A MEMETIC ALGORITHM FOR A CONTINUOUS CASE OF THE BERTH ALLOCATION PROBLEM

Geraldo Regis Mauri¹, Larice Nogueira de Andrade² and Luiz Antonio Nogueira Lorena³

¹Federal University of Espírito Santo - UFES, Alegre, ES, Brazil
²Federal University of Triângulo Mineiro - UFTM, Uberaba, MG, Brazil
³National Institute for Space Research - INPE, São José dos Campos, SP, Brazil

Keywords: Berth allocation, Memetic algorithm, Simulated annealing, Combinatorial optimization.

Abstract:

This work presents a Memetic Algorithm heuristic to solve a continuous case of the Berth Allocation Problem (BAP). The BAP deals with programming and allocating ships to berthing areas along a quay. In general, the continuous case considers that ships have different lengths and can moor anywhere along the quay. However, we consider a quay divided in berths that have limited areas and different equipments to handle the ships. So, we must to assign the ships to berths and determine the berthing time and position for each ship. We treat the ships as rectangles to be placed into a *space* × *time* area avoiding overlaps and satisfying time window constraints. Our MA uses a Simulated Annealing (SA) as the local search mechanism, and SA is also applied in a stand alone way to solve the BAP. A two-phase heuristic is also presented to compute the berthing time and position for all of ships during MA and SA execution. Computational results are performed on a set of instances proposed in the literature and new best-known solutions are presented.

1 INTRODUCTION

The port importance grows with the increasing progress in the construction technology of great ships. Besides, due to the improved trades among the nations caused by globalization, the frequency of transports among ports also increases, mainly due to the constant economical growth and volume of the trade among several countries.

Maritime transport can be seen as a central pillar for the international trade. Approximately 80% of global market is conducted through the sea (Buhrkal et al., 2011). Moreover, in 2008 the fleet of ships carrying containers had an increase in capacity of 17.3 million tons, or 11.9%, and now represents 13.6% of world total. In 2009, the world merchant fleet reached 1.19 million, an increase of 6.7% compared to January 2008, and since the beginning of the decade, the number of containers increased by 154% (UNCTAD, 2009).

Due to intense flow of ships and containers in ports, these are forced to invest heavily to accommodate the ships, deepening and widening channels and building new installations of moor, everything to minimize the service time of the ships. So, a port should operates in an efficient way (Hansen et al., 2008).

The allocation and programming of ships to berths have a primary impact on the efficiency of these operations (Imai et al., 2003). Vis and Koster (2003) present a discussion about the decision problems that appear in a port. A classification of the processes and operations of different marine terminals is presented by Steenken et al. (2004). The crucial problem in a port administration is optimizing the balance among the ships holder that demand fast services, and the economical use of the available resources into the port (Dragovic et al., 2005).

The Berth Allocation Problem (BAP) consists of optimally assigning ships to berthing areas along a quay in a port. The choice of "where" and "when" the ships shall berth is the main decision to be made in that process (Cordeau et al., 2005).

The BAP has a lot of physical and technical restrictions, among others. This makes possible to model it in different ways. Considering the spatial aspects of the berths, the BAP can be modeled as discrete and continuous (Imai et al., 2005). In the discrete case, the quay is divided into several berths and only one ship is serviced at a time in every berth, regardless of their length. In the continuous case, there is no division of the quay and thus the ships can moor at any position. Another conception for the continu-

A MEMETIC ALGORITHM FOR A CONTINUOUS CASE OF THE BERTH ALLOCATION PROBLEM.

DOI: 10.5220/0003636601050113

In Proceedings of the International Conference on Evolutionary Computation Theory and Applications (ECTA-2011), pages 105-113

ISBN: 978-989-8425-83-6

Copyright © 2011 SCITEPRESS (Science and Technology Publications, Lda.)

ous case considers that the quay is divided in berths, but the big ships can occupy more than one position, thus allowing small ships to share their berth (Cordeau et al., 2005). This last approach represents the real cases of a more appropriate way, where some berths have different equipments (reaching limited areas) to operate specific type of cargo (container of various sizes, for example).

If we consider the arrival of ships, the BAP can be still treated as static or dynamic (Imai et al., 2001). The static case assumes all ships already in port for the service, while the dynamic case allows ships to arrive at any time (estimated in advance). In recent works, we have notice that the term "dynamic" has been unusual, because in practice, the static case is not close to real situations. Then, the remainder of this paper will denotes the "dynamic and continuous case" only as continuous case.

This paper solves a continuous case of the BAP by means of an effective Memetic Algorithm (MA) using a Simulated Annealing (SA) as the local search mechanism. SA is also applied in a stand alone way, and both SA and MA use a two-phase heuristic to compute the berthing time and position for all of ships presenting results that outperform those obtained by another heuristic approach reported in the literature.

The remainder of this paper is organized as follows. The next section reports a brief literature review. Section 3 presents details about the BAP. Our MA, SA and two-phase heuristic are described in Section 4. Computational results are presented in Section 5, followed by conclusions in Section 6.

