Using ontologies to build a database to obtain strategic
information in decision making

Erica F. Souza', Leandro E. Oliveira', Ricardo A. Falbo?, N. L. Vijaykumar'

!Computagio Aplicada — Instituto Nacional de Pesquisas Espaciais (INPE)
Sao José dos Campos — Sao Paulo — SP — Brazil

*Departamento de Informatica — Universidade Federal do Espirito Santo — UFES
Vitoria — Espirito Santo — ES — Brazil

{erica.souza, vijay}@lac.inpe.br, leandro.oliveira5@fatec.sp.gov.br,

falbo@inf.ufes.br

Abstract. The manipulation of ontologies in databases can represent gains in
the recovery of strategic information in decision-making process within the soft-
ware development organizations. The software testing processes are strategic
elements to develop projects and to the quality of the final product. Thus, this
study investigates strategies to promote data handling of testing processes that
are generated from a testing ontology. For this, a knowledge database is struc-
tured in a dimensional model for Data Warehouse to support storage and pro-
cessing of data to obtain strategic information that can facilitate decision ma-
king.

Resumo. A manipulacdo de ontologias em bancos de dados pode representar
ganhos na recuperagdo de informagoes estrdtegicas no processo de tomada de
decisdo dentro das organizagées de desenvolvimento de software. Os processos
de teste de software sdo elementos estratégicos para a conducdo de projetos de
desenvolvimento e qualidade do produto final. Diante disso, este trabalho tem
como objetivo investigar estratégias que possam promover a manipulacdo de
dados de processos de teste que sdo gerados a partir de uma ontologia de teste
de software. Para isso, estrutura-se uma base de conhecimento em um modelo
dimensional de Data Warehouse que apoie o armazenamento e o processamento
dos dados para obtengdo de informacoes estratégicas que podem facilitar a
tomada de decisdo.

1. Introduction

With the exponential growth of data from several different sources of knowledge within an
organization, it becomes necessary to provide automatized support for tasks of acquiring,
processing, analyzing and disseminating knowledge. Organizations need to effectively
manage the information generated in its production environment to promote the improve-
ment of the processes used to generate knowledge and also support future decisions. Such
data can provide important information for decision making, involving the identification
and implementation of corrective actions.

One of the characteristics of software engineering projects is to deal with a great
deal of information that are generated and manipulated. People involved in the project

200

face problems, such as: organize in a systematic way the information generated through
the software process; reuse the knowledge generated from one project to another; loss
of intellectual capital of the organization due to better opportunities; and no knowledge
representation [Andrade et al. 2010].

In the area of software development, testing is a critical factor in product quality,
and thus there is a greater concern with related research. Studies indicate that the quality
of the software product is strongly dependent on the quality of the processes that are
part of the project, especially the software testing process. However, finding relevant
information (knowledge) in these processes can be a difficult and complex task, and it is
related mainly to the lack of semantics associated with the large volume of information.
There is a need to represent knowledge, to make it affordable and manageable. In this
context, ontologies have been pointed out as an important way for representing knowledge
[Rios 2005].

The manipulation of big ontologies with a high number of instances in the form
of text files has a number of disadvantages, such as processing and query optimiza-
tion [Filho et al. 2010]. Because of this, ontologies can be incorporated into a knowl-
edge base to facilitate its management and access. Depending on the structure the
database is created, the analysis of large data volumes and mining strategic informa-
tion can facilitate decision making. Related work is found in [Astrova et al. 2007],
[Vysniauskas and Nemuraite 2006], but they propose approaches that transform ontology
representation into a relational database, but not in a dimensional model as this enables
dealing with large volumes of information.

Given the above context, this paper aims to investigate strategies that can promote
the manipulation of data generated from large ontologies. For this, a knowledge base in a
dimensional model for Data Warehouse is structured to support the storage and processing
of data to obtain strategic information that can facilitate decision making. A software
testing ontology is being developed to support this work and instances of this ontology
is used as a data source for the structure created. Section 2 briefly discusses ontologies
and storage structures. Section 3 presents the proposed structure to store ontology data.
Section 4 presents conclusions and future directions to follow.

