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In the present work, the features of liquid evaporation inside a low-porosity medium
subjected to an impinging stream of hot gas is investigated analytically. The flow is
analysed for a non-Darcy model, in which viscous and convective terms are considered
in the Darcy pressure equation. A low-volatility liquid is considered, so that a low-
vaporization regime is established. The rates of heat transfer between gas and solid
and between liquid and solid are assumed to be high. Owing to differences between
phase properties, in the system under study, different physical processes occur at
different length scales. Using asymptotic expansions, expressions for the three phases
that occur in this problem are obtained, in each of their length scales. The results
predict that high injection temperatures are needed for phase change to occur, as a
result of the low volatility of the liquid. Likewise, the enhancement of the vaporization
rate due to heat conduction in the porous medium is quantified. The Hiemenz flow
pressure term is modified to incorporate the effect of the porous medium, which is
necessary for a solution to be found.

Key words: condensation/evaporation, convection in porous media, porous media

1. Introduction
In the last decades, use of porous-medium-based technologies has led to the design

of more effective heat exchangers. Indeed, improvements of interphase heat transfer
rates are reported when using porous materials, as a result of the increase of the
contact area between fluid and solid (Konstatinou et al. 1997; Alkam & Al-Nimr 1999;
Furberg et al. 2009; Yang & Hwang 2009; Dyga & Placzek 2010). This increase leads
to an enhancement in the thermal conductivity of the system. Modulated porous-layer
coatings (coatings designed with periodic variations in the layer thickness) have been
studied, showing a significant enhancement of the pool boiling critical heat flux (Liter
& Kaviany 2001).

Studies concerning phase change in porous media are extensively found in the
literature due to the vast amount of potential applications (Yortsos & Stubos 2001).
Drying processes (Daurelle, Topin & Occelli 1998), geothermal systems (Woods
1999) and nuclear safety issues are some examples of these system. The presence
of intrinsically coupled physical processes offers a fertile ground for fundamental
scientific research. Owing to viscosity, boundary layers occur on pore walls, with
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length scaling with the square of the medium permeability. Furthermore, the tortuous
channels in the porous medium result in additional resistance against the flow. If the
system is not thermally at equilibrium, interphase heat exchange will also result in a
coupled heat transfer problem between the two phases, which will depend upon the
thermo-physical properties of the porous medium, resulting in a rather complex set of
coupled governing equations.

The evaporation of a thin film of liquid water within a heated porous bed subjected
to a stagnation-point flow was studied analytically (Zhao 1999). Local thermal
equilibrium was considered, and the focus was on the influence of the parameters
on heat and mass transfer. The obtained results are of significance for the design of
indirect evaporative air cooler systems.

Local thermal non-equilibrium in a three-phase problem was studied by Duval,
Fichot & Quintard (2004), who, using the volume-averaging method, derived a three-
temperature macroscopic model considering local thermal non-equilibrium between
the three phases. They obtained a closed-form expression for the evaporation rate
at the macroscopic level, that depends upon macroscopic temperatures and effective
properties. Under the quasi-steady and quasi-static assumptions at the closure level, the
authors obtained a macroscopic model consisting of a three-equation model involving
relevant non-equilibrium terms in which the saturation temperature appeared explicitly.
Their results for the evolution of both macroscopic temperatures and liquid volume
fraction were compared with numerical results in the case of a heating problem and of
a temperature relaxation problem.

Boiling in a saturated porous medium was analysed by Ramesh & Torrance (1993)
by considering heat supply from below and cooling from above. Using numerical
simulation, they analysed the possible flow regimes in the presence of a moving
liquid/two-phase interface. The authors conducted a parametric study considering the
effect of the liquid-phase Rayleigh number and the dimensionless bottom heat flux.
From their results, they identified three different regimes: conduction dominated for
low Rayleigh number, convection dominated for intermediate Rayleigh number and
oscillatory convection for high Rayleigh number. In the convection-dominated regime,
as the dimensionless bottom heat flux increases, transition to multiple cell patterns was
observed. The stability of these solutions in the presence of perturbations was also
analysed. The study considered a fixed interphase heat exchange, expressed as a heat
loss parameter.

The effect of local thermal non-equilibrium on the infiltration of a hot fluid into a
cold porous medium was studied by Rees, Bassom & Siddheshwar (2008). In order
to study this flow configuration, the moving thermal front resulting from thermal
non-equilibrium was analysed. From dimensional analysis and numerical simulations,
the different ways in which the temperature fields evolve in time were discussed. It
was found that the thickness of the thermal front is a function of the dimensionless
interphase heat transfer parameter, of the porosity-modified conductivity ratio and of
the diffusivity ratio. This implies that local thermal equilibrium is not equivalent to
a single equation formulation of the energy equation. Their results for a long time
analysis showed that local thermal equilibrium is achieved in the long limit, but that
the solution differs from the solution obtained from a one-equation model. They also
observed the formation of a shock wave when the velocity of the infiltrating fluid was
sufficiently large.

There are many studies in the open literature concerning natural evaporation,
especially on analysis of the drying process of porous media. That problem is
concerned with applications in areas such as wood, paper and the textile industry.
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Il’ichev et al. (2008) studied gravitational instability of the salinity profile during
the evaporation of saline groundwater. The stability analysis concluded that the most
significant effect controlling the stability is the permeability of the soil. The effects
of the different characteristic length scales in the problem of evaporative drying of
a porous medium was analysed by Lehmann, Assouline & Or (2008). By comparing
the roles of gravity, surface tension and viscous dissipation forces, they deduced the
characteristic length for the maximum hydraulically connected film region between
the drying front and the surface. These characteristic lengths depend upon the range
of sizes between the smallest and largest pores within the film region. For media
with large pores sizes, the characteristic length is dominated by gravity and capillarity,
while viscous dissipation is negligible. For fine-textured media, with small pores sizes,
viscous dissipation may limit the maximum hydraulically connected distance between
the drying front and the evaporating surface. The authors also conducted experiments
with two types of sand in order to determine the characteristic lengths and the extent
of the film region.

Vapour extraction from a water-saturated porous reservoir (Woods & Fitzgerald
1993; Tsypkin & Woods 2004), condensing flow of steam (Bergins, Crone & Strauss
2005), motion of aqueous saline solution through a low-permeability fracture (Tsypkin
& Woods 2005), gas extraction from multilayered rocks (Farcas & Woods 2007)
represent examples of geothermal applications of phase change in porous media.

However, the problem of heat supplied to a liquid by a hot impinging gas in a
porous medium does not appears to have been subjected to analysis so far. This
situation will arise for instance in the steam injection process for thermal oil recovery
(Arnold 1989; Jabbour et al. 1996; Prats 2003). When a well contains heavy oil, its
recovery may be achieved by means of heat addition in the reservoir, increasing its
temperature and lowering the viscosity of the oil, hence increasing its mobility. In
that application, a high initial (injection) temperature of the steam will be required.
Another thermal recovery method for heavy oils which also presents evaporation of a
low-volatility liquid is the in situ combustion process (Castanier & Brigham 2003). In
this method, part of the heavy oil is burned in the well in order to lower the petroleum
viscosity. However, before the combustion process takes place, the part of the heavy
oil to be burned must evaporate, since it is the heavy oil vapour mixed with the
injected oxidant that is consumed in the exothermic reaction. As in the steam injection
process, the oxidant must be injected at high temperatures. Owing to the economic and
strategic aspect of the thermal oil recovery methods, the study of such a problem is
extremely relevant.

