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Abstract. In this work we study the heating process of colloidal ferrofluids (fluid with magnetic nanoparticles embedded
in it) by a rotating magnetic field. The heating of the fluid occurs by the magnetic relaxation of the nanoparticles which
provide thermal energy for the host liquid in this process. In the limit of small volumes, the relaxation process occurs
through the Néel mechanism since the magnetic nanoparticles present superparamagnetic behavior. Within this limit, we
have used a microscopic model for spin-phonon coupling in order to model the relaxation mechanism and to obtain an
expression for the heating rate of the fluid as a function of the model parameters. Our study allows to determine the
appropriated nanoparticles for an optimal heating rate for ferrofluids based on superparamagnetic nanoparticles. Such
a study is a relevant contribution in the field of research on fuel droplet combustion with ferrofluids.
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1. INTRODUCTION

The heating of colloidal ferrofluids is an emerging field due to its potential in technological applications. In fact, one
of these applications is the so-called magnetic hyperthermia (MH), where the ferrofluid is used to provide the heating of a
system (Ahsen et al., 2010; Cantillon-Murphy et al., 2010). MH can be used in the treatment of cancer, where the magnetic
nanoparticles are injected into the tumor tissue. When an external magnetic field is applied, induced magnetization lags
the external field which results in heat dissipation at the tissue. As a result, the tumor tissue can be eliminated with
fewer collateral effects, in comparison to traditional methods like chemotherapy and radiotherapy (Mornet et al., 2004).
Ferrofluids can also be of interest in the construction of combustion chambers, whose projected size increases with the
time taken for a complete burn of the fuel droplets. When magnetic nanoparticles are embedded in these fuel droplets,
it is possible to accelerate the burn process allowing the construction of more compact chambers (Fachini and Bakuzis,
2010).

Ferrofluids contain magnetic particles whose mobility can be controlled by a magnetic field. Regarding the applica-
tions in MH, the interest is the absorption of large amounts of energy when the magnetization of the particles is reversed.
Thus, the quantity to be maximized is the heating rate, i.e., the amount of energy absorbed per unit of time. In the process
of heating, the reversal of the magnetization can be accomplished by two ways: either the magnetic moment is rotated
inside the particle until to be aligned with the field, which is called Néel process, or the particle rotates as a whole, which
is called Brownian process (Shliomis, 1974; Shliomis and Morozov, 1994; Rosensweig, 2002). These mechanisms occur
with a well defined relaxation time, i.e., the time that the particle takes to revert its magnetization. Besides the magnetiza-
tion reversal, the heat transfer is different in these two process. In the Brownian process, the heat is transferred directly to
the fluid due to the friction generated by the particle rotation in the fluid. In the Néel process, the heat is firstly transferred
to the lattice, i.e., to the phonons, and then is delivered to the fluid by heat transfer.

Several research studies have been done in the sense of achieving higher heating rates but considering a regime where
both relaxation processes are operating at same time (Rosensweig, 2002; Fachini and Bakuzis, 2010). However, in sit-
uations where the size of the particles is very reduced or the particles are immobilized, the Néel mechanism is the only
acting in the relaxation process. In fact, as pointed out by Hergt et al. (2006), the mobility of the particles trapped in a
tumor tissue is not known. In cases like this, it is imperative to study the Néel contribution separately in order to have a
deep understanding of the heating process. This case has been addressed in some reports (de Châtel et al., 2009), even
though, to our knowledge the connection between the heating rate and the microscopic mechanism of relaxation has not
been addressed yet. In this work, the Néel relaxation is considered as being a result of the coupling between the spin of
the magnetic nanoparticle with the phonons of its crystalline lattice. To do this a relaxation model of superparamagnetic
nanoparticles, considering the spin-phonon interaction, is used (Pfannes et al., 2000). Some results, addressing the im-
portance of the spin-phonon coupling and its relation with external parameters, like the amplitude and frequency of the
external magnetic field and the system temperature, are shown.

2. MODEL AND FORMULATION

A ferrofluid composed by immobilized single-domain magnetic nanoparticles under a magnetic field is considered.
The application of this field implies in an alignment of the magnetic moment of these nanoparticles, in the same direction
of the field, whose net result is a magnetization of the system. A circularly polarized magnetic field is considered, which
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is given by:

H(t) = H0 cos(ωt) x̂ +H0 sin(ωt) ŷ (1)

with H0 being the amplitude of the magnetic field and ω = 2πf the angular frequency.
According to Shliomis and Morozov (1994), when the field rotates in the (x, y)-plane, ferrofluid magnetization also

rotates in this plane with the same speed as the field but lags behind in phase by a certain angle δ due to the finite relaxation
time:

M(t) = M0 cos(ωt− δ) x̂ +M0 sin(ωt− δ) ŷ. (2)

