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Abstract Brazil suffers yearly from extreme weather and climate events, which can be
exacerbated in a warmer climate. Although several studies have analyzed the projections of
climate change in Brazil, little attention has been paid to defining the locations that can be
most affected, and consequently have a more vulnerable population, in a spatially-explicit
form. This study presents a spatial analysis of summarized climate change data and a joint
investigation combining these possible climate changes and social vulnerability indicators in
Brazil. The Regional Climate Change Index (RCCI), which can synthesize a large number of
climate model projections, is used for the climate analysis, and the Socio-Climatic Vulner-
ability Index (SCVI) is proposed to aggregate local population vulnerabilities to the climate
change information. The RCCI results show climatic hotspots emerging in Brazil, covering
the western portion of the Northeast (NE), northwestern Minas Gerais state and center-
western (CW) and northern regions (N), except northeast Pará and Amapá states. The SCVI
analysis reveals major socio-climatic hotspots in the NE and several localized hotspots in
some of the major Brazilian metropolitan regions, namely Manaus, Belo Horizonte, Brasília,
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Salvador, Rio de Janeiro and São Paulo. The two novelties of this study are a spatially
detailed analysis of the RCCI in Brazil and the development of an index that can summarize
the large amount of climate model information available today with social vulnerability
indicators. Both indices may be important tools for improving the dialogue between climate
and social scientists and for communicating climate change to policymakers in a more
synthetic and socially relevant form.

1 Introduction

Projections indicate a considerable change in Brazil’s climate within this century (Baettig
et al. 2007; Marengo et al. 2009, 2010a), and there are several reasons to believe Brazil will
be highly impacted by such climatic change: its economy depends heavily on exports of
agricultural commodities (IPEA 2011); the provision of staple foods is strongly reliant on
smallholder agriculture (responsible, for example, for 87 % of the national production of
cassava, 70 % of dry beans, 46 % of maize, and 58 % of milk) (IBGE 2009); it has an energy
matrix dominated by renewable energy, which is highly susceptible to climate variations
(Lucena et al. 2009); and it still suffers widespread poverty, significant social inequality and
epidemic outbreaks (IPEA 2003; Magrin et al. 2007; Confalonieri et al. 2009). The floods in
São Paulo city in the summer of 2010 (Folha de São Paulo 2010), the landslides in the state
of Rio de Janeiro in the summer of 2011 (Folha de São Paulo 2011), the annual dengue fever
epidemics throughout the entire country, and the succession of intense droughts and floods
events in Amazonia and Northeast (NE) Brazil (Marengo et al. 2011c, d; Ponce 1995) reveal
how unprepared Brazil is for climate change.

Several studies have examined the effects of climate change in Brazil using different
general circulation models (GCMs) and dynamical downscaling methods (e.g., Vera et al.
2006; Bombardi and Carvalho 2009; Marengo et al. 2010a, b, 2011a; Rusticucci et al. 2010).
Despite the contribution of these studies to our knowledge of climate change, uncertainties
about the regional climate impacts still remain. Moreover, the intrinsic uncertainties of
climate change projections (Giorgi 2005; Knutti 2008) make the interactions between
climate scientists and social scientists and, importantly, between scientists and policymakers,
very difficult (Pidgeon and Fischhoff 2011). One possibility to improve the communication
between climate scientists and others is the creation of climate change indices that aggregate
various information and measures of uncertainty concisely and reliably (Giorgi 2006;
Baettig et al. 2007; Xu et al. 2009). However, there is currently no scientific study showing
where climate change hotspots (the word “hotspots” is used in this study to indicate areas
with large regional climate changes and/or a highly vulnerable population) are located in
Brazil and how these climate hotspots relate to population density and social conditions,
such as poverty, education and health, in a country-wide perspective.

Therefore, this study addresses the need for straightforward and synthesized assess-
ments of climate change and its probable social impacts in Brazil by presenting a
spatially explicit analysis of Brazil’s socio-climatic hotspots by relating more than one
hundred climate projections with indicators of social vulnerability to climate change.
The Regional Climate Change Index (RCCI) developed by Giorgi (2006) is applied
specifically to Brazil and is incremented with social vulnerability proxies to compose
what is defined here as the Socio-Climatic Vulnerability Index (SCVI). The SCVI is a
timely approach to identifying the areas for which climate change projections have the
most human/social relevance. This information can then be used to target areas where
actions towards adaptation should be prioritized.
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2 Methods