Focusing upon that system, the present work analyses the impinging jet over a
pool of a low-volatility liquid present in a low-porosity medium and subject to
phase change, for high rates of interphase heat transfer. The occurrence of physical
processes in different length scales runs out to be crucial in this problem. The
high interphase heat transfer assumption leads to thermal equilibrium between phases
(gas–solid and liquid–solid) in most of the domain, where the one-equation approach is
valid. However, close to the gas–liquid interface, thermal non-equilibrium is observed
between phases. As a result, in a small region near the interface, the two-equation
model (for the gas–solid region and for the liquid–solid region) must be used. The
non-equilibrium zone is analysed using expansions similar to those employed in the
boundary-layer analysis from energy and mass conservation at the gas–liquid interface,
the formulation determines the relevant unknown parameters (vaporization rate, solid
phase temperature at the interface and vapour mass fraction at the interface). The
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Dimensional variables v Vertical velocity
cl Liquid-phase specific heat x Horizontal spatial coordinate
cp Gas-phase specific heat y Mass fraction
D̄ Mass diffusion coefficient z Vertical spatial coordinate
h Heat transfer coefficient (Liquid–solid region)
K Medium permeability z̃ Vertical spatial coordinate
L Latent heat of vaporization (Boiling zone)
ls Length scale
¯̇m Vaporization rate Greek symbols
p̄ Pressure α Thermal diffusivity
T Temperature β Unitary order
ū Horizontal velocity Permeability parameter
v̄ Vertical velocity γ ≡ (1−ε)/ε Porosity parameter
x̄ Horizontal spatial component Γ ≡ λs/λg Thermal conductivities ratio
z̄ Vertical spatial component ε Medium porosity

η Vertical spatial coordinate
Dimensionless variables η̂ Vertical spatial coordinate
a Strain rate (Intermediary zone)
f Vertical momentum η̃ Vertical spatial coordinate
f̂ Vertical momentum (Inner zone)

(Intermediary zone) θ Dimensionless temperature
f̃ Vertical momentum κ Modified Darcy number

(Inner zone) λ Thermal conductivity
J ≡ λl/λs Thermal conductivities ratio µ Dynamic viscosity
l Latent heat of vaporization ν Kinematic viscosity
l̃ Unitary order ρ Mass density

Latent heat of vaporization % Dimensionless density
Le Lewis number
ṁ Vaporization rate Subscripts
M Modified vaporization rate b,B Boiling
n Unitary order F Vapour phase

Heat transfer parameter g Gas phase
N Heat transfer parameter l Liquid phase
p Pressure s Solid phase
Pe Peclet number st Stagnation
Pr Prandtl number 0 Interface conditions
u Horizontal velocity −∞ Reservoir conditions
U Boundary layer ∞ Injection conditions

Horizontal velocity

TABLE 1. Nomenclature.

appearance of a large parameter, namely the ratio between solid and gas phases
thermal conductivities, in the dimensionless conservation equations allows to seek
solutions by means of perturbation theory (Van Dyke 1964; Kevorkian & Cole 1981;
Nayfeh 1981). Even though analytical analyses do not provide detailed information
that could be applied directly, such as that obtained in a numerical investigation, deep
qualitative results and, consequently, a high understanding of the physical aspects of
the problem, are achieved by means of theoretical analyses.
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Results predict the need of high-temperature injection for the evaporation process
to occur. Phase change enhancement due to introduction of the porous medium in the
free system, as a result of heat conduction in the solid matrix, is quantified.

2. Length scales
The most significant originality of the current work consists in the identification of

different length scales that characterize the different physical processes, allowing for
an asymptotic solution.

Four distinct boundary layers can be identified in the system under consideration.
The first is a macroscopic boundary layer, similar to the classical boundary layer in
viscous flows. A pore-level boundary layer, defined as the Darcy boundary layer, due
to viscous forces on the pore walls, is of the order of the square of the medium
permeability. The last two layers are thermal in nature; their thickness is associated
with the non-equilibrium zones, respectively, between gas–solid and liquid–solid.

The characteristic length scale considered in this work is the scale characterizing
heat conduction in the solid phase (solid-thermal-conductivity-based Péclet number
equal to one, Pes = 1), given by lss ≡ λs/(ρ∞cpv̄∞) (Pereira, Oliveira & Fachini
2009, 2010; Kokubun & Fachini 2011).

Only in a region of the order of the gas-phase diffusivity, given by lsg ≡
λg/(ρ∞cpv̄∞) is non-equilibrium between gas and solid observed. The ratio between
these two length scales is given by Γ ≡ lss/lsg� 1.

The magnitudes of the gas and liquid dimensionless heat transfer parameters are
assumed to be Ng = O(Γ ) and Nl = O(Γ 2), respectively. This situation corresponds
to injection of the hot gaseous stream at low velocity (from the definition of the
dimensionless heat transfer parameters), which is typical of steam injection into
petroleum wells.

Below the gas–liquid interface, most of the liquid–solid system is at thermal
equilibrium. The temperature of the liquid–solid system increases as a result of the
heat flux incoming from the gas–solid region. However, in a small region just below
the gas–liquid interface, the temperature of the liquid no longer increases, as its
boiling temperature has been reached, and almost all of the heat delivered contributes
to phase change. The solid matrix, on the other hand, does not have such a constraint,
and its temperature continues to increase as a result of conductive heat transport in
the solid phase, from the gas–solid region. Thus, in this small boiling (phase change)
zone, liquid and solid are not in thermal equilibrium. This non-equilibrium is the main
responsible for providing the necessary heat to the liquid to undergo phase change, as
will be seen.

The volatility of the liquid is considered to be low, resulting in a low vaporization
regime. Vapour is only observed close to the gas–liquid interface. Figure 1 presents a
schematic representation of the current problem, with the inner regions (viscous and
boiling) shown in the detail picture.

3. Mathematical formulation
The geometry under consideration consists of a stream of hot gas impinging over

the surface of a liquid pool. The domain is divided into two regions: a region in which
the solid matrix is filled by gas (gas–solid region), and a region in which the solid
matrix is filled by liquid (liquid–solid region). The geometry is two-dimensional, with
two spatial coordinates: z̄ is normal to the liquid surface and x̄ is tangential to the
liquid surface, as shown in figure 1.
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Stagnation plane

Liquid fuel

FIGURE 1. Schematic representation of the problem.

A boundary-layer approximation leads to the variables depending only upon the z̄
coordinate. The thermal expansion of the gas is assumed to be negligibly small, so that
an equation of state is not required and the temperature field does not influence the
velocity field. The thermo-physical properties of the impinging gas and of the vapour
are assumed to be constant, as well as those of the solid matrix thermo-physical, and
also the geometry.

For the gas–solid region, the stationary conservation equations are then given by
(Kokubun & Fachini 2011)

∂ ū

∂ x̄
+ ∂v̄
∂ z̄
= 0, (3.1)

ρū
∂ ū

∂ x̄
+ ρv̄ ∂ ū

∂ z̄
=−ε ∂ p̄

∂ x̄
+ µ∂

2ū

∂ z̄2
− εµ ū

K
, (3.2)

ερv̄
dyF

dz̄
= ερDF

d2yF

dz̄2
, (3.3)

ερv̄cp
dTg

dz̄
= ελg

d2Tg

dz̄2
+ hg(Ts − Tg), (3.4)

0= (1− ε)λs
d2Ts

dz̄2
− hg(Ts − Tg). (3.5)

Equation (3.2) considers viscous and convective terms in the Darcy equation in
order to analyse their effects in the flow field. The boundary conditions far from
the gas–liquid interface (z̄→∞) are

v̄ = v̄∞, ū= x̄
dū

dx̄

∣∣∣∣
∞
, Tg = Ts = T∞, (3.6)

and at the interface (z̄= 0)

v̄ = v̄0, Tg − Tg0 = Ts − Ts0 = 0, yF = yF0, (3.7)

in which yF0 is the vapour mass fraction at the interface. The interface divides liquid,
at z̄= 0−, and vapour, at z̄= 0+. At the interface, liquid and vapour are in equilibrium
at the boiling temperature, TB, of the liquid, such that it will be considered that
Tg0 = TB.



