexible link. The output is an 

analog signal proportional to the deflection of the link. The system is designed to mount on a Quanser rotary servo 

plant resulting in a horizontally rotating flexible link to perform rigid flexible control experiments. This system is 

similar in nature to the control problems encountered in large light space structures where the weight constraints 

result in flexible structures that must be controlled using feedback techniques. A DC motor rotates the flexible link 

from one end in the horizontal plane. The motor of the link is instrumented with a strain gage that can detect the 

deflection of the tip 

 

 
 

Figure 1: Rotary Flexible link module with its sensors and actuators. 

 

Figure 2 shows the flexible link at a given rotation angle θ resulting in the arm end-point displacement D with the 

flexible link deflection α = D/L.  Table 1 shows the list of parameters and variables used in the derivation of the 

state-space equations of the system. 
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Figure 2:  Flexible Link with the rigid rotation and flexible deflection 

 

 

Table 1: Parameters and variables used in the derivation of the system equations of motions. 

 

Symbol Description 

 
Length of flexible Link 

 
Mass of flexible Link 

 
Strain Gage Calibration factor  

 
Servo load gear angle (radians) 

 
Arm Deflection (radians) 

 
Link End-point Deflection  

 
Link Damped Natural Frequency 

 
Link Moment of inertia 

Jhub Hub Moment of inertia 

 

 

Considering a simple mass spring model for the flexible link, the rotary spring equations of motion is given by 

 

αα STIFFLINK KJ −=&&                                                                       (1) 

 

where Kstiff  is the link stiffness that is related to the angle α and the link’s damped natural frequency by   

 

αωα 2

c−=&&                                                                                 (2) 

Combining equations (1) and (1), one obtains 

 

LINKcSTIFF JK 2ω=                                                                           (3) 

 

The system equations of motion are obtained using Lagrange formulation  [15], from the Kinetic and Potential 

energies of the system.  As a result, the Lagrangian function given by   
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Using the two generalized coordinates are  and  in the Lagrange formulation the two equations of motions are 

 

( ) θαθθ &&&&&&&
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where the output torque on the load from the motor is given by 

 

m
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=                                                          (7) 

Combining equations (5), (6) and (7), one obtains the complete system state-space equations of motion given by 
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Where  ηm and ηg   are the motor and gearbox efficiencies, KT and Kg are transmission and motor ration.  Rm is the 

armature resistance,Vm the armature input voltage, Km the back-emf constant and Jeq  the equivalent moment of 

inertia at the load.  Details of this derivation can be found in Quanser Manual [12]. 

 

3. The LQG Method  

Considers the state estimation problem of a stochastic system given by  

 

)t(Gw)t(Bu)t(Ax)t(x ++=&                                                                     (9) 

                                                   )t(v)t(Cx)t(y +=   

 

where w (t) and v (t) are Gaussian noises with mean zero and having covariance’s  

 

                             { } 0W)t('w)t(wE ≥= ,   { } 0V)t('v)t(vE >= ,   { } 0)(')( =tvtwE                                (10)                                                                

 

The input u(t) represents the control vector,  y(t) the vector of measured outputs, w (t) and v (t) are the system and 

measures noise, respectively.  

The solution of the LQG problem consists in obtained a feedback control law that minimizes the cost  
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By the separation principle, the solution of the LQG problem reduces to two sub-problem [15].  The first one is the 

LQR problem which aims at to design an optimal control law u, such that, minimizes the deterministic cost given 

by             

∫
∞

+=
0

dt))t(Ru)t('u)t(Qx)t('x(J                                                             (12) 

where the matrices Q and R are semi-positive  and  positive defined, respectively. The system is represented by 

 

)t(Bu)t(Ax)t(x +=&                                                    (13) 

and the control law is defined by 

 

)t(x)t(Ku r−=                                                            (14) 

with the gain K(t) is given by 

 

)t(P'BRK 1

r

−=                                                        (15) 

and P(t) is the solution of Riccati equation 
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                                                 P'BPBRQPAP'AP 1−−++=− &                                                       (16)  

 

In the stationary case, the Riccati equation is equal to zero.  The LQR approach assumes that the system dynamic is 

perfect, there are no disturbances, and all states are available to feedback, a hypothesis that does not occur in the 

majority of the application. 