2.1 Climate simulation dataset

This study uses monthly precipitation and surface air temperature data simulated for the
present climate (1961–1990) and projected to the end of this century (2071–2100) from 24
GCMs of the Coupled Model Inter-comparison Project Phase 3 (CMIP3) employed in the
Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (IPCC
2007) (Table 1). Hereafter, the word change(s) refers to the difference between the mean
values of the climate variables for the periods 2071–2100 and 1961–1990. Three sets of
IPCC emission scenarios were used for the future period: SRES B1, A1B and A2,
corresponding to equivalent CO2 concentrations of approximately 550, 700 and 850 ppm,
respectively, in the year 2100 (Nakicenovic et al. 2000). The models and simulations are
described in more detail in Meehl et al. (2007).

The GCMs spatial resolutions vary from roughly 1–5 ° of latitude/longitude (Table 1). All
GCMs were interpolated to a common 1 ° grid, using the conservative remapping scheme
(Jones 1999; Giorgi and Bi 2005; Giorgi 2006; Xu et al. 2009), for inter-comparison

Table 1 List of models, approximate model spatial resolutions, emissions scenarios and number of runs in the
CMIP3 dataset used in this study. Models are ranked by their spatial resolution

Models Resolution (lat/lon) 20C3M A2 A1B B1

INM-CM3.0 5 °×4 ° 1 1 1 1

GISS-EH 5 °×4 ° 5 - 3 -

GISS-ER 5 °×4 ° 9 1 2 1

GISS-AOM 4 °×3 ° 2 - 2 2

CGCM3.1(T47) 3.8 °×3.8 ° 5 5 5 5

ECHO-G 3.8 °×3.8 ° 5 3 3 3

UKMO-HadCM3 3.8 °×2.5 ° 2 1 1 1

IPSL-CM4 3.8 °×2.5 ° 1 1 1 1

FGOALS-g1.0 2.8 °×3 ° 3 - 2 3

MRI-CGCM2.3.2 2.8 °×2.8 ° 5 5 5 5

CGCM3.1(T63) 2.8 °×2.8 ° 1 - 1 1

CNRM-CM3 2.8 °×2.8 ° 1 1 1 1

MIROC3.2(medres) 2.8 °×2.8 ° 2 3 3 3

PCM 2.8 °×2.8 ° 4 4 4 2

GFDL-CM2.0 2.5 °×2 ° 3 1 1 1

GFDL-CM2.1 2.5 °×2 ° 3 1 1 1

BCCR-BCM2.0 1.9 °×1.9 ° 1 1 1 1

CSIRO-MK3.0 1.9 °×1.9 ° 3 1 1 1

CSIRO-MK3.5 1.9 °×1.9 ° 3 1 1 1

ECHAM5 1.9 °×1.9 ° 4 3 4 3

UKMO-HadGEM1 1.9 °×1.3 ° 2 1 1 -

CCSM3 1.4 °×1.4 ° 7 4 7 9

ECHAM4 1.1 °×1.1 ° 1 1 1 -

MIROC3.2(hires) 1.1 °×1.1 ° 1 - 1 1
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purposes and to properly relate them with social datasets in a reasonable grid size. However,
one might argue that the interpolation of models from the coarsest to the highest resolution in
an ensemble is not ideal. An appropriate technique to downscale the results of climate
models would be statistical downscaling or dynamical downscaling (Boulanger et al. 2006;
Christensen et al. 2007). Nevertheless, these two techniques are too time-consuming and/or
computationally expensive and their application is highly non-trivial. Because this study
aims to present a new approach to combine climate and social information, a more suitable
interpolation or downscaling technique for the climate change dataset can be applied in
future studies.

For the RCCI calculation described in Section 2.2, all climate variables and statistics
were computed as follows: 1) the change was calculated for each model simulation; 2)
different runs using the same model (when available) were averaged; 3) the results were
interpolated to a 1° latitude/longitude spatial resolution; 4) the ensemble average over
the different available models was obtained; and 5) the three emission scenarios were
averaged.

2.2 Regional climate change index

The RCCI is a qualitative index proposed by Giorgi (2006) to identify the regions in which
climate change may be more prominent. This index is based on the temperature change in a
specific region relative to the change in mean global temperature (or regional warming
amplification factor, RWAF), change in mean regional precipitation (ΔP, %) and change in
the interannual variability of temperature (ΔσT, %) and precipitation (ΔσP, %), all of which
are calculated separately for austral summer and winter. The RCCI is not affected by small
changes below certain thresholds, while more intense changes receive heavier weights
(Giorgi 2006).