Hiemenz flow in a porous medium with phase change 191

The velocity of the gas at the liquid surface, v̄0, is related with the vaporization rate,
¯̇m, through

ρ.v̄0+ = ρl · v̄l0− = ¯̇m, (3.8)

and the velocities v̄0+ (≡v̄0) and v̄l0− (≡ v̄l0) represent the velocities of vapour and
liquid at the interface; the subscripts + and − denote the gas side and liquid side of
the liquid surface, respectively.

The thermo-physical properties of the liquid are assumed to be constant. With these
considerations, the stationary conservation equations in the liquid–solid region are then
given by

ρlv̄l = ¯̇m, (3.9)

ερlv̄lcl
dTl

dz̄
= ελl

d2Tl

dz̄2
+ hl(Ts − Tl), (3.10)

0= (1− ε)λs
d2Ts

dz̄2
− hl(Ts − Tl). (3.11)

The boundary conditions far below the interface (z̄→−∞) are

Tl = Ts = T−∞, v̄l = v̄l−∞. (3.12)

The injection velocity, v̄l−∞, is such that the gas–liquid interface remains stationary at
z̄= 0.

At the gas–liquid interface, mass and energy conservation must be obeyed

ρDF
∂yF

∂ z̄

∣∣∣∣
z̄=0

=−(1− yF0)ρv̄0, (3.13a)

ελg
dTg

dz̄

∣∣∣∣
z̄=0+
= ρv̄0L+ ελl

dTl

dz̄

∣∣∣∣
z̄=−z̄b

−hl

∫ 0−

−z̄b

(Ts − Tl) dz̄. (3.13b)

The mass conservation condition at the interface, given by (3.13a), shows that the
mass flux right above the liquid interface is resultant from the amount of liquid fuel
vaporized below the interface. The integral term in (3.13b) is a consequence of the
coexistence of liquid and vapour produced by the contact of the liquid on the hot
porous wall. Owing to the expansion in the phase change process, the liquid is pushed
to the region of the porous media with even higher temperature, which intensifies even
more the vaporization. To model these processes in a simplified way, we admit the
existence of a zone of thickness z̄b, just below the interface, in which the heat transfer
from solid to liquid occurs at a constant liquid temperature. In this zone, phase change
of the liquid occurs. Hence, the integral term in the right-hand side of (3.13b) accounts
for the heat exchange between solid and liquid in the phase change (boiling) zone.

3.1. Non-dimensional equations
The non-dimensional variables are defined as u ≡ ū/v̄∞, v ≡ v̄/v̄∞, vl ≡ v̄l/v̄∞,
ρ/ρ∞ = 1, %l ≡ ρl/ρ∞, p ≡ p̄/(ρ∞v̄2

∞), x ≡ x̄/lss, z ≡ z̄/lss, θg ≡ Tg/T∞, θs ≡ Ts/T∞
and θl ≡ Tl/T∞. The non-dimensional strain rate is defined as a ≡ (lss/v̄∞) dū/dx̄|∞.
Following Schilichting (1968), a modified variables change is performed in order to
analyse the region near the stagnation point

u= axU(z), v =−a1/2f , (3.14)

p0 − p= 1
2
Pr a2

(
1+ 1

κΓ

)[
x2 + 2F(z)

a

]
, η = a1/2z, (3.15)
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in which Pr ≡ ν/α is the Prandtl number, Γ ≡ λs/λg � 1 and κ is the modified
Darcy number based on the scale of the solid phase heat conduction, defined
as κ ≡ aK/ls2

s = (a/Γ 2)(K/ls2
g). The pressure expression is based on the classical

expression (Schilichting 1968) with an extra term, 1/(κΓ ), to consider the Darcy
effect. As defined, the Hiemenz flow Darcy number, κ , also includes the effect of the
flow strain rate, a, and it can also be expressed as

κ ≡ aK

ls2
s

= 1
Γ 2

aK

ls2
g

≡ κg

Γ 2
= 1
Γ 2

(
aKPr2

ν2/v̄2∞

)
(3.16)

in which κg is the modified Darcy number based on the scale of the gas phase heat
conduction. According to the assumed conditions in the present work, the modified
Darcy number κ is very small, precisely κ = O(Γ −2) (or κg = O(1)). Hence, the Darcy
number, κ , is re-scaled as 1/(κΓ ) = βΓ , in which β is a unitary order parameter that
determines the type of porous medium.

In addition, it is considered that the non-dimensional gas and liquid volumetric
surface convection heat coefficients are Ng/a = ngΓ and Nl = nlΓ

2, in which ng and
nl are unitary order parameters that collects information about the thermal interaction
between solid and gas and between solid and liquid, respectively.

Performing the changes, (3.1)–(3.5) become

U = df

dη
, (3.17)

Pr

Γ

d3f

dη3
+ f

df 2

dη2
−
(

df

dη

)2

− Γ εβPr df

dη
=−εPr(1+ βΓ ), (3.18)

1
Γ

d2yF

dη2
+ LeFf

dyF

dη
= 0, (3.19)

−εf dθg

dη
= ε

Γ

d2θg

dη2
+ Γ ng(θs − θg), (3.20)

0= (1− ε)d
2θg

dη2
− Γ ng(θs − θg), (3.21)

in which, LeF ≡ αg/DF is the vapour Lewis number.
The ratio Γ −1 ≡ λg/λs determines the thickness of the macroscopic classical

boundary layer, as it appears in the first term on the left-hand side of (3.18): the
macroscopic viscous term. The non-dimensional parameter κ (the Darcy number)
relates the medium permeability with the thermo-physical properties of gas and solid
phases, and its magnitude determines the flow field. Its value is directly related to the
boundary layer existent at the fluid–porous level of interaction (K1/2 determines the
thickness of the Darcy boundary layer). The thermal boundary layer is determined by
the magnitude of the parameter Ng. The parameters κ and Ng are chosen in such a way
that the three distinct boundary layers have the same thickness, Γ −1.

A quick inspection on the magnitude order of the terms in (3.18) can be performed
in order to analyse the effects of different permeability (porosity) media.

If a lower porosity (permeability) medium was considered, by using, for instance,
κ ∼ Γ −3, the Darcy flow would be observed in the outer zone and practically in
the whole inner zone. Therefore, the Darcy boundary layer would not have the same
thickness of the thermal and viscous boundary layers. In this situation, the viscous
effects of the porous medium internal area would establish the Darcy boundary layer



Hiemenz flow in a porous medium with phase change 193

in a zone thinner than the inner zone (the Darcy boundary layer is of the order of κ1/2

and, hence, in this case would be of the order of Γ −3/2). On the other hand, if a higher
porosity (permeability) medium was considered, by using, for instance, κ ∼ Γ −1, the
flow in the outer zone would be dominated by the Darcy equation with the inertia
terms. In this situation, the porous–fluid interaction would be minimized, and in the
scale of Γ −1 the Darcy boundary layer would not be observed, since it would be of
the order of Γ −1/2. Hence, the choice of κ ∼ Γ −2 couples the three distinct boundary
layers (Darcy, macroscopic viscous and thermal) in a region of the order of Γ −1 (inner
zone).

The boundary conditions far from the interface (η→∞) are

df

dη
= U∞, θs = θg = 1, yF = 0, (3.22)

and at the interface (η = 0)

df

dη
= f − f (0)= 0, θs − θs0 = θg − θB = 0, yF = yF0. (3.23)

Recalling, the first condition U = df /dη = 0 means no-slip flow on the liquid
surface and the second one, as the others, corresponds to continuity of the properties
through the surface. The exception is the mass fraction, because yF0 is the value of the
mass fraction of the vapour at the gas side of the liquid surface, but at the liquid side
of the surface yF = 1.