In order to determine the parameters δ and M , it is used the following expression for the magnetization:

∂M(t)

∂t
=

1

τ
[M0(t)−M(t)] (3)

which is the so-called Shliomis relaxation equation, particularized (Shliomis, 1974) for a motionless fluid in a oscillatory
field. In Eq. (3), τ is the Néel relaxation time, M0 = χ0H(t) is the equilibrium magnetization and χ0 is the equilibrium
susceptibility. Substitution of Eq. (2) into Eq. (3) leads to:

M(t) =
χ0H0√

1 + ω2τ2
[cos(ωt− δ) x̂ + sin(ωt− δ) ŷ] , (4)

where tan δ = ωτ .
Rosensweig (2002) has developed an expression for the energy dissipation per unit volume whose form is given by :

E = µ0

∫ 2π/ω

0

H · ∂M
∂t

dt, (5)

where µ0 is the magnetic permeability of the free space. This function is also called energy density. It is straightforward
to obtain an explicit expression for E through substitution of Eqs. (1) and (2) into Eq. (5):

E = 2πµ0χ0H
2
0

ωτ

1 + ω2τ2
. (6)

To describe the heating rate, Rosensweig (2002) has defined the heating rate function, which is given by:

∆T

∆t
=

ωE

2πρc
(7)

where ∆T is the temperature rise in time step ∆t during the heating process. For the ferrofluid, ρ is the density and c the
specific heat. In order to investigate the behavior of the heating rate, it is convenient to work with a quantity which does
not depend on the parameters ρ and c. Thus, the following heating rate function is defined:

HC =

(
ρc

µ0χ0H2
0

)
∆T

∆t
(8)

and substituting Eq. (7) and (6) into Eq. (8) leads to:

HC =
ω2τ

1 + ω2τ2
. (9)

The microscopic information regarding the nanoparticles properties are included in the relaxation time, τ . This quan-
tity has been determined by Pfannes et al. (2000) where they describe the relaxation process of superparamagnetic
nanoparticles under a magnetic field. Within this model, the superparamagnetic particles are considered to present an
uniaxial anisotropy whose effect is to produce an energy barrier between two local energy minima. These local energy
minima correspond to opposite orientations of the nanoparticle magnetic moment with respect to the easy axis of mag-
netization. In the presence of the magnetic field, the energy barrier of the nanoparticle will change depending on the
orientation of the field, increasing in the sense of the nanoparticle magnetic moment or decreasing in the opposite sense.
The coupling of the nanoparticles with a phonon bath introduces a fluctuation in the nanoparticle moment direction with
respect to the field and whereby a finite relaxation time. The expression for the relaxation time is given by (Pfannes et al.,
2000):

τ−1 = τ−1
+ + τ−1

− (10)

with

τ± =
S6 exp(α±)

64C
[σ(+h) + σ(−h)],
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and

σ(±h) =

(S/2)(1±h)−1∑
i=0

exp
[
−α

(
2
S

)2
i2
]

(1 + 2i)3[S(1± h)− 2i][S(1± h)− 2i− 1]

1− exp
[
−α

(
2
S

)2
(1 + 2i)

]
[S(1∓ h) + 2i+ 2)][S(1∓ h) + 2i+ 1]

.

The constants α, h and C are defined by:

α± = α(1± h)2, α =
KV

kBT
, h =

gµBH0S

2KV
, and C = 4096(KV )3

3B2

2πh̄4ρa5
.

In Eq. (10), α is the ratio of the anisotropy energy KV to the thermal energy kBT , with K being the anisotropy constant
and V the particle volume. In the absence of an external field, KV gives an estimative of the height of the energy barrier
between the two energy minima. In the limit of high temperatures (T →∞), the energy barrier is too small in comparison
to the thermal energy and, as a result, the magnetic moment is randomized, which is known as superparamagnetic limit.
Conversely, when the temperature is close to zero, the magnetic moment is fixed, since there is no enough energy to
overcome the barrier, and the particle is said blocked. When a magnetic field is applied, it is introduced an asymmetry
between the two energy minima which is described by the parameter h, ranging between 0 to 1. It is defined by the ratio
of the magnetic energy (gµBH0S) to the anisotropy energy KV , where g is the well known g-factor and µB is the Bohr
magneton. The asymmetry between these two minima increases with the applied field until some limit value where one
of these minima coincides with the top of the barrier. In this case, the relaxation is quenched and the system becomes
saturated. This limit field occurs when gµBH0S = 2KV , i.e., for h = 1. The parameterC contains information about the
spin-phonon coupling. In fact, B is a constant describing the intensity of the coupling between the nanoparticle magnetic
moment and the phonon bath. It is multiplied by a set of parameters with ρ being the nanoparticle density and a the sound
velocity. The substitution of Eq. (9) into Eq. (10) leads to an expression for the heating rate depending on microscopic
parameters.