2 BRIEF LITERATURE REVIEW

Initial works about the BAP appear at the end of the 80s, but these works have been gaining focus in the last 10 years.

Approaches based on using heuristic alternatives to solve the BAP are the most explored, and we believe that such methods have been predominating for allowing the inclusion of several constraints in a "soft way".

Imai et al. (2001) present a method based on Lagrangian relaxation of the original problem. Two years later, Imai et al. (2003) upgraded their approach considering different service priorities between the ships. Furthermore, the authors proposed a Genetic Algorithm as a method of solution. The same authors also treated a continuous case (see Imai et al. (2005)).

Cordeau et al. (2005) present a Tabu Search based heuristic for solve two different models for a discrete case of the BAP. They also present a TS heuristic for a continuous case of the problem. They compared their TS with a truncated branch-and-bound applied to an exact formulation. Comparisons were made for the discrete case. For the continuous approach, the TS was able to solving more realistic instances than those previously considered by other authors. The proposed TS could handles various features of reallife problems, including time windows and favorite and acceptable berthing areas. The objective function treated a weighted sum of the ship's service times.

Mauri et al. (2008a) proposed an approach based on the application of Simulated Annealing for solving the discrete case of BAP. The authors treat the problem as a Multi-Depot Vehicle Routing Problem with Time Windows (MDVRPTW). The computational results improved those obtained by CPLEX and Tabu Search proposed by Cordeau et al. (2005). Mauri et al. (2008b) solves the discrete case of the BAP by using a hybrid method called PTA/LP, which uses the Population Training Algorithm with a Linear Programming model through a Column Generation technique. The results improved those shown in their previous work.

Giallombardo et al. (2010) present two models based on quadratic and linear programming to represent a discrete case of the BAP. Moreover, the authors use a Tabu Search and a mathematical programming technique to solve instances based on real data.

Recently, Buhrkal et al. (2011) reviewed some approaches about BAP and described three models for the discrete berth allocation problem. The authors proven the optimal solutions for some instances presented by Cordeau et al. (2005) for the discrete case of BAP.

3 BERTH ALLOCATION

As mentioned before, the Berth Allocation Problem (BAP) consists of optimally assigning ships to berthing areas along a quay in a port respecting several physical and technical restrictions.

Related to the berth position, there exist constraints concerning to the depth of the water (allowable draft) and to the maximum distance from the most favorable location along the quay, considering the ship's length and the location of the outbound and inbound containers.

Some ports have hard allowable draft constraints since they are located in geographical regions subject to meaningful tide variation. In such cases, the ships only can berth in known time windows of about two hours around the high tide.

Besides this time window constraint, there exist the time windows for completion time of ship servicing (Cordeau et al., 2005). The handling time of a ship depends on its berthing point and it is a function of the distance from the berth to the pick-up and delivery area of containers stored in the port yard. This dependency strongly affects the performance of the port (Cordeau et al., 2005).

Managers want to minimize both port and user costs, which are related to service time. The objective of the BAP is usually to minimize the total service time of all ships. Since ships do not have equal importance, a weighted sum of the ship service times may better reflect the management practice of some ports. The weights in this sum can represent a pricing scheme (demurrage) over delayed operations, the number of container moves, and the urgent need of a given load. Penalty terms can be explicitly included in the objective function, for example, the demurrage cost when the service time of a ship exceeds the contracted value (see Barros et al. (2011), for example).

As reported by Cordeau et al. (2005), the BAP can be represented in a two-dimensional area (see Figures 1 and 2) considering the ships as rectangles whose dimensions are length, including a safety margin, and handling time (*space* x *time* area). So, the BAP can be defined by placing these rectangles in the port area without overlapping and satisfying several constraints.

The spatial dimension is ignored in the discrete case of the BAP, and the berths can be described as fixed length segments, or simple points. For the continuous case, we consider that the quay is also divided in berths (as explained in Section 1), but now the spatial dimension is not ignored. We will denote these approaches as BAP-D and BAP-C, respectively. For the BAP-C, a ship may occupy part of neighboring berths (see Cordeau et al. (2005)).

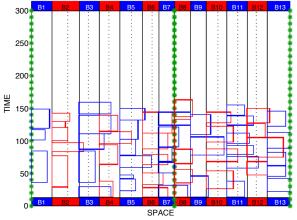


Figure 1: Optimal solution for BAP-D: i01 = 1409.

Cordeau et al. (2005) considered a quay divided into berths with two parts, left and right. So, each

berth k has two neighbors, the right part of the berth k-1 and the left part of the berth k+1. Discontinuous segments must be also considered, representing the initial and final berths and also natural obstacles, as sharp curves, for example. In these cases, the berths have only one neighbor and they are not divided (see berths 1, 7, 8, 9 and 13 in Figure 1).