Performing the variable changes given by (3.15) in (3.9)–(3.11), the following
conservation equations for the liquid–solid region are obtained

%lvl = ṁ≡
¯̇m

ρ∞v̄∞
, (3.24)

εJ
d2θl

dz2
− εM dθl

dz
=−Γ 2nl(θs − θl), (3.25)

(1− ε)d
2θs

dz2
= Γ 2nl(θs − θl), (3.26)

in which M ≡ ṁ(cl/cp) and J ≡ λl/λs. The boundary conditions far below the interface
(z→−∞), characterized by the thermal equilibrium between the phases, are

θl = θs = θ−∞. (3.27)

Non-dimensional mass and energy conservation at the interface are given by

1
Γ

1
LeF

dyF

dη

∣∣∣∣
η=0+
= (1− yF0)f (0), (3.28a)

ε

Γ

dθg

dη

∣∣∣∣
η=0+
=−lf (0)+ ε J

a1/2

dθl

dz

∣∣∣∣
z=−zb

− Nl

a1/2

∫ 0

−zb

(θs − θl) dz, (3.28b)

in which l ≡ L/(cpT∞ρ∞a1/2). The assumption of a low-volatility liquid is taken
into account through l = O(Γ ). Since the non-dimensional liquid volumetric surface
convection heat coefficient satisfies Nl = O(Γ 2) and Γ � 1, a quick analysis on the
magnitude order of the terms in (3.28b) reveals that the main responsible for providing
heat to the liquid is the solid matrix (the leading order terms are the first and last
terms on the right-hand side of (3.28b)). This feature exhibits that the inclusion of a
porous matrix into the system leads to an enhancement on the vaporization rate.
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The non-dimensional vaporization rate is related with f (0) through

− a1/2f (0)= ṁ. (3.29)

4. Gas–solid region
Above the liquid interface, η > 0, a gas flow is considered. The analysis performed

in the gas–solid region is similar to a previous work (Kokubun & Fachini 2011).
Far from the interface, the only velocity contribution is due to the injected hot gas,

but at the gas–liquid interface is due to the plane-normal, low-rate vaporization. Two
zones must be separately analysed: an outer zone, related to the solid phase thermal
diffusivity, and an inner zone, related to the gas phase thermal diffusivity. In the outer
zone, gas and solid are in thermal equilibrium due to the high value of the interphase
heat transfer, and macroscopic viscous effects due to gas–liquid interaction are not
observed, only the viscous effects due to the porous–fluid interaction are present.
Owing to the thermal equilibrium, a one-equation modelling for energy conservation
is used. In the inner zone, of the order of Γ −1, the thermal equilibrium is no
longer satisfied, and macroscopic viscous effects become relevant. In this zone, a
two-equation modelling for the energy conservation is required, in order to account for
the thermal non-equilibrium.

Solutions for both regions are obtained by utilizing the perturbation method (Van
Dyke 1964; Kevorkian & Cole 1981; Nayfeh 1981), and imposing the matching
between inner zone and outer zone profiles.

4.1. Outer zone
In a region of the order of unity above the gas–liquid interface, momentum and
temperature profiles are obtained from (3.17) to (3.21). Summing (3.20) and (3.21)
and since thermal equilibrium is observed in the outer zone, substituting θs = θg = θ , a
single equation for the energy conservation is obtained

Γ −1θ ′′ + γ θ ′′ + f θ ′ = 0 (4.1)

in which the prime denotes differentiation with respect to η.
Solutions for momentum and temperature are expressed as

f = f(0) + Γ −1f(1) + O(Γ −2),

θ = θ(0) + Γ −1θ(1) + O(Γ −2).

}
(4.2)

Substituting the proposed solutions given by (4.2) in (3.18) and (4.1), and collecting
terms of similar powers of Γ , the following set of equations are obtained, for
momentum and temperature, respectively,

f ′(0) = 1, (4.3a)

f(0)f
′′
(0) − (f ′(0))2−εPrβf ′(1) =−εPr, (4.3b)

γ θ ′′(0) + ηθ ′(0) = 0, (4.3c)

γ θ ′′(1) + f(0)θ
′
(1) + θ ′′(0) + f(1)θ

′
(0) = 0, (4.3d)

with boundary conditions far from the interface (η→∞) given by

f ′(0) − 1= f ′(1) − U1 = θ(0) − 1= θ(1) = 0, (4.4)

and at the interface (η→ 0)

f(0) = f(1) = θ(0) − θB = θ(1) − θs1 = 0. (4.5)
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It is possible to observe from (4.3a) and (4.3b) that the flow in the outer zone
is predominantly of the Darcy type, with the viscous effects being of higher order.
Equation (4.3c) exhibits that the heat in the outer zone is transported mainly by
conduction (through the solid) and by convection (through the flowing gas). In the
outer zone, the low vaporization is not observed, since it is a process confined to
the inner zone; due to the low volatility of the liquid, then f(0)(0) = f(1)(0) = 0 which
means that the vertical component of the velocity v is zero when observed from the
outer zone, from the definition of f given in (3.15).

The boundary values of f ′ for η→∞ are obtained by substituting the expansion
of f in (3.17) and applying the limit η → ∞, (3.22), obtaining f ′ = U∞ =
1 + Γ −1U1 + O(Γ −2) at η→∞. The leading-order term of such expansion represents
the classical Hiemenz flow boundary condition, while the second one indicates the
influence of the solid phase on the strain rate (Kokubun & Fachini 2011).

In the outer zone, the main factor responsible for conducting the heat is the solid
phase.

Hence, from the outer zone, the observed temperature at the interface is θ(0) = θs0.
The temperature of the solid phase at the interface, θs0, is very close to the boiling
temperature of the liquid, θB. This consideration is taken into account through the
boundary condition θ(0)= θs0 = θB + Γ −1θs1 + O(Γ −1), observed from the outer zone.
Hence, the temperature θs1 is the deviation of the solid phase temperature at the
interface from the boiling temperature of the liquid.

Solving (4.3a)–(4.3d) with the boundary conditions given by (4.4) and (4.5),
momentum and temperature in the outer zone are obtained as

f (η)= η − Γ −1 1− εPr
εβPr

η + O(Γ −2), (4.6a)

θ(η) = θB + (1− θB) erf
(

η√
2γ

)
− Γ −1

[
(1− θB)

2γ

√
2
πγ

(
1+ 1− εPr

εβPr
γ

)
ηe−η

2/2γ

− θs1

(
1− erf

(
η√
2γ

))]
+ O(Γ −2). (4.6b)

It is important to emphasize that it is not possible to capture the evaporating
effects from the outer zone, hence, justifying the utilization of the boundary conditions
f(0)(0) = f(1)(0) = 0. This feature is due to the fact that a low-volatility liquid is under
consideration, such that the evaporating effects are observed only close to the liquid
interface, in the inner zone.

Also, as pointed out previously, it is possible to observe that the flow field in the
outer zone is governed by the Darcy equation with linear corrections. Recalling that
under a constant pressure gradient, the velocity flow profile is linear, according to
the Darcy equation. In this zone, the macroscopic viscous effects (represented by the
second and third derivatives in (3.18)) are not observed.

4.2. Inner zone

In a length scale of the order of Γ −1, viscous effects due to the gas–liquid interaction,
as well as thermal non-equilibrium between gas and solid phase, are observed. In order
to capture such variations, a stretching in the spatial coordinate is necessary. This
stretching corresponds to a boundary-layer expansion near the gas–liquid interface, and
it is given by η̃ = Γ η.
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As the flow approaches the stagnation point from above, a decrease in the velocity
field is observed, and below the stagnation point, the velocity field is a result of the
low-rate vaporization of the low-volatility liquid. Hence, in the inner zone, near the
interface, a re-scaling in the momentum variable is required and it is given by f̃ = Γ f ,
in order to keep it unitary order. It is also observed that in the inner zone the thermal
equilibrium is no longer satisfied and, hence, a two-equation modelling for the energy
is required.