The second one is the Kalman Filter problem given by a state estimator of the form 

 

yK)t(Bu)t(x̂)CKA()t(x̂ ff ++−=&                                                           (17) 

 

with the control law u = -Kr x̂  based on the estate estimated vectors x̂ , and the Kalman filter gain is given by 
 

1T

KF VCPK −=                                                           (18) 

 

where PK satisfies another algebraic Riccati equation 

 

K

1

KKK CPV'CP'GWG'APAP0 −−++=                                                               (19) 

 

From the design perceptive one has to find a compensator with a structure that is a series connection of the LQR 

and KF problems as shown in Figure 3, where G(s) is the plant of the system. It is very well knows that the LQR 

and Kalman filter have very good robustness and performance properties when are designed separately. However, 

this is not the case for the LQG compensator [15].  

 

 

 
Figure 3: Series connection of the LQG Controller Structure. 

 

4. The H-Infinity Method  

The H∞ control theory [16] combines concepts of the time and frequency domain in order to give a unified solution. 

Its advantage is the ability to include in the solution of optimization problem requirements of performance as 

bandwidth, time of response and minimization of the cost function. Figure 4, shows a general configuration of the 

H∞ method, where the signal w represents the entries outside the system, z is the signal error, composed of all 

those signals needed to characterize the behavior of the closed loop system, u is the sign of control, and e is the sign 

of difference between the exit y and entries w. The problem of control is to determine a gain K that stabilize the 

plant G and minimize the transfer functions between w and z. 

 

 
Figure 4 : General Configuration of H∞ method. 
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The H∞ controller is base on the state space system   
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which in more details is given by 
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Figure 5 shows that the plant is formed with the weight W1, W2 and W3. In the design controller good performance 

and robustness are function of the weight, so as, z1 = W1e;  z2 = W2y and z3 = W3u. 

 

 

 

Figure 5:  Augmented plant with the weight used in the H∞ controller design 

 

In the H-infinity controller design the central tuning parameters is the mixed sensibility function given by   
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where S is the sensibility function, T complementary sensibility function and R is the energy function. The mixed 

sensibility function has the property of penalizing at the same time S, R and T, which are treated as project 

requirements. From Figure 5 one observes that transfer function from w to  z1 is the sensitivity function W1S, 

associated to the performance of tracking putting a lower limit on the bandwidth of the closed loop system. The 

transfer function from w to z2 is the function W2 R, associated to the control energy and the transfer function from 

w to z3 is the function W3T, which minimize low gains at high frequencies. 

 

5. Simulation and Experimental Results  

The performance of the LQR, LQG and H-infinity controllers designed by simulation program and implemented in 

the Quanser flexible link experiment are presented. The controller performance is evaluated in controlling   rigid 

motion, damping the flexible displacement, and following a reference input of  30º. The outputs are measurements 

by angular and flexible displacement sensors, tachometers and strains gage, respectively. The controls laws define 

the voltage Vm  over the DC motor. The gains used experimentally are those obtained for best performance case in 

the computer simulation. In order to run the experiment in real time, one builds a Matlab simulink program and 

converts they to C language, using WinCon software algorithms [12]. One knows that the flexible link device is 

subject to noises due to sensors and no modeled dynamics (effects of the wire connecting the flexible arm, 

damping coefficients in the motor and reduction of the flexible model). However, in the controller design by 

computer one considers only the sensors noise. Due to experiment construction there is dead zone energy limits so 

as the DC motor has thresholds of +/- 0.2V. The complete Quanser flexible link setup is showed in Figure 6.  
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Figure 8:  Complete Quanser flexible link set up used to run real time algorithms 

 

Figure 9 :  Controllers’ performance for rigid (a), flexible (b) and the sun (c) motions  

 