Figure 1 presents an optimal solution (cost = 1409) for the instance i01 (one of those used on our computational experiments - see Section 5) considering the BAP-D approach. In this figure, we used the colors red and blue to enhance visualization. Then, each rectangle represents a ship, and the blue ones are assigned to the nearest blue berth. This is also true for the red ones. Marked green lines indicate discontinuities and solid and dotted black lines indicate the different berths and their parts (left and right), respectively. Bottom and top filled boxes indicate the start and the end of availability time for the berths. We can see that there are overlapping of ships, and the discontinuous berths are not respected.

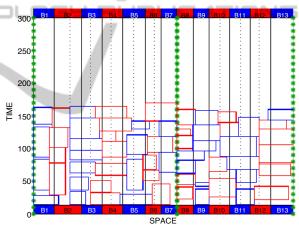


Figure 2: Best-known solution for BAP-C: i01 = 1613.

A best-known solution (cost = 1613 - found by our MA described in Section 4) for this same instance (i01) considering the continuous case (BAP-C) is presented in Figure 2. No overlapping and violations of the discontinuities are observed in this case.

Cordeau et al. (2005) reported that BAP-D can be regarded as a relaxation of the BAP-C, because a solution for the BAP-D can violate the spatial constraints (compare Figures 1 and 2). So, we notice that a solution for the BAP-D can be seen as a lower bound for the BAP-C (Imai et al., 2005). In this paper, we will treat only the continuous case (BAP-C) aiming to minimize the sum of the times while the ships stayed into the port (service times), i.e., the elapsed time since the ships incoming, berthing and handling. Figure 3 illustrates the service time for a ship *i* assigned to a hypothetical berth 3.

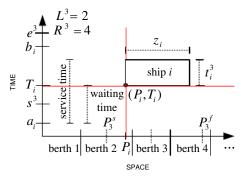


Figure 3: Data description for the ships berthing.

Now, our objective can be described as to assign n ships to m berths. Then, we can determine, in advance, the following data:

- N: set of ships, n = |N|;
- M: set of berths, m = |M|;
- a_i arrival time of ship i;
- b_i: limit time to complete the service for ship i;
- t_i^k : handling time of ship i at berth k;
- z_i: length of ship i (including a safety margin);
- s^k : start of availability time for berth k;
- e^k : end of availability time for berth k;
- P_k^s : start position for berth k (including the right part of its left neighbor);
- P_k^f : final position for berth k (including the left part of its right neighbor);
- R^k: neighbor at right side for berth k (0 if none);
- L^k : neighbor at left side for berth k (0 if none).

Using these data, we must to assign the ships to berths determining the berthing time and position for each ship i (i = 1,...,n). We will denote them as T_i and P_i respectively. These variables can be seen as the coordinates for the left lower corner point of the rectangles (see Figure 3).

Several mathematical models for both BAP-D and BAP-C can be found in the literature. See for example Imai et al. (2001), Nishimura et al. (2001), Cordeau et al. (2005) and Buhrkal et al. (2011). However, we did not find any model for the continuous case (BAP-C) that considers all of the features previously described, as discontinuities, the use of neighboring berths and different berths capacity (different handling times). A comparison among some recent models is presented by Buhrkal et al. (2011).

4 MEMETIC ALGORITHM

In this section, we present our MA algorithm for the BAP-C.

Evolutionary algorithms have been applied successfully for solve several classes of combinatorial optimization problems. Memetic Algorithms (MAs) are evolutionary algorithms which can be seen as Genetic Algorithms (GAs) that uses a local search procedure to improve the search refining individuals (Moscato, 1999).

The "meme" suggests a cultural evolution within a lifetime, and MA uses this concept by applying a local search to represent a learning to the individuals.

The MAs use evolutionary operators to find promising regions on the search space applying a local search procedure to intensify the investigation in these regions. According to Moscato and Norman (1992), the basic idea of the MAs consists of exploring the neighborhood of the solutions obtained by a GA searching to local optimal.

The recombination mechanism (crossover) allows that the mixing of information from one generation can be transmitted to its offspring, and the mutation introduces innovation in the population. More details about the MAs are reported by Moscato (1999).

Algorithm 1: Memetic Algorithm - MA.

```
1 Input: #gen, #pop, #eli, #cro, #mut and #ls
   curPop ← INITIÂL-POPULATION(#pop)
3 bstInd \leftarrow the best individual in curPop
4 newPop \leftarrow \{0\}
   for i = 1 to #gen do
        for j = 1 to \#cros\ do
             p_1 \leftarrow \text{SELECT}(one from the best #eli% in
             curPop)
             p_2 \leftarrow \text{SELECT}(\text{one from all in } curPop)
8
             off \leftarrow CROSSOVER(p_1, p_2)
             off \leftarrow LOCAL\text{-SEARCH}(off,\#ls)
10
             newPop \leftarrow ADD(off)
11
        end
12
        for j = 1 to #mut do
13
             ind \leftarrow SELECT(one from newPop)
14
             MUTATION(ind)
15
16
        ind \leftarrow TAKE(the best individual in newPop)
17
18
        bstInd \leftarrow BEST(bstInd,ind)
        DISCARD(curPop)
19
        curPop \leftarrow \text{the best } \#pop \text{ individuals in } newPop
20
        newPop \leftarrow \{0\}
21
22 end
  Output: bstInd
```

Our MA contains some user-controlled parameters, and we will denote them as: #gen, #pop, #eli, #cro, #mut and #ls. #gen is the number of generations for the algorithm converging; #pop is the population

size (number of individuals); #eli is a percentage of the best individuals in a population (elite); #cro and #mut are the number of crossover and mutation performed at each generation; and #ls is the "deep" of the local search.