2. Ontologies and structures for storage

During the last decades, ontologies have been shown useful in the field of Computer
Science [Guizzardi 2005]. In a nutshell, an ontology is a formal specification of a shared
conceptualization [Gruber 1993], i.e., a description of concepts and relationships that may
exist for an agent or an agents community. Representation of a shared conceptualization
requires a representation language. There are many representation languages. Some are
defined based on the syntax of the eXtensible Markup Language (XML), like Resource
Description Framework (RDF), Ontology Interchange Language (OIL) and Web Onto-
logy Language (OWL). There is also graphical language for ontologies; an example is the
Graphical Language for Expression Ontologies (LINGO) [Falbo et al. 1998].

Literature provides several tools to store and manipulate content from an onto-
logy in a database and several strategies can be found [Filho et al. 2010]. Most tools use
relational databases. Depending on the number of instances of an ontology, it becomes
necessary to create structures that support high volumes of data and allow employing

201

techniques to find relationships among these data. An alternative is the use of Data Ware-
house (DW) as the storage structure. It is a large repository of integrated data obtained
from several sources for the specific purpose of data analysis [Christian et al. 2010]. A
DW may take on different models: Cube and Star. The difference is in the Database Man-
agement System (DBMS). When the dimensional model is implemented in a relational
database it is implemented as a Star architecture and when implemented in a multidimen-
sional database it is known as Cube. Considering that DW stores a large volume of data, it
optimizes and reduces the complexity of consultations, thus decreasing the response time
and gaining in performance.

3. Proposed structure for storage of ontology content

The ontology used in this paper is in the context of the Ph.D. thesis of the first author
[Souza 2011]. The ontology aims at software testing for Knowledge Management (KM).
Test activity is incorporated into a process as it consists of several steps to add quality to
the final products [Bastos et al. 2007]. Since the test activity is a process, the improve-
ment can be incorporated with the use of KM and ontologies are identified today as being
crucial in the KM in processes improvement.

Given the complexity of the software testing domain, an ontology and its sub-
ontologies were created and used. Currently the main ontology created has: Steps, Tech-
niques, Types, Artifacts and Environment. SABiO (Systematic Approach for Building
Ontologies) was adopted to develop the software testing ontology [Falbo 2004].

As the ontology is still under development it may suffer some changes. However,
though in the initial phase, it is already capable of describing execution phase of the tests,
and from this premise that DW will be created to store ontology data. This phase contains
data related to dates, for example, date of test case execution, date of defect submission
and date of defect correction.

Instances of the software test ontology were extracted from an actual project de-
veloped at the (Technological Institute of Aeronautics - ITA) - (Project of Amazon Inte-
gration and Cooperation for Modernization of Hydrological Monitoring - ICA-MMH B)
[Cunha 2010]. We used test data generated from Organizational Testing Management
Maturity Model (OTM3) testing process [Lamas et al. 2010].

For converting the content of an ontology written in RDF into a DW architecture,
we follow the process shown in Figure 1.

. Create Data
Reading of the ontology Create Extract, transform | S \Warehouse " —| Analyze

using JENA Simple XML and load data . data
architecture

Ontology —»

Figure 1. Process Proposed for conversion of an ontology in a DW dimension

To enable reading the ontology in the Pentaho Data Integration tool it was neces-
sary to transform the RDF/OWL in a simple XML and export the data of the instances for
the DW model created. For this, we used the Jena framework [Jena 2012] that provides an
Application Programming Interface (API) in Java allowing writing, reading and extract-
ing the description of fields, classes and instances from a file in the RDF/OWL in XML
format. With the support of Jena framework, a Java class that converts the data into a pure

202

XML was developed, that is, using only the native tags of XML without the RDF/OWL
specific tags. We call this simple XML, as shown in step three in Figure 1. The XML with
simple pattern is to be read by Pentaho.