After performing the spatial coordinate stretching, η̃ = Γ η, and the variable re-
scaling, f̃ = Γ f , the equations to be solved are

Γ Pr f̃ ′′′ + f̃ f̃ ′′ − (f̃ ′)2−Γ εβPr f̃ ′ =−εPr(1+ βΓ ), (4.7)

−εf̃ θ ′g = Γ εθ ′′g + Γ ng(θs − θg), (4.8a)

0= Γ 2(1− ε)θ ′′s − Γ ng(θs − θg), (4.8b)

in which the prime now denotes differentiation with respect to η̃. The solutions are
proposed to be expressed as

f̃ = f̃(0) + Γ −1 f̃(1) + O(Γ −2),

θg = θB + Γ −1θg(1) + O(Γ −2),

θs = θB + Γ −1θs(1) + O(Γ −2).

 (4.9)

Substituting the momentum solution in (4.7) and collecting terms of similar powers
of Γ , the following equations are found for the first two terms

f̃ ′′′(0) − εβ(f̃ ′(0) − 1)= 0, (4.10a)

Pr f̃ ′′′(1) + f̃(0) f̃
′′
(0) − (f̃ ′(0))

2−εβPr f̃ ′(1) =−εPr . (4.10b)

One can observe from (4.10a) that in its leading order the flow in the inner zone
is a balance between the Darcy flow (second term on the left-hand side) and the
macroscopic viscous force (first term on the left-hand side), while only in higher order
the convection terms appears (second and third terms in the left-hand side of (4.10b)).
The boundary conditions at η̃ = 0 are given by

f̃(0) − f̃0 = f̃(1) − f̃1 = 0. (4.11)

It is relevant to point that f̃0 accounts for the leading order processes that leads to
vaporization, while f̃1 accounts for the higher order, secondary role, processes. These
processes will be recognized when we perform the analysis of the energy conservation
at the interface, given by (3.28b).

The utilization of the boundary-layer expansion near the interface imposes the
condition that the solutions from the inner zone must obey a matching flux condition
with the solutions from the outer zone. So, in addition to the boundary conditions
presented latter, the solutions of (4.10a) and (4.10b) must obey

df̃(0)
dη̃

∣∣∣∣
η̃→∞
= df(0)

dη

∣∣∣∣
η→0

,
df̃(1)
dη̃

∣∣∣∣
η̃→∞
= df(1)

dη

∣∣∣∣
η→0

. (4.12)

It worth mentioning that the conditions established in (4.12) represent the continuity of
the flux of momentum between the outer and inner zone. Solving (4.10a) and (4.10b)
with boundary and matching conditions given by (4.11) and (4.12), the momentum in
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the inner zone is obtained as

f̃ (η̃)= f̃0 + η̃ + 1√
εβ

(
e−
√
εβη̃ − 1

)− Γ −1

{
f̃1 + 1

8εβ
√
εβPr

[
7(e−

√
εβη̃ − 1)

+ 6
√
εβη̃e−

√
εβη̃ + 8

√
εβPr(1− εPr)η̃ + 6(

√
εβ f̃0 + 1)(e−

√
εβη̃ − 1)

+ 4
√
εβ(
√
εβ f̃0 + 1)(e−

√
εβη̃ − 1)+ 2εβη̃2e−

√
εβη̃

+
(

8Pr(1− εPr)− 7− 2
√
εβ(3f̃0 + 2)− f̃0εβ

4

)(
e−
√
εβη̃ − 1

)]}
+O(Γ −2). (4.13)

The horizontal component of the velocity may be obtained by simply deriving the
above expression with respect to η̃. At the interface, no horizontal component of the
velocity is observed (f̃ ′(η̃ = 0) = 0), since near η̃ = 0 the velocity field is a result of
the liquid vaporization, and this process is characterized by an abrupt phase change,
with the expanding gas having only normal component.

Substituting the solutions for the temperatures given in (4.9) in (4.8a) and (4.8b) and
collecting similar powers of Γ , two sets of governing equations are obtained, for the
solid and gas phases, respectively,

(1− ε)θ ′′s(1) = 0, (4.14a)

(1− ε)θ ′′s(2) = ng(θs(1) − θg(1)), (4.14b)

εθ ′′g(1) =−ng(θs(1) − θg(1)), (4.15a)

εθ ′′g(2) + εf̃(0)θ ′g(1) =−ng(θs(2) − θg(2)), (4.15b)

in which (4.15a) and (4.15b) exhibits that the convection heat transport is relevant only
in higher order. The boundary conditions at η̃ = 0 are given by

θs(1) − θs1 = θs(2) = θg(1) = θg(2) = 0, (4.16)

in which the boundary values for the gas phase temperature are obtained under the
consideration of exact equilibrium between gas and liquid phases at the interface. The
boundary value for the first correction of the solid temperature, θs1, is the deviation
between gas and solid temperatures at the interface, and as will be seen next, this
difference is the main factor responsible for providing the necessary heat to phase
change of the liquid.

The matching flux condition (continuity of the heat flux between outer and inner
zones) with the outer zone imposes that

dθs(1)

dη̃

∣∣∣∣
η̃→∞
= dθg(1)

dη̃

∣∣∣∣
η̃→∞
= dθ(0)

dη

∣∣∣∣
η→0

,
dθs(2)

dη̃

∣∣∣∣
η̃→∞
= dθg(2)

dη̃

∣∣∣∣
η̃→∞
= dθ(1)

dη

∣∣∣∣
η→0

.

(4.17)

Recall that θ(0) and θ(1) are the leading order and first correction temperature profiles
in the outer zone, respectively. The solutions of (4.14a) and (4.14b) with boundary and
matching conditions given by (4.16) and (4.17) provide the solid phase temperature in
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the inner zone as

θs(η̃)= θB + Γ −1

[
θs1 + (1− θB)

√
2
πγ
η̃

]

−Γ −2

[
θs1

γ

(
1− e−

√
ng/εη̃

)+ (1− θB)

2γ

√
2
πγ

(
1+ 1− εPr

εβPr
γ

)
η̃

+
√

2
πγ
θs1η̃

]
+ O(Γ −3). (4.18)

Also, the solutions of (4.15a) and (4.15b) with boundary and matching conditions
given by (4.16) and (4.17) provide the gas phase temperature in the inner zone as

θg(η̃)= θB + Γ −1

[
θs1

(
1− e−

√
ng/εη̃

)+ (1− θB)

√
2
πγ
η̃

]

+Γ −2

[
−θs1

γ

(
1− e−

√
εβη̃
)−((1− θB)

2γ

√
2
πγ

(
1+ 1− εPr

εβPr
γ

)
+
√

2
πγ
θs1

)
η̃

− 1
εβ

√
ng

ε

θs1

2
√

ng/ε +√εβ
(
e−
√

ng/εη̃ − 1
)
e−
√
εβη̃

+ θs1

4

√
ε

ng

(
f̃0 +

√
ng

ε

1
γ
+ 1√

εβ
+ 1

2

)(
e−
√

ng/εη̃ − e−
√
εβη̃
)

+ θs1

2
η̃e−
√

ng/εη̃

(
f̃0 +

√
ng

ε

1
γ
+ 1√

εβ
+ 1

2

(
1+

√
ng

ε
η̃

))]
+ O(Γ −3). (4.19)

In the inner zone, no sink or source energy terms exist. Thus, the deviation between
solid and gas temperatures cannot be large. Hence, the choice of the expansions in
(4.9) leads to (θs− θg)= O(Γ −1) in the inner zone (note that the leading order term for
both gas and solid is constant, and given by the boiling temperature of the liquid, θB).

5. Vapour mass fraction
Above the interface, the flow field is a result of the vapour that arises from the

phase change occurring in the boiling zone. The vapour mass fraction is governed by
(3.19), with the following boundary conditions

yF(η→∞)= 0, yF(η = 0)= yF0. (5.1)

At the interface, mass conservation must follow

1
Γ

1
LeF

dyF

dη

∣∣∣∣
η=0+
= (1− yF0)f (0). (5.2)

The vapour mass fraction at the interface, yF0, is unknown, and its value will be
obtained in § 7 with the aid of (5.2). However, it must be small since the liquid is
considered to be low volatility.