3. RESULTS AND DISCUSSION

In this section, some results obtained from Eqs. (9) and (10) are presented. It is analyzed the behavior of the heating
rate (HR) as function of the field frequency (f) and the spin-phonon coupling (B). In Fig. 1a are shown some curves
of HR vs. f , for different values of the dimensionless field, h. For all the values of h, the heating rate exhibit a general
trend, ranging from 0 to the constant value τ−1 in the asymptotic limit f → ∞. This limit can be verified from Eq. (9).
The curves in Fig. 1a show that the heating rate first increases with h up to a maximum value for h ∼ 0.80 and then
decreases for h > 0.80. In fact, for a frequency f = 80 MHz, the heating rate ranges from ∼ 108 for h = 0.80 to ∼ 106

for h = 0.98, i.e., a reduction of two orders of magnitude. In this range, h is close to unity and, as a result, the relaxation
time becomes large enough to produce a significant reduction of the heating rate.

Next, the effect of the spin-phonon coupling on the heating rate is considered. In Fig. 1b, some curves of HR vs. f
for different values of B are shown, in which is observed the same plateau structure as observed in Fig. 1a. By changing
the value of B, the plateau also changes going to higher values of the heating rate for larger values of B. This behavior
can be understood by considering how the process of heating occurs: the nanoparticle receives energy from the magnetic
field which allows its spin to climb to the top of the energy barrier and then go down on the other minimum releasing its
energy excess to the phonon bath. Thus, the higher the coupling with the phonons, the faster will be the absorption of heat
by the system.

Figure 1. Dimensionless heating rate (HR) for different values of the model parameters. (a) HR vs. field frequency (f )
for some values of the dimensionless field, h. For these curves, T = 100 K and B = 0.80. (b) HR vs. f for some values
of spin-phonon coupling (B), with h = 0.10 and T = 300 K. (c) HR vs. B for different values of T , f = 1MHz and
h = 0.50 for all curves. Fixed parameters used in all graphs: S = 3222, K = 7 × 104 J/m3, V = 3.82 × 10−25 m3,

ρ = 5000 kg/m3, v = 3000 m/s.
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In Fig. 1c, the heating rate as a function of B for different values of the phonon-bath temperature is shown. All
curves exhibit the same trend, firstly increasing with B up to some maximum and then decreasing for higher values of
B. This behavior stems from the fixed frequency of the magnetic field. In fact, for a given frequency, the corresponding
relaxation time (τm) for which the heating rate is maximum can be determined from Eq. (9). In all the curves shown in
Fig. 1c, the frequency is fixed at 1MHz which leads to τm = (2πf)−1 ∼ 1.5× 10−7 s. Since τ ∝ 1/B, the heating rate
increases, when B is reduced from B = 1.0, reaching the maximum when B is such that τ = τm. When B is further
reduced, the heating rate starts to be reduced being completely suppressed for B = 0. When the temperature is increased,
the relaxation time decay more rapidly with the spin-phonon coupling. As a result, the value of τm is reached at smaller
values of B and the heating rate maximum is pushed to smaller values of B for higher values of the temperature. In fact,
the maximum ranges fromB ∼ 0.41 cm−1 for T = 100 K toB = 0.04 cm−1 when T = 300 K. This variation shows that
it is easier to relaxation process to take place in higher temperatures in such a way that a small coupling with phonons is
enough for the system to absorb the energy from the applied field. In the curves shown in Fig. 1, the parameters used were
those for Mn-ferrite (MnFe4) nanoparticles obtained from Pfannes et al. (1998). As pointed out by the authors, the value
of the spin-phonon coupling, which reproduces the relaxation time observed in experiments, is B ∼ 13 cm−1. Thus, for
a fixed frequency of f = 1MHz the temperature for HR to be maximum ranges from T ∼ 101.40 K to T ∼ 19.2 K as h
is changed from h = 0.20 to h = 0.70.

The results, shown in Fig. 1, allow determining the condition to achieve the maximum heating rate given the spin-
phonon coupling. In applications of ferrofluids in combustion, the liquid where the magnetic nanoparticles are dispersed
is the fuel to be heated by the magnetic field. Thus, the fuel boiling temperature (TB) appears as an upper limit for the
temperature where the heating rate is a maximum. In fact, for methane (CH4) with TB = 109.15 K, MnFe4-nanoparticles
may be appropriated since the heating rate is maximum for a temperature range lying below TB .

4. CONCLUSION

The behavior of the heating rate as a function of spin-phonon coupling and the other parameters of the model has been
analyzed. It is clear from the results shown in Fig. 1, that the spin-phonon coupling is a crucial parameter to choose the
appropriate material to make the magnetic nanoparticles. In fact, by combining this value along with the field parameters
and temperature, it is possible to determine the condition where the heating rate exhibit a maximum value.
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