The three controllers LQR, LQG and Hoo control performance are shown in figure 9, for the angular rigid body 

displacement (a), the flexible displacement (b) and the sun of both (c). One observes that the three controllers 

present a quick response, however, the stead state error for rigid body motion is not totally eliminated. As for this 

requirement the Hoo controller presents inferior performance than the LQR e LQG controllers. Concerning the 
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vibration control the Hoo controller presents bigger overshot than the LQR e LQG controllers, which has a very 

similar behaviour.  The Hoo controller poor performance can be associated to the no modelled dynamics of the 

plant, since this source of uncertainty was not considered in the computer controller design. In the experimental 

apparatus there is a lot of this kind of uncertainty, due to the wire connections. This behaves also shows that the Hoo 

controller is more sensitive than LQR and LQG controllers. However, as for energy limit, figure 10 shows that the 

Hoo controller has superior experimental performance than the LQR and LQG controller, since the LQR and LQG 

peaks are greater than the Hoo controller. Finally, it is important to say that the three controllers are function of they 

tuning weight matrices, which once better designed will improve these controller performances.  

 

 

 

 

Figure 10: Controllers’ performance in terns of energy limits  

The performance difference between the computer controller design and experimentally implementation was also 

associated to the integration time. Because, in computer simulation design the integration algorithms were better 

and more precise, with the possibility of using variable time steps, while in the experimental implementation the 

time steps were restrict to the sample time of 1 Khz for construction reasons.  Another problem that could affect the 

controller performance was that the Hoo controller gain (KHoo) was a transfer function of high order, consequently, 

demanding more process time than the LQR and LQG controller, since the gains of both were constant matrix. 

 

6. Summary and Conclusions  

In this work one investigates the dynamics and design of an ACS for the Quanser rigid flexible link experiment. 

This model allows studying problems associated to rigid flexible space structures, like flexible solar panels and 

solar sail with rigid flexible coupled motions. The Lagrange methodology was used to derive the rigid flexible link 

set up equations of motion, considering the device was a simple spring mass model. From this model one designs 

and investigates three controllers performance using the LQR, LQG e H00 technique. Initially one designs the 

controller by computer simulation following a real time experimental implementation using the Quanser rigid 

flexible link set up. Experimentally one observes that all three controllers have good performance with its pros and 

contras. The LQR controller design is simple and robust but it does not consider the system noise, besides it needs 

all the states to be feedback. The LQG controller is more realists since it takes into account the system noise and 

permits to estimate the states that are not available by the Kalman filter procedure. As a consequence, the LQG 

controller is less robust than the LQR, mainly as for the system uncertainty. The H00 controller has the great 

advantages of taking into account in the design, the sseennssiibbiilliittyy  ffuunnccttiioonn  SS,,  ccoommpplleemmeennttaarryy  sseennssiibbiilliittyy  ffuunnccttiioonn  TT  

aanndd  RR  tthhaatt  aarree  ffuunnccttiioonn  aassssoocciiaatteedd  ttoo  ppeerrffoorrmmaannccee,,  rroobbuussttnneessss  aanndd  eenneerrggyy  lliimmiitt..  IInn  tthhee  H00 ddeessiiggnn  oonnee  mmuusstt  ttoo  

mmiinniimmiizzee  tthhee  mmiixxeedd  sseennssiibbiilliittyy  ffuunnccttiioonn  NN  aaccccoorrddiinngg  ttoo  tthhee  pprroojjeecctt  rreeqquuiirreemmeennttss  aassssoocciiaatteedd  ttoo  qquuiicckk  ttiimmee  rreessppoonnssee  

ttoo  ccoonnttrrooll  rriiggiidd  aanndd  fflleexxiibbllee  ddiissppllaacceemmeennttss,,  ggoooodd  ttrraacckkiinngg  aanndd  ssmmaallll  ccoonnttrroolllleerr  eenneerrggyy  lliimmiittss..  AAlltthhoouugghh, the H00  

method comprises performance and robustness, its has the disadvantage of being of high order than the plant, 

which can difficult its on board computer implementation. 
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