First, #pop individuals (solutions) are randomly created to form an initial population. #cros crossovers are performed between two parents randomly selected from the current population: one elite individual and any other. A local search is performed over the resulting offspring, and it is added into a new population. Then, #mut mutations are applied over individuals randomly selected from the new population. The best individual in the new population is stored, the current population is discarded and the new population becomes the current one. This process is repeated for #gen generations. Our MA pseudo-code is presented in Algorithm 1.

We now describe the main elements of our MA implementation for the BAP-C.

Individual Representation. An individual represents one possible solution for the BAP-C and it is described as a matrix with the lines indicating the berths and the columns presenting the sequence of ships to be handling at each berth. Figure 4 illustrates an individual (solution) for a hypothetical problem with 4 berths and 14 ships.

Berth 1	4	10	6	13	
Berth 2	2	9			
Berth 3	7	1	3	8	12
Berth 4	11	14	5		

Figure 4: Individual representation.

Initial Population. A random individual can be constructed through a simple and balanced heuristic. Initially, the ships are organized by incoming order on port (a_i) and distributed to the berths in a random way. In this process, the selected berth must always be able to assist the selected ship. This procedure ensures that each ship will be assigned to a berth that must be able to attend it, i.e., the berth length is sufficient to receive the ship and the berth's equipments are suitable to operate the type of cargo into the ship. So, this procedure is repeated for #pop times forming an initial population. This procedure does not guarantee that the berthing time (T_i) and position (P_i) for the ship i (i = 1, ..., n) present no overlapping on time and space dimensions. This strategy is based on the distribution heuristic presented by Mauri et al. (2008a,b) and the FCFS-G heuristic presented by Cordeau et al. (2005).

Computing Berthing Times and Positions. After generating a random individual (solution), we must define the berthing time and position for all of ships. We present a *two-phase heuristic* to determine these values.

• **Phase 1:** Berthing time and position for all of ships assigned to a specific berth are set to initial values according to Algorithm 2. At this moment, the berthing times are set to equal the arrival times of the ships, if the berth is available. The berthing positions are set to equal the start position of the berth. This phase is applied to give initial values for P_i and T_i , that are updated in phase 2. This procedure is based on the ones presented by Mauri et al. (2008a,b), Pacheco et al. (2010) and Ribeiro et al. (2011) adding the position defining.

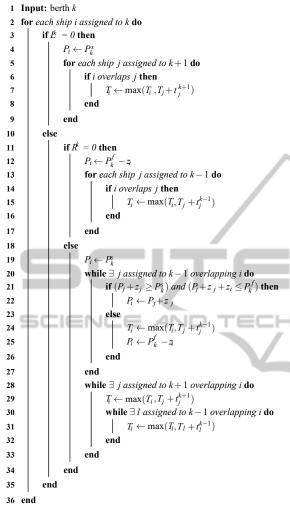
Algorithm 2: Two-phase heuristic - phase 1.

- Phase 2: The spatial distribution for the ships to the berths are updated and improved. This procedure updates the berthing times and positions considering a simple idea: if some overlap is detected for each ship, its berthing time is delayed until eliminate all of them. If a berth has no neighbor at the left side, all of ships assigned to it have the berthing position set to equal the start position of the berth, i.e., all of ships (rectangles) are aligned at left. If a berth has no neighbor at the right side, all of ships assigned to it have the berthing position set to equal the final position of the berth minus the ship length, i.e., all of ships are aligned at right. Finally, if a berth has neighbors on both sides, we try to fit the ships among the ones assigned to the two neighbor berths. This procedure is described in Algorithm 3.

Figures 5 and 6 illustrate a randomly generated individual after running only phase 1 and after phases 1 and 2 of our two-phase heuristic.

In the first case (Figure 5), only the phase 1 of our heuristic was performed, and we can note that overlapping were not treated. In the second case (Figure 6), both phases were computed and no overlapping is presented. However, we can observe that some ships violate the deadlines for some berths (see berths 2, 3, 4, 8 and 9), and these violations must be eliminated by our MA through a penalized objective function (see expression 1).

Algorithm 3: Two-phase heuristic - phase 2.