From the simple XML Pentaho is used to extract, transform and load the data
for DW using ETL (Extract Transform Load). The data is loaded in DW table of facts.
Star model was chosen to create the DW. The model consists of table ft_test_execution
which is the table of facts, and five dimensions, namely: (i) three dimensions of time:
Ik _execution_time contains the date of the test execution, lk_submission_time refers to the
date of a defect submission, and lk_last_change_time refers to the date of the last change
made in the request to repair a bug; the /k_feam dimension contains information about
the tester, such as the name of the tester and his or her level within the team; and ii) the
lk_project dimension contains information with respect to the project for which the test
was performed. Figure 2 shows the Star model created with its respective tables.

1 Ik_project v
SURROGATE_KEY INT(11)
NATURAL_KEY INT(11)
NAME VARCHAR(50)
ENTERPRISE VARCH AR(50)
URI VARCHAR(255)
>
1 Ik_submission_time ¥ 3] Ik_last_change_time ¥
TIME_ID VARCHAR(E) | TIME_ID VARCHAR(E)
YEAR INT(4) * YEAR INT(4)
MONTH INT(2) | ft_test_execution v MONTH INT(2)
E:: I\:E:z _ D_j PRIORITY _FIX VARCHAR(20) ™ DAY INT(2)
"
WEDC DESCVARGHAR(E) : REPRODUCIBILITY V ARCHAR(30) I :’:;i ’s:cltzrc)x-«m(m)
| RESOLUTION VARCHAR(20) | o
THE DATE - I SEVERTTY VARCHAR(20) : TIME DATE =
L4 © STATUS BUG VARCHAR(3D) —
STATUS_TEST VARCHAR(10)
1SSUE_VERSION VARCHAR(30)
TARGET_VERSICN VARCHAR(30)
IMPORT ANCE VARCHAR(45)
 KEY_TEAM INT(11) B
p——+&| KEY_PROECT INT(11) H——— J Ik_exerution_time ¥
e v I LRI VARGHAR(255) ‘ TIME_ID VARCHAR(S)
SURROGATE_KEY INT(11) | 2 KEY_EXEQUTIONTIME VARCHAR(S) } VEAR INT()
NATURAL _KEY INT(11) I { KEY_SUBMISSIONTIME VARCHAR(8) } MCNTH INT(2)
NAME VARCHAR(30) —! > KEY_L ASTCHANGETIME VARCHAR(S) — DAY INT()
PROFILE VARCHAR(30) > DAY_WEEK INT(1)
LRI VARGHAR(253) WEEK_DESC VARGHAR(19)
> TIME DATE

>

Figure 2. Development of Star Model

In order to see the contribution of the methodology, some questions (that might
be important for decision makers) were posed. The idea is whether the table of facts
can, in fact, answer such questions in a satisfied manner and useful to decision makers or
managers. Therefore, just as an example, the following questions were defined to exercise
the table of facts and the different dimensions of the DW:

1. What is the average time between the report of a defect and the test run to check if
the bug was repaired? To this question the result obtained was an average of 5.85
days. This information can be useful for the manager or responsible for project to
analyze whether the time between a request and the execution of the tests are on
schedule.

2. What is the percentage of tests executed per profile of the team? Figure 3(a) shows
the results obtained for this question. Most tests were executed by team members

203

with the position of tester, which is logical since the rest of the tests were executed
by analysts and the main function of the analyst is to develop test plans and not
to execute them. The result is consistent with the reality of a team of software
testing.

3. How severe are the defects reported? Most defects reported have minimal severity
and only 3% of the defects are of large severity. This suggests that the process of
system development is a reasonable quality control (Figure 3(b)).

4. What is the relation between testing and defect solving? Most of the reported
defects have been solved so far. Only 2% of the requests were reopened indicating
a recurrence of an already reported defect, and only 1% of duplicate requests that
are still under correction (Figure 3(c)).

mOpen

W Duplicate
W Resolved
W Analyst HNota bug
W Tester W Reopened

mSuspended

(a) Number of Executions by pro- (b) Number of tests by defect seve- (c) Number of tests by resolution of
file. rity. the defect.