Vapour mass transport occurs in two regimes: convection and diffusion. The
convection regime (Darcy flow) is imposed by the pressure field on the outer zone
and the diffusion regime is imposed by the low vaporization of the liquid in the inner
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zone. So, as in the momentum solution, the vapour mass fraction must be solved
in the outer zone and in the inner zone. However, an intermediary zone (in which
convection and diffusion mass transport balances) is required for the vapour mass
fraction solution, as will be seen in the following.

5.1. Outer zone
The equation to be solved for the vapour mass fraction is given by

Γ −1 d2yF

dη2
+ LeFf

dyF

dη
= 0. (5.3)

The boundary conditions are

yF(η→∞)= 0, yF(η→ 0)= 0. (5.4)

The condition for η→ 0 is a consequence of the establishment of the low-vaporization
regime. The solution of (5.3) is expressed as

yF = yF(0) + Γ −1yF(1) + O(Γ −2). (5.5)

Substituting (5.5) in (5.3), collecting the terms of similar order of magnitude and
solving the resulting set of equations, it is found that in the outer zone, the vapour
mass fraction is null

yF(η)= 0. (5.6)

Since the liquid is considered to be low volatility (by assuming l = O(Γ ), which
exhibits that a high amount of energy is required for a phase change of the liquid to
occur), the vaporization regime is low, and as a result, no vapour is observed in the
outer zone, as pointed out by (5.6).

In order to observe the vapour mass transport, the analysis must be made in the
inner zone. The spatial coordinate must then be stretched as η̃ = Γ η, and (5.3) must
be analysed in this new coordinate. However, the matching flux procedure is not
achievable between outer and inner zone. This demands an intermediary zone between
outer and inner zone, to solve the mass transport. In this intermediary zone of the
order of Γ −1/2 there is a balance between convective and diffusive mass transport.

5.2. Intermediary zone
The intermediary zone, necessary only for the vapour mass fraction conservation,
is analysed by a stretching in the spatial coordinate, given by η̂ = Γ 1/2η, in (5.3).
This re-scaling is chosen such that diffusion and convection transport balance. The
momentum in this zone is also re-scaled as f̂ = Γ 1/2f (due to the linear decay in the
velocity profile, as pointed by (4.6a)), and a quick inspection in (3.18) reveals that the
momentum in the intermediary zone will be similar to the profile in the outer zone, as
given in (4.6a), but with the independent variable being η̂ instead of η.

The vapour mass fraction in the intermediary zone follows then

d2yF

dη̂2
+ LeF f̂

dyF

dη̂
= 0. (5.7)

The solution of (5.7) is expressed as

yF = y(0) + O(Γ −1). (5.8)
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Boundary and matching (continuity of the mass flux between the intermediary and
outer zones) conditions are given respectively by

yF(0)(η̂→ 0)= yF0,
dyF(0)

dη̂

∣∣∣∣
η̂→∞
= 0. (5.9)

Solution of (5.7) with conditions given by (5.9) provides the solution for the vapour
mass fraction as

yF(η̂)= yF0 erfc

(
η̂

√
LeF

2

)
+ O(Γ −1). (5.10)

The higher order terms are not necessary and will not be obtained.
It is possible to observe from (5.7) that the intermediary zone is the flow region in

which the vapour convection and diffusion transport balance.

5.3. Inner zone
The vapour mass fraction in the inner zone is obtained from the stretching of
the spatial coordinate given by η̃ = Γ 1/2η̂. Performing this stretching in (5.7), the
following equation is obtained

Γ
d2yF

dη̃2
+ LeF f̃

dyF

dη̃
= 0. (5.11)

Such an equation must obey the following boundary and matching conditions,
respectively,

yF(0)= yF0, Γ
dyF

dη̃

∣∣∣∣
η̃→∞
= Γ 1/2 dyF

dη̂

∣∣∣∣
η̂→0

. (5.12)

The solution of (5.11) is expressed as

yF = yF(0) + Γ −1/2yF(1/2) + O(Γ −1). (5.13)

Substituting the solution given by (5.13) in (5.11), the following equations for the first
two terms are found

d2yF(0)

dη̃2
= d2yF(1/2)

dη̃2
= 0. (5.14)

Boundary and matching conditions are given, respectively, by

yF(0)(0)− yF0 = yF(1/2)(0)= 0, (5.15)
dyF(0)

dη̃

∣∣∣∣
η̃→∞
= 0,

dyF(1/2)

dη̃

∣∣∣∣
η̃→∞
= dyF(0)

dη̂

∣∣∣∣
η̂→0

. (5.16)

Solving (5.14) with boundary and matching conditions given by (5.15) and (5.16), the
vapour mass fraction in the inner zone is obtained as

yF(η̃)= yF0 − Γ −1/2yF0

√
2
π
LeFη̃ + O(Γ −1). (5.17)

In the inner zone, the mass diffusion is the dominant process, as pointed out by (5.11)
and (5.17).
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6. Liquid–solid region
To distinguish the gas–solid region from the liquid–solid region, the spatial variable

z is used instead of η. In the region z < 0, the solid matrix is filled with the liquid.
Far below the interface, liquid and solid matrix are in thermal equilibrium due to the
high rate of heat transfer between the phases. In this zone, denoted as the equilibrium
zone, a one-equation modelling is enough to describe the temperature profile. The
equilibrium zone presents two length scales: one of the order of Γ , and another of the
order of unity, as will be shown ahead. The existence of two different zones is a result
of the low-vaporization rate.

In a length scale of the order of Γ −1 below the interface, the liquid is at an almost
constant temperature, its boiling temperature, and all of the heat provided to it in
this zone goes to phase change. The solid phase, on the other hand, does not have
such physical constraints, and its temperature continues to rise as an effect of the heat
flux from the gas–solid region. Under such considerations, a detachment between the
temperatures profiles is observed, and a two-equation modelling is required, with the
imposition of the matching flux condition with the solution obtained in the equilibrium
zone.

6.1. Equilibrium zone
In a large region below the interface thermal equilibrium between solid and liquid
phases is observed, and a single equation for the energy conservation is required.
Summing (3.25) and (3.26) and considering θs = θl = θ , the following equation is
obtained (

J + γ
M

)
d2θ

dz2
− dθ

dz
= 0, (6.1)

in which M ≡ ṁ(cl/cp) and J ≡ λl/λs = O(1). The boundary condition far below the
interface (z→−∞) is

θ = θ−∞, (6.2)

and at the liquid surface, z= 0,

θ = θB. (6.3)

The solution of (6.1) with boundary conditions given by (6.2) and (6.3) provides the
temperature in the equilibrium zone

θ(z)= (θB − θ−∞)ezM/(J+γ ) + θ−∞. (6.4)

It is recalled that M is related with the vaporization rate through M =−a1/2(cl/cp)f (0)
(from the definition of M and (3.29)), and since the vaporization is low (low-volatility
liquid), it is pointed that M = O(Γ −1). With this in mind, it is possible to observe
that (6.4) presents a variation of the order of unity in a region of the order of Γ . In
order to analyse the zone of the order of unity, a Taylor expansion for small values of
zM/(J + γ ) is performed, and the obtained expression is given by

θ(z)= θB + (θB − θ−∞)
{
Γ −1 M0

J + γ z+ Γ −2

[
M1

J + γ z+
(

M0

J + γ
)2

z2

]
+ O(Γ −3)

}
,

(6.5)

in the above, M = Γ −1M0 + Γ −2M1, in which M0 = −a1/2(cl/cp)f̃0 and M1 =
−a1/2(cl/cp)f̃1.
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6.2. Boiling zone
In a characteristic length scale of the order of Γ −1 below the interface, thermal
non-equilibrium is observed. In order to capture such variations in the liquid and solid
phases temperature, a stretching in the spatial coordinate is necessary and given by
z̃= Γ z. This stretching is performed in (3.25) and (3.26), obtaining

Γ 2εJ
d2θl

dz̃2
− Γ εM dθl

dz̃
=−Γ 2nl(θs − θl), (6.6)

Γ 2(1− ε)d
2θs

dz̃2
= Γ 2nl(θs − θl). (6.7)

The solutions for the temperatures are expressed as

θl = θB + Γ −2θl(2) + O(Γ −3),

θs = θB + Γ −1θs(1) + Γ −2θs(2) + O(Γ −3).