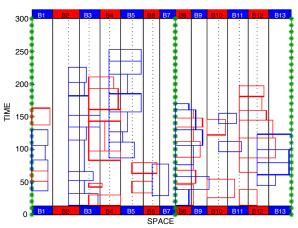


Figure 5: Random solution after phase 1.

Individual Evaluation. We may notice that our twophase heuristic guarantees that no overlapping will occur and no ship will exceed the spatial limit of the berths. However, our solutions can still present viola-

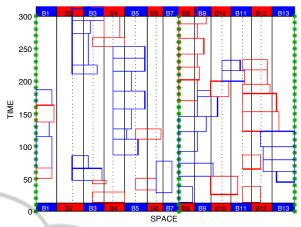


Figure 6: Random solution after phases 1 and 2.

tions on the limit time to complete the service of the ships $(b_i, \forall i = 1, ..., n)$ and on the end of availability time of the berths $(e^k, \forall k = 1, ..., m)$. So, we define a function to compute the cost of an individual considering a weight λ to penalty theses violations (see expression 1). This function is composed by three terms representing the service times for the ships (sum of the times when the ships stayed in port) and the sum of violating deadlines for the ships and berths respectively. The fitness measure used to evaluate the individuals was 1/f(I).

$$f(I) = \begin{cases} \bullet & \bullet & (T_i + t_i^k - a_i) + \\ k \in M i \in N \\ \lambda & \bullet & \max (0, T_i + t_i^k - b_i) + \\ k \in M i \in N \\ \lambda & \bullet & \max (0, T_i + t_i^k - e^k) \\ k \in M i \in N \end{cases}$$
(1)

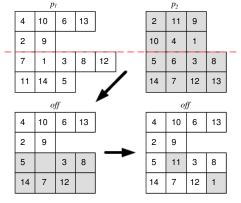


Figure 7: Crossover.

Crossover. A one-point based crossover was implemented. Given two parents p_1 and p_2 , a number of berths x (0 < x < m) is randomly selected and then the first x berths from p_1 are inserted into the offspring off. Then, the last m-x berths from p_2 are inserted into off removing the duplicated ships, and the ships that have not been assigned to any berth

are randomly allocated at the last m-x berths in off. The ships assigned to each of the last m-x berths are organized by incoming order on port (a_i) and the two-phase heuristic is applied only to these berths in off. Finally, function 1 is used to compute the cost (f(off)) and fitness for off(1/f(off)). Figure 7 illustrates our crossover.

Mutation. Three different procedures explored in previous works (see Mauri et al. (2008a), Pacheco et al. (2010) and Ribeiro et al. (2011)) were used to compose a neighborhood structure: Re-order ships, Re-allocate ship and Swap ships. We will denote them as ω^1 , ω^2 and ω^3 respectively. ω^1 is obtained by randomly choosing two ships of the same berth, and swapping them; ω^2 is obtained by inserting a ship i chosen at random from some berth into another berth in a position chosen at random; and ω^3 is obtained by swapping two ships from two different berths, all chosen at random. So, a mutation is defined by applying one of these procedures (randomly selected) over an individual followed by performing the two-phase heuristic on the modified berths. Finally, the individual's fitness is updated.

Local Search. A traditional Simulated Annealing (SA) presented in previous works (see Ribeiro et al. (2011)) was used as the local search mechanism for our Memetic Algorithm (MA). The neighborhood structure for our SA were composed by selecting (at random) one of the three procedures adopted in the Mutation. We must emphasize that low values for the SA parameters were used into our MA to make only a fast local search. These parameters values were: $\alpha = 0.95$, $T_{start} = 10$, $T_{frozen} = 0.01$ and $SA_{max} = \#ls$ (defined in the next section).

5 COMPUTATIONAL RESULTS

This section presents a comparative evaluation of our Memetic Algorithm (MA) and Simulated Annealing (SA) applied in a stand alone way. Both heuristics were applied 10 times to each instance, and to be fair, we imposed a time limit as unique stopping criterion for them: 120 seconds for each instance, i.e., the same time used by Tabu Search (TS) proposed by Cordeau et al. (2005).

The SA and MA heuristics have stopping conditions based on the temperature and on the number of generations, respectively. If they reach their stopping conditions before the time limit, we restart the heuristic from the best solution identified during the search. This process is repeated until the heuristic reaches the

time limit.

The SA and MA heuristics were coded in C++ and ran on a PC with Intel Core *i*3 processor of 2.66 GHz with 4 GB of RAM Memory under Windows 7 operating system. Cordeau et al. (2005) had use a Sun workstation (900 MHz) to run their TS. Our algorithms were tested on a BAP instances set randomly generated by Cordeau et al. (2005). This set is composed by 30 different instances with 60 ships and 13 berths, and it was provided to us by the authors in a previous situation.