Figure 3. Results of preliminary analyzes

4. Conclusions

This paper presented structuring and storing of ontology content in a DW model. We used
a preliminary ontology of software testing process that is under development. The data
analyzed refers to the test execution phase. The DW model created is expandable and
may include other phases within the process of software testing.

The model facilitates queries and can also provide strategic information that can
be used to improve the development process as well as for the process of software testing.
The model can be enriched and provide more information that can be used in decision
making. Some difficulties were encountered as lack of support for the Jena framework
and real case studies with test procedures clearly defined.

Future directions include the automation of data entry in the ontology from other
sources, model expansion to store data from other phases of the software testing process
and integration with the software development process.

Acknowledgements

FAPESP and CNPq (PIBIC) for the financial support. ITA, Brazilian Water
Agency (ANA), Brazilian Agency of Research and Projects Financing (FINEP) and the
Casimiro Montenegro Filho Foundation (FCMF) for providing the data of Project FINEP
5206/06 for this work.

204

References

Andrade, M. T. T., Ferreira, C. V., and Pereira, H. B. B. (2010). Uma ontologia para
a gestdo do conhecimento no processo de desenvolvimento de produto. Gestdo e
Produgdo, 17:537-551. http://dx.doi.org/10.1590/S0104-530X2010000300008. Ac-
cess in: Ago 2012.

Astrova, 1., Korda, N., and Kalja, A. (2007). Rule-based transformation of sql relational
databases to owl ontologies. In: Proceedings of the 2nd International Conference on
Metadata & Semantics Research.

Bastos, A., Rios, E., Cristalli, R., and Moreira, T. (2007). Base de conhecimento em testes
de software. Martins Editora Livraria, Sao Paulo, 2 edition.

Christian, S. J., Pedersen, T. B., and Thomsen, C. (2010). Multidimensional Databases
and Data Warehousing, volume 2. Morgan and Claypool, 1 edition.

Cunha, A. M. (2010). Relatério Técnico do 5° Semestre do Projeto FINEP 5206/06.
Technical report, Sdo José dos Campos.

Falbo, R. A. (2004). Experiences in using a method for building domain ontologies. In:
International Workshop on Ontology in Action, pages 474—477. Banff, Canada.

Falbo, R. A., Menezes, C., and Rocha, A. (1998). A systematic approach for build-
ing ontologies. In: In Proceedings of the 6th Ibero-American Conference on Al, IB-
ERAMIA9S. Lisbon, Portugal.

Filho, S. N. V., Moura, A. M. C., and Cavalcanti, M. C. R. (2010). Armazenamento
e manipulacdo de ontologias utilizando sistemas gerenciadores de banco de dados.
Technical report, Instituto Militar de Engenharia (IME), Rio de Janeiro.

Gruber, T. R. (1993). Toward principles for the design of ontologies used for knowledge
sharing. In: Formal Ontology in Conceptual Analysis and Knowledge Representation.
Padova, Italy.

Guizzardi, G. (2005). Ontological foundations for structural conceptual models. Telem-
atica Institute Fundamental Research Series, The Netherlands. ISBN 90-75176-81-3.

Jena (2012). Apache Software Foundation - Jena. http://jena.apache.org/documentation.
Access in: Aug. 2012.

Lamas, E., Souza, E. F., Nascimento, M. R., Dias, L. A. V., and Silveira, F. F. (2010). Or-
ganizational testing management maturity model for a software product line. In: Sev-
enth International Conference on Information Technology, ITNG’2010, pages 1026—
1031. Las Vegas, Nevada, USA.

Rios, J. A. (2005). Ontologias: alternativa para a representacao do conhecimento explicito
organizacional. In: Proceedings CINFORM - Encontro Nacional de Ciéncia da
Informagdo VI. Salvador, Bahia.

Souza, E. F. (2011). Estratégias de reuso para melhoria de processo de teste de soft-
ware baseado em ontologias. Technical report, INPE, Sdo José¢ dos Campos/SP.
http://urlib.net/SIMKD3MGP7W/3BFFA9H. Access in: June 2012.

Vysniauskas, E. and Nemuraite, L. (2006). Transforming ontology representation from
owl to relational database. In: Information Technology and Control.

205