}
(6.8)

In the boiling zone, almost all heat provided to the liquid goes to phase change and,
hence, its temperature is considered a constant, θB, in its leading order. The term of the
order of Γ −1 of the liquid is null because there are no physical processes influencing
on that order (recalling that no source or sink terms exist in the boiling zone and that
the temperature at the interface is exactly the boiling temperature). However, the heat
flux matching condition with the equilibrium zone must be obeyed. The matching flux
condition imposes that Γ dθs,g/dz̃|z̃→−∞ = dθ/dz|z→0, which, according to (6.5), is of
the order of Γ −1.

Hence, the term of the order of Γ −2 is non-zero, in order to match the solution with
the unitary order equilibrium zone, given by (6.5).

Substituting (6.8) in (6.6) and (6.7) and collecting similar powers of Γ , the
following set of equations is found

εJ
d2θl(2)

dz̃2
=−nl(θs(2) − θl(2)), (6.9a)

(1− ε)d
2θs(1)

dz̃2
= nlθs(1), (6.9b)

(1− ε)d
2θs(2)

dz̃2
= nl(θs(2) − θl(2)). (6.9c)

The boundary conditions at z̃= 0 are given by

θs(1) − θs1 = θs(2) = θl(2) = 0. (6.10)

Also, the matching flux condition (the continuity of the heat flux between the
equilibrium and the boiling zone in the liquid–solid region) must be satisfied, then

dθs(1)

dz̃

∣∣∣∣
z̃→−∞
= 0,

dθs(2)

dz̃

∣∣∣∣
z̃→−∞
= dθl(2)

dz̃

∣∣∣∣
z̃→−∞
= dθ(1)

dz

∣∣∣∣
z→0

=M0

(
θB − θ−∞

J + γ
)

(6.11)

in which the variable z and the first correct value of the temperature θ(1) are values
from the unitary order equilibrium zone, given by (6.5).

Solving (6.9a)–(6.9c) with boundary and matching conditions given by (6.10) and
(6.11), the temperature solutions for the boiling zone are obtained as

θl(z̃)= θB + Γ −2M0

(
θB − θ−∞

J + γ
)

z̃+ O(Γ −3), (6.12a)
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θs(z̃)= θB + Γ −1θs1e
√

nl/(1−ε)z̃ + Γ −2M0

(
θB − θ−∞

J + γ
)

z̃+ O(Γ −3). (6.12b)

It is possible to see from (6.12a) and (6.12b) that the difference from the solid phase
temperature and the liquid phase temperature in the boiling zone is of the order
of Γ −1.

7. Determination of the unknowns: yF0, θs1, f̃0 and f̃1

If (5.2) is expanded, mass conservation at the interface will be given by

dỹF

dη̃

∣∣∣∣
η̃=0+
= Γ −1(1− yF0)(f̃0 + Γ −1 f̃1). (7.1)

From (5.17), the derivative of ỹF at η̃ = 0+ is determined, and by collecting the leading
order terms in (7.1), the vapour mass fraction at the interface is obtained as

yF0 = f̃0

f̃0 − Γ 1/2
√

2LeF/π
. (7.2)

Since f̃0 = Γ f0 = O(1), it is possible to observe that yF0 = O(Γ −1/2). This is a
consequence of the existence of the intermediary zone, which is of the order of Γ −1/2.

The low-volatility feature of the liquid is considered through high latent heat l
and mathematically it means l = Γ l̃, in which l̃ is of unitary order. Performing the
appropriate changes in (3.28b), the energy conservation at the interface is given by

ε
dθg

dη̃

∣∣∣∣
η̃=0+
=−Γ l̃f (0)+ Γ ε J

a1/2

dθl

dz̃

∣∣∣∣
z̃→−∞
−Γ nl

a1/2

∫ 0

−∞
(θs − θl) dz̃, (7.3)

and it must be noted that Γ f (0)= f̃0 + Γ −1 f̃1.
Expanding (7.3) and collecting the leading order terms (first and third terms on the

left-hand side), the leading order velocity at the interface is found as

f̃0 =−
√

nl

a

θs1

l̃
(1− ε)1/2 . (7.4)

The higher order velocity at the interface is obtained by collecting the higher order
terms in (7.3)

f̃1 =−1

l̃

[
(1− θB)

√
2
πγ
+ θs1

√
ng

ε

]
+ J

J + γ
(θB − θ−∞)

l̃

M0

a1/2
. (7.5)

The velocity at the interface is directly related to the vaporization rate through
(3.29). Re-scaling (3.29), the vaporization rate is obtained as

Γ ṁ≡ ˙̃m=√nl
θs1

l̃
(1− ε)1/2+Γ −1

{
a1/2

l̃

[
(1− θB)

√
2
πγ
+ θs1

√
ng

ε

]

− √nl
cl

cp

(
J

J + γ
)
(θB − θ−∞)

l̃2
θs1 (1− ε)1/2

}
+ O(Γ −2). (7.6)

The leading order term in (7.6) (first term on the right-hand side) arises from the
heat exchange between solid and liquid phases in the boiling zone. Hence, the result
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obtained by (7.6) exhibits that the main responsible for providing the heat necessary
for the phase change of the liquid is the solid phase, that conductively carries heat
from the inner zone to the boiling zone. The gas–liquid heat exchange at the interface
has a minor role in such process (of the order of Γ −1), accounted for by the higher
order term in (7.6).

The continuity of the solid phase heat flux at the gas–liquid interface requires that

Γ
dθs

dη̃

∣∣∣∣
η̃→0+
= Γ dθs

dz̃

∣∣∣∣
z̃→0−

. (7.7)

If the above expression is expanded and terms with similar order of magnitude are
collected, the correction of the solid phase temperature at the interface is obtained as

θs1 = (1− θB)

√
2ε
πnl

. (7.8)

Hence, the solid phase temperature at the interface is given by

θs(0)= θB + Γ −1(1− θB)

√
2ε
πnl

. (7.9)

From (7.9) it is possible to observe that higher porosity values lead to higher values on
the solid phase temperature at the interface, as a result of the increase in the density of
the heat flux in the solid phase.

It must be pointed that in order that both sides of (7.7) have the same order of
magnitude (otherwise, the solid heat flux continuity would not be obeyed), (1 − θB)
must be of the order of unity (since θs1 = O(1), as a result of the matching condition
with the outer zone). The temperatures were normalized according to the injection
temperature of the hot gas. With this in mind, the restriction that appears reveals that,
in order that a solution of the problem is achieved (or, in other words, the vaporization
process occurs), the injected gas must be at a temperature higher than the boiling
temperature of the liquid, enough for (1 − θB) = O(1). This feature is due to the low
volatility of the liquid, which demands a high heat flux in order to go through phase
change.

In the absence of the porous medium, the vaporization would be much less efficient
(of the order of Γ −2, since it would be led by the low-efficiency process of heat
exchange between gas and liquid at the interface). However, even with the solid
matrix conductively transporting heat, and transferring it, to the liquid reservoir, the
vaporization process is still low (of the order of Γ −1).

8. Results and discussion
In order to obtain numerical values for the unknowns, the following values for the

parameters are used

a= l̃= nl = ng = 1.0, (8.1)

ε = 0.3, Γ ≡ λ̄s/λ̄g = 60.0, J ≡ λ̄l/λ̄s = 1.0, (8.2)
θB = 0.2, θ−∞ = 0.1, Pr = LeF = 1.0, cl/cp = 2.0. (8.3)

The injection temperature is considered to be five times the value of the boiling
temperature of the liquid, and the reservoir is assumed to be at half of the liquid
boiling temperature (recalling that the temperatures were made non-dimensional with
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FIGURE 2. Vertical (f ) and horizontal (U = df /dη) velocities.

respect to the injection temperature). The porosity is chosen according to average
values in petroleum wells, and the ratio cl/cp = 2.0 is chosen according to values of
specific heat for petroleum and air.