The parameters of SA and MA were chosen empirically after running them over three randomly selected instances. We ran SA and MA five times for each parameter setting, and the setting yielding the best average results was chosen. So, the final values for the SA parameters were: $T_{start} = 15000$, $T_{frozen} = 0.01$, $\alpha = 0.975$, $SA_{max} = 1000$. The parameters for our MA were: #pop = 30, #eli = 10, #cro = 25, #mut = 5 and #ls = 7. The parameters used by SA (as a local search) inside the MA were defined in Section 4.

A special attention was given to the weight λ , because we note that a large value for this weight often traps the search in a locally suboptimal solution. So, the weight value was set to $10~(\lambda=10)$.

Table 1: Results from our SA and MA heuristics.

	SA				MA				
Instance	f($f(I^{k})$		Time (s)		$f(I^*)$		Time (s)	
	bst	avge	bks	bst	bst	avge	bks	bst	
i01	1639	1661.60	21.45	58.45	1613	1666.50	37.49	85.41	
i02	1326	1341.20	28.17	41.47	1326	1347.80	51.91	75.85	
i03	1242	1254.90	28.12	58.51	1234	1261.90	20.58	79.99	
i04	1392	1416.40	31.79	65.63	1392	1421.00	36.36	84.54	
i05	1285	1300.80	16.53	91.54	1285	1302.00	8.55	90.02	
i06	1461	1492.00	17.28	67.69	1461	1492.10	5.84	85.67	
i07	1333	1347.10	19.48	64.68	1333	1352.00	12.38	92.50	
i08	1425	1470.30	34.69	80.23	1425	1466.40	12.88	91.94	
i09	1651	1693.80	55.22	59.20	1651	1698.20	40.06	89.57	
i10	1371	1380.40	40.67	61.45	1371	1393.00	38.93	72.64	
i11	1574	1606.50	20.82	59.57	1557	1602.10	5.70	72.93	
i12	1541	1568.60	22.21	56.87	1537	1565.80	7.64	88.01	
i13	1457	1468.60	18.39	47.73	1449	1482.50	23.66	83.02	
i14	1284	1289.80	16.98	58.90	1287	1306.90	6.57	80.19	
i15	1362	1376.50	19.10	65.92	1362	1394.20	14.44	75.85	
i16	1508	1539.00	14.49	70.45	1508	1581.10	4.28	87.78	
i17	1310	1321.40	52.24	54.70	1318	1335.30	68.71	83.41	
i18	1529	1549.10	25.59	59.68	1519	1552.10	21.68	89.47	
i19	1572	1614.60	33.32	62.10	1573	1628.60	26.00	84.78	
i20	1438	1456.40	52.98	50.21	1428	1469.30	67.47	91.01	
i21	1478	1494.80	16.03	86.28	1481	1510.40	7.64	80.47	
i22	1484	1519.00	22.22	78.94	1484	1521.00	12.57	86.19	
i23	1425	1456.00	23.58	54.52	1425	1456.10	3.56	84.86	
i24	1365	1375.30	15.99	73.48	1359	1383.40	14.40	87.65	
i25	1546	1578.20	45.12	53.87	1546	1604.50	38.04	79.12	
i26	1475	1507.40	30.07	62.51	1475	1520.10	22.25	80.51	
i27	1356	1371.50	15.39	88.81	1356	1382.30	6.59	70.23	
i28	1504	1525.20	44.35	69.11	1486	1553.90	53.80	81.15	
i29	1340	1351.20	16.03	55.84	1338	1360.80	6.76	74.49	
i30	1512	1547.30	15.17	82.53	1512	1555.60	7.43	84.63	
Avge	1439.50	1462.50	27.11	64.70	1436.37	1472.23	22.81	83.13	

Table 1 presents a detailed comparison between our SA and MA performance. Five different columns are used for all results: the instance name, the best solution found $(f(I^*) \rightarrow bst)$, the average solution found (avge), the computational time (bks) to reach the best-known so far (TS by Cordeau et al. (2005)) and the computational time to found the best solution for each algorithm $(Times(s) \rightarrow bst)$.

In Table 1, we can note that MA found ten best solutions and four worse than SA. The others sixteen solutions were equal. Despite the differences, we notice that MA is slightly better, but in general, the solutions of SA and MA are very close. This fact can indicate that our solutions are probably next to the optimal ones. We confirmed this situation in Tabel 3. The average values (last line) are also close, and we emphasize that our heuristics find the same solutions of TS proposed by Cordeau et al. (2005) using less than 30 seconds.