In the RCCI formulation, the σT and σP indexes can represent a proxy for extreme climate
conditions, such as excessively rainy or dry seasons, that could seriously affect human
welfare and the environment. The interannual standard deviation of temperature was used as
a measure of σT, and the coefficient of variation (i.e., the standard deviation divided by the
mean) was used as a measure of σP. Both σT and σP were calculated for the selected 30 year
periods after detrending the data to obtain unbiased variability estimates. The coefficient of
variation was used as a measure of interannual precipitation variability because it removes
the dependency of the standard deviation on the mean for zero-bounded variables such as
rainfall (Räisänen 2002; Giorgi 2006).

However, it is worth mentioning that the process of estimating the occurrence of
extreme events is non-trivial, especially for projections of the future climate (Frich
et al. 2002; Meehl et al. 2005; Tebaldi et al. 2006 and citations quoted therein). The
interannual variability calculated using the standard deviation and coefficient of varia-
tion are used only as a first approximation for such events (Räisänen 2002; Giorgi 2006
and Xu et al. 2009). A more suitable extreme climate calculation could be derived, for
example, from a robust statistical estimate of the probability density function of daily
temperature and precipitation data (Alexander et al. 2006) generated by an ensemble of
higher-resolution models.

The RCCI was chosen for this study because it is a well accepted index in the literature to
show where climate change could be, on a relative basis, more pronounced in a warmer
climate based in a large set of climate models. Moreover, its results compare quite well with
another well accepted index, the Climate Change Index, developed by Baettig et al. (2007),
as will be discussed in Section 3.1.
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2.3 Socio-climatic vulnerability index

This paper introduces an index that combines information about the magnitude of climate
change in a specific region and social factors that could affect the vulnerability of the local
population. We call this index the Socio-Climatic Vulnerability Index (SCVI) and define it as

SCVI ¼ CI* n
ffiffiffiffiffiffiffiffiffiffiffiffi

Y

n

i¼1

Fi

s

;

where CI represents any climate change index suitable for the region, whereas the second
element on the right-hand side of the equation represents the geometric mean of the normalized
social vulnerability factors (Fi) that characterize the local social conditions.

The definition of vulnerability used here is based on that used by the IPCC: vulnerability
is the degree to which a system (in this study, the Brazilian population) is susceptible to, and
unable to cope with, adverse effects of climate change, including climate variability and
extremes. Additionally, vulnerability is a function of the character, magnitude, and rate of
climate change and the variation to which a system is exposed, its sensitivity and its adaptive
capacity (glossary of IPCC AR4, [IPCC 2007]).

Similar to the RCCI, the SCVI is intended to be a relative index of vulnerability to climate
change in which the most important is not the value itself, but how it compares from one region
to another, ranking locations in which vulnerability is high or low in a comparative basis.
Moreover, the SCVI can be applied on any spatial scale (assuming sufficient available data and
a reasonable spatial scale for characterizing the analyzed region) and can incorporate as many
distinct social variables as needed in the right-hand side of the equation above. Therefore, the
SCVI can merge several indicators of a population’s vulnerability (e.g., water resources and
agricultural vulnerabilities) and climate change indexes based on a broad array of models.

The specialized literature includes dozens of indexes for indentifying a population’s vulner-
ability to climate change on a country (e.g., Yohe et al. 2006; Diffenbaugh et al. 2007; Eriksen
and Kelly 2007) or regional scale (e.g., Confalonieri et al. 2009 and Yusuf and Francisco 2009).
For example, Preston et al. (2011) identified and reviewed 45 vulnerability mapping studies
appearing in the literature until 2010. These studies differ from the present study in the
following ways: several of the previous studies used observed climatology rather than climate
change projections, nearly all of the previous studies were based on climate projections from
solely one climate model and Brazil was always depicted using coarse spatial scales.

The SCVI was calculated for all of Brazil using a spatial resolution of 1 ° of latitude/
longitude. The climate change index used here is the RCCI described in the previous section,
but the use of other climate change indexes in addition to or instead of the RCCI could
strengthen the reliability of the determination of climate change hotspots. The demographic
density (ρ) (Goldewijk 2005) and the inverse of the Human Development Index (HDI) for all
Brazilian municipalities (IPEA 2003) are used as the social vulnerability indicators (Fig. 1).
Both social variables are normalized to the Brazilian domain and are representative of the
year 2000. The original resolution of ρ is 5 arc-minutes, whereas the HDI data are available
at the municipal level. The transformation of these data to a 1º basis followed the procedures
using the ArcGIS® software: first, the HDI data are transformed from a polygon shape into a
5 arc-min raster; second, both HDI and ρ are converted into 1º latitude/longitude rasters
using the “mean” neighborhood block statistics.