For those parameters, the following values are found:

f̃0 '−0.2925, f̃1 '−1.0386, θs1 ' 0.3496, yF0 ' 0.0452. (8.4)

8.1. Momentum
The velocity field of the flow in most of the domain is dominated by the Darcy regime,
in which the pressure gradient pushes the injected hot gas onto the liquid surface. Only
close to the gas–liquid interface it is possible to observe the small contribution to the
velocity field due to the vapour transport, and the viscous terms, which establish the
macroscopic and porous-level boundary layers, influence on the flow.

These features may be observed in figure 2, in which the vertical and the
horizontal component of the momentum are plotted. The stagnation plane is located
approximately in the region in which f̃ (η̃st) = 0, at ηst = Γ −1η̃st ' 0.0183, very close
to the liquid interface.

8.2. Temperature: gas–solid region
The gas and the solid matrix are assumed to be at equilibrium in the injection
condition. The gas–solid system loses heat to the liquid reservoir below the gas–liquid
interface.

Owing to the high rates of interphase heat transfer, accounted through the
consideration that Ng = O(Γ ), between gas and solid phases, thermal equilibrium is
observed in the outer zone, in which heat is transported conductively (through the
solid phase) and convectively (through the gas phase), as pointed by (4.1). As the
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flowing gas approaches the interface from above, a detachment between temperature
profiles is observed, as local thermal non-equilibrium is observed in the region of the
order of Γ −1 (inner zone). In the inner zone, the heat is conducted mainly through
the solid phase (higher thermal conductivity), and at the interface, vapour and liquid
are at equilibrium at the liquid boiling temperature θB, while the solid phase is at a
temperature slightly higher (boiling temperature plus a correction of the order of Γ −1,
as given by (7.9)).

The quantitative behaviour of the temperatures in the gas–solid region is presented
in figure 3.

8.3. Temperature: liquid–solid region
Far below the interface, the liquid reservoir is at equilibrium with the solid matrix and
both are initially at half the liquid boiling temperature. As a result of the heat flux
from the injected gas (and the conduction through the solid matrix), the liquid–solid
system increases its temperature. Owing to the high rates of liquid–solid heat transfer,
accounted for through the consideration that Nl = O(Γ 2), thermal equilibrium between
phases is observed.

The low-volatility feature of the liquid (high latent heat of vaporization, accounted
for through l = O(Γ )) is responsible for the establishment of a low-vaporization
regime. This feature also expands the thermal equilibrium zone to a region of the order
of Γ . Hence, two length scales in the equilibrium zone are observed, one of the order
of Γ and the other of the order of unity, as pointed out by (6.5). Only in a region of
the order of Γ −1 below the interface the thermal non-equilibrium between liquid and
solid phases is observed. In this region, the boiling zone, the liquid is at an almost
constant temperature, its boiling temperature, and almost all heat provided to it goes to
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phase change. A minor amount of heat is transported into the equilibrium zone, which
has a reach of the order of Γ , in order to increase the reservoir temperature (liquid +
solid matrix, at equilibrium).

These quantitative features of the temperature profiles in both zones are presented in
figure 4.

8.4. Effects of the strain rate and of the porosity
The effects of the strain rate a and of the porosity ε in the vaporization rate are
presented in figure 5.

If the strain rate is increased, the leading order vaporization rate does not alter, as
pointed out by (7.6). A variation in the strain rate from 0.3 to 3.0 leads to an increase
in the vaporization rate from 0.295 to 0.300, as exhibited in figure 5. An increase
in the strain rate means an approach of the impinging flow against the liquid surface
(or, similarly, an increase on the horizontal component of the injection velocity). Such
situation would lead the velocity field closer to the interface. However, since the
leading order vaporization rate is determined only by the heat exchange between solid
and liquid phases in the boiling zone (as pointed by (7.3) and (7.6)), this increase in
the strain rate does not affect the vaporization rate in its leading order.

An increase in the solid phase temperature at the interface leads to an increase in
the vaporization rate. The solid phase temperature at the interface, θs0 = θB + Γ −1θs1,
is directly proportional to the square root of medium porosity,

√
ε, as pointed by (7.9).

However, as exhibited by the leading order term of (7.6), the vaporization rate is also
proportional to

√
(1− ε), which is the square root of the volume occupied by the

solid phase. Combining both contributions, it is observed that the vaporization rate is
proportional to

√
ε(1− ε), as can be seen in figure 5. Two other conclusions can be
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drawn: in the first approximation, the vaporization rate is unexpectedly independent
on the liquid heat transfer parameter nl and expectedly proportional to the reciprocal
latent heat l.

In the two limits (high porosity, ε ∼ 1, and low porosity, ε� 1), the vaporization
is low. This effect may be explained in the following. In the higher porosity regime,
ε ∼ 1; if one lowers the medium porosity, the contact area between liquid and solid
is increased, which increases the heat exchange between solid and liquid. This has
the effect of enhancing the vaporization rate. On the other hand, if the porosity is
lowered enough, the space occupied by the liquid diminishes, which in turn has the
consequence of lowering the vaporization rate. Owing to these two processes, the
vaporization rate has a minimum in both extreme values of the medium porosity, and a
maximum observed in ε = 0.5.

9. Conclusions
By performing an asymptotic analysis and utilizing order of magnitude arguments,

the main physical processes of a stationary Hiemenz flow in a low-porosity medium
with phase change of a low-volatility liquid have been described analytically. The
effects of the strain rate and of the porosity in the vaporization rate have also been
examined.

The problem is analysed under the distinguished limit Ng = O(Γ ), Nl = O(Γ 2) and
κ = O(Γ −2), in which Γ ≡ λs/λg � 1. The first two conditions characterize intense
interphase heat transfer (liquid–solid and gas–solid, respectively), while the third
may characterize a low-porosity medium (recalling that the parameter κ ≡ aK/ls2

s , a
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modified Darcy number, relates geometric properties of the solid with thermo-physical
properties of solid and gas phases).

The system is considered infinite to both streams, with the gas–liquid interface
dividing the domain. In the upper stream, a hot gas is injected. Owing to the high
rates of interphase heat transfer, the gas–solid system is at equilibrium in most of
the domain. Close to the interface, local thermal non-equilibrium is observed, and the
two-equation model is employed.

Below the interface, the solid matrix is filled by the low-volatility liquid. The
heat is provided to the liquid reservoir by the injection of the hot stream of gas.
However, it is the solid matrix that conductively transports heat to the liquid–solid
region. Once in the liquid–solid region, the heat exchange between solid and liquid
phases in the boiling zone (a region of the order of Γ −1 � 1 close to the liquid
interface) supplies the necessary heat in order to phase change the liquid. Since almost
all heat is delivered to the phase change, a small amount of heat (of the order of
Γ −1) is transported to the reservoir in order to increase its temperature. The gas–liquid
heat transfer at the interface has a minor role in the vaporization process, and its
effect is accounted for through a correction in the vaporization rate, given by f̃1. The
obtained results quantify the importance of the addition of the porous medium in the
enhancement of the evaporation process.

The results also point that in order to sustain the vaporization regime of the low-
volatility liquid, the injection temperature must be higher than the liquid boiling
temperature, enough for (1 − θB) = O(1). This constraint, which arises as a condition
for the continuity of the heat flux at the interface, is a result of the low-volatility
feature of the liquid, which demands a high heat flux in order to go through phase
change. It is relevant to point that the prediction of high injection temperatures is in
accordance with the steam injection and in situ combustion processes of thermal oil
recovery.
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