Table 2: Comparison with the TS of Cordeau et al. (2005)

Instance	TS			SA	MA		
	bst	dev (%)	bst	dev (%)	bst	dev (%)	
i01	1706	5.77	1639	1.61	1613	0	
i02	1355	2.19	1326	0	1326	0	
i03	1286	4.21	1242	0.65	1234		
i04	1440	3.45	1392	0	1392	0	
i05	1352	5.21	1285	0	1285	0	
i06	1565	7.12	1461	0	1461	0	
i07	1389	4.20	1333	0	1333	0	
i08	1519	6.60	1425	0	1425	0	
i09	1713	3.76	1651	0	1651	0	
i10	1411	2.92	1371	0	1371	0	
i11	1696	8.93	1574	1.09	1557	0	
i12	1629	5.99	1541	0.26	1537	0	
i13	1519	4.83	1457	0.55	1449	0	
i14	1369	6.62	1284	0	1287	0.23	
i15	1455	6.83	1362	0	1362	0	
i16	1715	13.73	1508	0	1508	0	
i17	1322	0.92	1310	0	1318	0.61	
i18	1594	4.94	1529	0.66	1519	0	
i19	1673	6.42	1572	0	1573	0.06	
i20	1450	1.54	1438	0.70	1428	0	
i21	1565	5.89	1478	0	1481	0.20	
i22	1618	9.03	1484	0	1484	0	
i23	1539	8.00	1425	0	1425	0	
i24	1425	4.86	1365	0.44	1359	0	
i25	1590	2.85	1546	0	1546	0	
i26	1567	6.24	1475	0	1475	0	
i27	1458	7.52	1356	0	1356	0	
i28	1550	4.31	1504	1.21	1486	0	
i29	1415	5.75	1340	0.15	1338	0	
i30	1621	7.21	1512	0	1512	0	
Avge	1516.87	5.59	1439.50	0.24	1436.37	0.04	

Table 2 presents a comparison among our algorithms and the Tabu Search by Cordeau et al. (2005). The columns present the best solutions found (bst) by each heuristic and their deviations (dev(%)). The deviations are calculated as $dev(\%) = 100 \times (bst - bst^*)/bst^*$, where bst^* is the best-known solution value obtained by any of the three heuristics for a given instance. We can observe that both SA and MA found better solutions than TS for all of instances, and MA presents better solutions than SA.

Table 3 shows the gaps over the lower bounds (BAP-D) presented by Buhrkal et al. (2011). The column OPT BAP-D reports the optimal solutions (proven by Buhrkal et al. (2011)) for the discrete case of BAP. As mentioned before, according to Cordeau et al. (2005) and Imai et al. (2005), solutions for the BAP-D are lower bounds for the BAP-C. The gaps shown in the last columns are calculated as $Gaps(\%) = 100 \times (X - Y)/Y$, where X is the best solution found by each of three heuristics for the BAP-C and Y is the value for the lower bound (OPT BAP-D).

Table 3: Comparison with the optimal solutions for BAP-D.

	OPT		BAP-C	Gaps (%)			
Instance	BAP-D	TS	SA	MA	BT	SA	MA
i01	1409	1706	1639	1613	21.08	16.32	14.48
i02	1261	1355	1326	1326	7.45	5.15	5.15
i03	1129	1286	1242	1234	13.91	10.01	9.30
i04	1302	1440	1392	1392	10.60	6.91	6.91
i05	1207	1352	1285	1285	12.01	6.46	6.46
i06	1261	1565	1461	1461	24.11	15.86	15.86
i07	1279	1389	1333	1333	8.60	4.22	4.22
i08	1299	1519	1425	1425	16.94	9.70	9.70
i09	1444	1713	1651	1651	18.63	14.34	14.34
i10	1213	1411	1371	1371	16.32	13.03	13.03
i11	1368	1696	1574	1557	23.98	15.06	13.82
i12	1325	1629	1541	1537	22.94	16.30	16.00
i13	1360	1519	1457	1449	11.69	7.13	6.54
i14	1233	1369	1284	1287	11.03	4.14	4.38
i15	1295	1455	1362	1362	12.36	5.17	5.17
i16	1364	1715	1508	1508	25.73	10.56	10.56
i17	1283	1322	1310	1318	3.04	2.10	2.73
i18	1345	1594	1529	1519	18.51	13.68	12.94
i19	1367	1673	1572	1573	22.38	15.00	15.07
i20	1328	1450	1438	1428	9.19	8.28	7.53
i21	1341	1565	1478	1481	16.70	10.22	10.44
i22	1326	1618	1484	1484	22.02	11.92	11.92
i23	1266	1539	1425	1425	21.56	12.56	12.56
i24	1260	1425	1365	1359	13.10	8.33	7.86
i25	1376	1590	1546	1546	15.55	12.35	12.35
i26	1318	1567	1475	1475	18.89	11.91	11.91
i27	1261	1458	1356	1356	15.62	7.53	7.53
i28	1359	1550	1504	1486	14.05	10.67	9.35
i29	1280	1415	1340	1338	10.55	4.69	4.53
i30	1344	1621	1512	1512	20.61	12.50	12.50
Avge	1306.77	1516.87	1439.50	1436.36	16.0	10.1	9.8

Looking at Table 3, it is interesting to highlight the gaps over the optimal solutions for the BAP-D. We can verify that our MA solutions are relatively close to the optimal, because the average gap was of 9.8%. We may also note a significant reduction over the solutions provided by the Tabu Search proposed by Cordeau et al. (2005).