The employed SCVI formulation implies that the social vulnerability to climate change
will be more pronounced in regions with higher ρ and lower HDI, in agreement with several
studies on social vulnerability to climate change (Adger 1999; Füssel and Klein 2006;
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Eriksen and Kelly 2007; Magrin et al. 2007; Ionescu et al. 2009; Confalonieri et al. 2009). In
general, these studies agree that social vulnerability is more pronounced in more heavily
populated areas (justifying the use of ρ), and that sanitation/health, economic wealth and
literacy levels influence exposure and sensitivity to climate change, and modulate the
population’s adaptive capacity for climate change. The HDI conveniently combines these
three social indicators – health, income and education - into a single measure.

The most recent HDI information at the municipality level for Brazil was published in
2000 by the Brazilian office of the United Nations Development Programme in conjunction
with the Ministry of Planning's Applied Economic Research Institute (IPEA) and the João
Pinheiro Foundation (http://hdr.undp.org/en/reports/national/latinamericathecaribbean/
brazil/name,3212,en.html). Unfortunately, more recent information at this level of detail is
not available for either HDI or population density. However, although the values of HDI have
changed from 2000 to 2011 (e.g., from 0.665 to 0.718 on the national level), it is reasonable to
assume that the broad regional development patterns have not changed considerably. We
assume the same for population density in terms of 2000–2011 changes in the spatial distribu-
tion pattern.

3 Results and discussion

3.1 RCCI

The analysis of the RCCI for Brazil (Fig. 2a) evidences the occurrence of climatic hotspots
covering the western part of the NE region, the northwestern part of Minas Gerais state and
the center-west (CW) and northern (N) regions of the country (except in northeast Pará and
Amapá states).

In western NE and northwestern Minas Gerais state, the main factors that contribute to the
higher values of the RCCI are the projected decrease of rainfall amounts during the austral

Fig. 1 Year 2000 (a) Brazilian population density (inhabitants per km2) and (b) Human Development Index
(dimensionless). The bottom right-hand panel shows Brazil’s 5 macro regions: North (N), Northeast (NE),
Centre-West (CW), South (S) and Southeast (SE)
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winter and changes in the interannual variability of temperature and precipitation in both
seasons (Table 2). In the CW region, high values of the RCCI are primarily caused by
changes in both the mean and interannual precipitation variability in the austral winter and in
the interannual temperature variability in the austral summer (Table 2). In N region the main
contributors to high values of the RCCI are the changes in the interannual temperature
variability in both the austral summer and winter and the interannual variability of rainfall
and the RWAF during the austral winter (Table 2).

In general, the RCCI results agree with previous studies that use regional and GCM
models to project climate change in South America (Boulanger et al. 2006, 2010; Vera et al.
2006; IPCC 2007; Bombardi and Carvalho 2009; Marengo et al. 2010a, 2011a). Moreover,
the spatial pattern of the RCCI in Brazil compares well to the Climate Change Index

Fig. 2 (a) Regional Climate Change Index (RCCI) and (b) Socio-Climatic Vulnerability Index (SCVI) for
Brazil (both dimensionless)

Table 2 Mean values for the 5 Brazilian macro regions (see Fig. 1 for geographic reference) of the Regional
Climate Change Index (RCCI) and its four components of climatic change: mean precipitation (ΔP, % of
present-day value), interannual variability of precipitation (ΔσP, % of present-day value), mean surface air
temperature relative to the global average temperature change (or Regional Warming Amplification Factor,
RWAF) and change in regional surface air temperature interannual variability (ΔσT, % of present-day value).
Results are shown for the austral summer and winter (DJF and JJA, respectively), except for the RCCI

North Northeast Centre-West Southeast South

RCCI 15.99 13.01 17.71 12.86 4.81

ΔP (DJF) 5.97 0.99 2.43 1.32 7.70

ΔP (JJA) −5.82 −17.45 −18.01 −13.11 4.48

ΔσP (DJF) 5.00 10.10 8.39 10.01 1.06

ΔσP (JJA) 17.35 14.74 26.42 17.20 10.06

RWAF (DJF) 1.14 1.04 1.10 1.02 0.92

RWAF (JJA) 1.48 1.15 1.44 1.23 1.06

ΔσT (DJF) 16.11 12.40 21.15 18.10 6.11

ΔσT (JJA) 16.73 12.67 13.73 9.55 3.23
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developed by Baettig et al. (2007), although the two indexes are calculated by different
ensemble models and methodologies. Additionally, all areas indicated as hotspots by the RCCI
were also predicted to suffer soil moisture deficits and an increase in the frequency of short-term
(4–6 month duration) droughts by the end of the twenty-first century by Sheffield and Wood
(2008). In the Amazon basin, the RCCI results are coherent with the well documented potential
of climate change to enhance intense drought events in this region, such as the droughts of 2005
and 2010 (Malhi et al. 2008; Nobre and Borma 2009; Lewis et al. 2011; Marengo et al. 2011b,
c, d; Davidson et al. 2012), which caused serious hydrological, agricultural and transportation
problems, strongly affecting residents.

The lowest values of the climate index were found for Southern Brazil (S), in the states of
São Paulo and Mato Grosso do Sul, and throughout the Brazilian coast. However, these low
RCCI values should not be interpreted as indicating “no-change” or “no-impact” but rather
as a smaller change relative to other regions of Brazil. For example, some studies indicate an
increase in the frequency of extreme precipitation events in S during the last half of the
twentieth century (e.g., Tebaldi et al. 2006; Rusticucci et al. 2010; Marengo et al. 2010b) and
indicate a further increase in these events towards the end of the twenty-first century in a
warmer climate (Tebaldi et al. 2006; Marengo et al. 2009). Thus, as mentioned in Section 2.2,
future studies must improve the RCCI index calculation (i.e., using higher-resolution models
and more advanced statistical techniques) to explicitly capture climate extreme events.

South America has the lowest RCCI values among the 26 averaged land regions of the world
analyzed by Giorgi (2006). However, our study reveals that different climate change patterns
are found inside each of the 3 (out of 26) boxes established to represent the South America
climate change behavior in Giorgi’s study [“Amazon Basin” (20 S–10 N; 78.5–34.5 W),
“Central South America” (40–20 S; 78.5–34.5 W) and “Southern South America” (56–40 S;
78.5–34.5 W)]. For example, the “Amazon Basin” box includes NE and Peru/Ecuador, regions
with different predictions regarding precipitation change (Vera et al. 2006; Meehl et al. 2005).
Differently, the results from the spatial analysis of the RCCI performed here emphasize the
different projected climate change pattern when comparing N and NE regions.

3.2 SCVI

The SCVI analysis reveals major socio-climatic hotspots in NE Brazil and several wide-
spread punctual hotspots in many of the major Brazilian metropolitan regions (Fig. 2b). The
spatial pattern of the SCVI is quite different from that of the RCCI; it reveals an east–west
gradient related to the historical occupation of the coastal lands and its vicinities in Brazil,
which indicates that population density has a considerable weight in SCVI calculations.
Therefore, the SCVI analysis shows that the designation of the most impacted areas by
climate change can be quite different when translated into a social-vulnerability relevant form.

The large socio-climatic hotspots in NE result from a combination of low-to-medium
RCCI values, relatively high ρ, and the lowest HDI levels in Brazil (Table 3). This result is in
agreement with those shown of Confalonieri et al. (2009), who found that the NE region is
the most vulnerable to public health impacts of climate change in Brazil, although those
authors employed only past climatological observations in their analysis and presented their
results on a state-level basis. However, the inclusion of the epidemiological vulnerability
index presented by Confalonieri et al. (2009) in the SCVI calculation (making our results
more comparable to those of Confalonieri et al.’s) did not change the relative socio-climatic
vulnerability among the regions: NE remained as the most vulnerable area in the country,
followed by SE, CW, S and N. This epidemiological vulnerability index was constructed by
Confalonieri et al. (2009) using morbidity, mortality and health cost data related to seven
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climate-sensitive endemic infectious diseases occurring in Brazil (e.g., dengue fever, cholera
and malaria).