6 CONCLUSIONS

In this paper we have developed a Memetic Algorithm (MA) to solve a continuous case of the Berth Allocation Problem (BAP).

MA was employed by using a Simulated Annealing (SA) as the local search mechanism and a twophase heuristic to compute the berthing time and position for all of ships. SA was also applied in a stand alone way.

On test instances, both SA and MA yield good results and outperform the rather good Tabu Search of Cordeau et al. (2005). Our results show a relative superiority of the MA, but SA also found good solutions.

The integrated use of MA, SA and the two-phase heuristic results in a powerful approach to solve the continuous case of the BAP, providing good solutions in low computational times.

MA showed to be extremely efficient, presenting small gaps over the best-known lower bounds and suggesting that our solutions are probably close to optimal.

So, considering that the continuous case of the BAP represents real situations in a more appropriate way, and considering that BAP has a significant impact on the efficiency of the marine terminals, a minimal reduction on the service times may reflects a gain and/or economy of millions of dollars.

ACKNOWLEDGEMENTS

The authors acknowledge Espírito Santo Research Foundation - FAPES (process 45391998/09) and National Council for Scientific and Technological Development - CNPq (processes 300747/2010-1, 300692/2009-9 and 470813/2010-5) for their financial support.

REFERENCES

- Barros, V. H., Costa, T. S., Oliveira, A. C. M., and Lorena, L. A. N. (2011). Model and heuristic for berth allocation in tidal bulk ports with stock level constraints. *Computers & Industrial Engineering*, 60:606–613.
- Buhrkal, K., Zuglian, S., Ropke, S., Larsen, J., and Lusby, R. (2011). Models for the discrete berth allocation problem: a computational comparison. *Transportation Research Part E: Logistics and Transportation Review*, 47:461–473.
- Cordeau, J. F., Laporte, G., Legato, P., and Moccia, L. (2005). Models and tabu search heuristics for the berth allocation problem. *Transportation Science*, 39:526– 538.
- Dragovic, B., Park, N. K., and Radmilovic, Z. (2005). Simulation modelling of ship-berth link with priority service. *Maritime Economics & Logistics*, 7:316–335.
- Giallombardo, G., Moccia, L., Salani, M., and Vacca, I. (2010). Modeling and solving the tactical berth allocation problem. *Transportation Research Part B*, 44:232–245.

- Hansen, P., Oguz, C., and Mladenovic, N. (2008). Variable neighborhood search for minimum cost berth allocation. *European Journal of Operational Research*, 191:636–649.
- Imai, A., Nishimura, E., and Papadimitriou, S. (2001).
 The dynamic berth allocation problem for a container port. *Transportation Research Part B: Methodological*, 35:401–417.
- Imai, A., Nishimura, E., and Papadimitriou, S. (2003). Berth allocation with service priority. *Transportation Research Part B: Methodological*, 37:437–457.
- Imai, A., Sun, X., Nishimura, E., and Papadimitriou, S. (2005). Berth allocation in a container port: using a continuous location space approach. *Transportation Re*search Part B, 39:199–221.
- Mauri, G. R., Oliveira, A. C. M., and Lorena, L. A. N. (2008a). Heurística baseada no simulated annealing aplicada ao problema de alocação de berços. GEPROS -Gestão da Produção, Operações e Sistemas, 1:113–127.
- Mauri, G. R., Oliveira, A. C. M., and Lorena, L. A. N. (2008b). A hybrid column generation approach for the berth allocation problem. *Lecture Notes in Computer Science*, 4972:110–122.
- Moscato, P. (1999). Memetic algorithms: a short introduction. In Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., and Price, K. V., editors, *New ideas in optimization*. 219–234.
- Moscato, P. and Norman, M. (1992). A memetic approach for the travelling salesman problem: implementation of a computational ecology for combinatorial optimization on message-passing systems. In *Proceedings of the International Conference on Parallel Computing and Transportation Applications*. 177–186.
- Nishimura, E., Imai, A., and Papadimitriou, S. (2001). Berth allocation planning in the public berth system by genetic algorithms. *European Journal of Operational Research*, 131:282–292.
- Pacheco, A. V. F., Ribeiro, G. M., and Mauri, G. R. (2010). A grasp with path-relinking for the workover rig scheduling problem. *International Journal of Natural Computing Research*, 1:1–14.
- Ribeiro, G. M., Mauri, G. R., and Lorena, L. A. N. (2011). A simple and robust simulated annealing algorithm for scheduling workover rigs on onshore oil fields. *Computers & Industrial Engineering*, 60:519–526.
- Steenken, D., Voss, S., and Stahlbock, R. (2004). Container terminal operation and operations research: a classification and literature review. OR Spectrum, 26:3–49.
- UNCTAD (2009). *Review of maritime transport*. United Nations conference on trade and development.
- Vis, I. F. A. and Koster, R. D. (2003). Transshipment of containers at a container terminal: an overview. *European Journal of Operational Research*, 147:1–16.