The other punctual socio-climatic hotspots covering some of the major Brazilian cities are
Manaus (SCVI03.2), Belo Horizonte (3.2), Brasília (3.1), Salvador (2.8), Rio de Janeiro (2.6)
and São Paulo (1.7), as well as nearly all the NE capitals. Some of the values found for these
cities are the result of high or very high RCCI values, as is the case for Manaus, Belo Horizonte
and Brasília. For the other cities, even the relatively low RCCI values are not sufficient to avoid
the high SCVI values, meaning that even a moderate climate change might bring serious
consequences to these cities because of their high population densities. High ρ values in Brazil
indicate metropolitan areas, for which the SCVI formulation is able to correctly capture the
effect of the pronounced social heterogeneity typical of the country’s largest cities. As an
example, let us consider the metropolitan area of São Paulo city, which in 2000 had an HDI of
0.828, suggesting a high human development level. However, a finer-scale analysis reveals that
the São Paulometropolitan region has several districts (especially in the city outskirts) withHDI
values lower than 0.750, considered “moderate” human development, similar to many N and
NE municipalities. A recent assessment of the overall vulnerability of the São Paulo metropol-
itan area to climate change shows that the residents of such districts would be affected most
strongly by climate change through floods, landslides, and spreading diseases (Nobre et al.
2010). It is reasonable to apply the same conclusion to the other Brazilian metropolitan regions
unveiled here as socio-climatic hotspots, as suggested by the neighborhood-level HDI analysis
performed for other cities (e.g., SEPLAN et al. 2006 for Manaus; PNUD et al. 2006 for
Salvador; IPP et al. 2003 for Rio de Janeiro).

In fact, the above-mentioned social impacts of climate change can vary dramatically by
region and livelihood. For the NE, the major climatic constraint has always been linked to
rainfall shortage and limited water availability for human consumption and subsistence
agriculture (Kabat et al. 2003; Sahota 1968). The decomposition of the RCCI into separate
components, given in Table 2, reveals that the future impacts of climate change on the NE
population will be tied to aggravations of rainfall shortage and limited water availability. For
metropolitan areas, these impacts will certainly be expressed by floods, landslides, heat
waves, and possibly other events, which are closely linked to the urbanization pattern. It is
important to note that some indirect impacts of climate change have not been included in this
vulnerability assessment. Climate-driven agricultural losses can, for example, increase the
vulnerability of a given population, even if the croplands are located in depopulated areas far
from consuming centers. This issue is not addressed by this spatial analysis using only the
HDI and ρ as social vulnerability indicators, and will be tackled in future studies.

Finally, low SCVI values should not be interpreted as “no action needed”. The SCVI index
must be used as an auxiliary index in climate change debates rather than a substitutive to
other specific vulnerability or impact indexes, such as the RCCI. Although it is reasonable to
focus adaptation policies on regions where more people are affected, some adaptation
measures are needed to strengthen the adaptive capacity of less dense, but no less important,

Table 3 Mean values for the 5 Brazilianmacro regions (see Fig. 1 for geographic reference) of the Socio–Climatic
Vulnerability Index (SCVI, dimensionless), Human Development Index (HDI, dimensionless) and population
density (p, inhabitants per km2)

North Northeast Centre-West Southeast South

SCVI 0.30 0.93 0.43 0.85 0.31

HDI 0.651 0.612 0.741 0.738 0.766

ρ 3.82 33.48 7.52 80.45 45.18
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areas. Let us take as an example the Brazilian Legal Amazon population of 23 million
people, which is scattered over an area of more than 5 million km2. If impacted by climate
change, we may expect a south/eastward population migration, which would increase ρ in
already dense areas, thereby worsening the SCVI values in South/East Brazil, similar to the
results of past dry spell events in Northeast Brazil (Yap 1976).

3.3 Final remarks

This study is a first-order spatially explicit evaluation of the social vulnerability to climate
change in Brazil. Refinements should include the use of regional climate models (with
spatial resolutions of 50 km or higher) or advanced statistical downscaling techniques and
the consideration of other indicators of social vulnerability (such as fine-scale epidemiological
information, data on susceptibility to landslides and floods, water availability, and agricultural
risks).

That being said, the two major contributions of this study are the presentation of a more
detailed analysis of the RCCI in Brazil (compared to the study by Giorgi 2006) and the
development of a new index (SCVI) that merges the extensive number of IPCC global model
projections on climate change with social vulnerability indicators. Moreover, this proposed
index could be applied to other countries and regions. Both the RCCI and SCVI indexes have
a simplistic and exploratory nature but can be useful for improving the dialogue between
climate and social scientists and communicating climate change to policymakers in a more
synthetic and socially relevant form.
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