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The increased on demand from orbiting satellites iroperation according to the National
Institute for Space Research’s satellite program h& motivated continuous improvement
safety in the planning of routine operations in or@r to ensure the integrity of satellites in
orbit. Therefore, we propose a mathematical modeldsed on artificial intelligence concepts,
which uses algorithms developed for machine learngnin the analysis of operational data to
predict future states of satellites. The applicatio developed from this data mining predictive
model is also presented as an alternative to expéves simulators to perform prediction of
satellites operating conditions, reducing costs @ontrol activities of the satellites in orbit.

I. Introduction

here is general interest in automating satellitetrod operations related to the task of controllimgitiple

satellites in INPE “s Space Program. However, ddipgnon the demand for satellites in orbit, woutdme
impossible a critical analysis of flight operatiplans generated to control each satellite, befeeattual execution.
Thus, it becomes necessary to advance in safdlyeoplanning of satellite operations to meet thaagng demand,
using simulators to perform predictions of openmsdicsatellite states and assist experts in theuatiah of each plan
that controls the flight operations of satellites.

However, the high cost associated with the acgoisior development of satellite simulators at INRES
motivated the search for a solution combining @fficy and low cost. In this sense, a software tEsled on
mathematical analysis to make predictions of ofpmrat satellite states is being proposed. Designeemulate a
simulator in the task of generating predictionsopérational states, it can be used as a tool tpostiplecision
making, helping experts in evaluating the fligrens.

The mathematical modeling of tool, based on alborit developed in area of artificial intelligencelidated for
machine learning. The predictive model of the $itgedtates generated, perform the classificaticroeding levels
of security defined by experts, due to the behawibthe critical power supply subsystem, directffeeted by
commands contained in the control activities ofgatellites in orbit.

Hence, contributing to the improvement in secunitythe planning of operations, the proposed softwanl
contributes to the assurance the integrity of B&telin orbit, presenting as an alternative todhstly simulators, in
the predictions of satellite operational states.

This paper presents in the following section sommecepts related to the planning of the controlvitas for
satellite in orbit. Section 3 describes the toapmsed to advance in safety on operations plan@egtion 4 shows
an overview of the software architecture and disesssome data mining techniques of classificatmndhta
prediction to design the tool. Section 5 preserdiseussion about of performance between classifiggorithms to
determine the classification model that providesatgr accuracy to predict satellite future staBEclusions are
presented in Section 6.

II. Planning of Satellite Control Operations

The planning of control operations of space missiand ground segment activities for the plannixgcetion
and control of the satellite in orbit are includiedthe flight operation plan. Each flight operatiplan aims to
maintain the satellite in orbit, working to achiee goals of the mission, containing all the nsagsinformation
to control the satellite, such as: procedures Ifightf control, procedures for recovery of continges, rules, plans
and schedules. All activities included in a fligigteration plan have as their starting point thesages of the satellite
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over the Earth station. The amount of time thahtlkte is visible to a given Earth station deteres the set of
flight operations that should be performed duriaghepass. Among the activities to control for thésiod is the
sending of commands from the ground (telecommaandt), the reception of telemetry which indicatesdgbaeral
state of the satellite.

The set of actions contained in a plan to be set# @irectly on data critical to maintenance of Hagellite
integrity such as data related to power supply y&tesn. In this way, depending on the demand fazllgas in
orbit, a careful validation of these plans can beeanviable.

To improve safety in the planning of satellites tcohoperations, the use of satellite simulatoss iadicated in
the literature produced by the space communityaliee simulators are able to represent accuratelygdtellite
behavior. However, the development of simulatov®lves high cost due to the modeling constructibthe one or
more zubsystems, considering all the rules, réisine and also the generation of the satellite kadge base by
experts.

lll.  Tool to Advance in Safety on Operations Planning

To advance in safety on operations
planning, a software tool called Architectur
of Generation Diagnostic was designed as %
alternative to use of simulators for predictin ]
satellites operational stafes Based on >
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data in orbit. The Fig. 1 shows as the to ChdBervite
acts in operations planning.
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tool, indicating the level of operational safet _ | Satelite;Siatas S
Ground Station = e — anner
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planners in the planning of routine operatiot
(Fig. 1). It is designed on the basis ¢
appropriate assurance techniques for spi
systemd

The mathematical model of predictior
classifies operational states, from tF
comparison between the telemetry valu
coming from satellite with telemetry value
and respective operating states classified eFigure 1. Diagnostic Generation tool: situation irthe
stored in a database previously supervised operations planning.
experts, according to the model that descrik .
the power supply subsystem.
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IV. Construction of Mathematical Model for Prediction

Prediction is one of the basic inference tasksnme tmodels, in which the posterior distribution thie future
state is calculated, given all the evidence to.datedictive models have been widely used for Imgldools to
support decision making.

Data mining is a method, in which the ultimate gegirediction, and represents a process develapexamine
routinely large amounts of data collected in seatlhonsistent patterns and/or systematic relalipssbetween
variables. Techniques for finding and describimg&tral patterns in data have developed withirel known as
machine learning, where different styles of leagnappear, depending on the data mining applicafldrase
applications where the predictive model requirgsidgment needed to inform future decisions, a diaaton
learning scheme takes a set of classified exanplaming data) from which it is expected to leanway of
classifying unseen examples (test data)

A classification technique (or classifier) is atgysatic approach to building classification modedsn an input
data set. Each technique employs a learning dhgorib identify a model that best fits the relatioipsbetween the
attribute setifiput) and class labeb(tpu) of the input data. The model generated by a iegralgorithm should
both fit the input data well and correctly predin¢ class labels of records it has never seendeftierefore, a key
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objective of the learning algorithm is to build netsl with good generalization capability; i.e., migdéhat
accurately predict the class labels of previouslynown records

To construct the prediction model most suitable d@ssification of the satellites operational stati is
necessary to perform a process of knowledge disgdmesupervised databases of satellites. Thusrehitecture

formed by software
components and the :
_ Classified Satellite States )
Moel Setup |
Training Data

sequence bhetween
them, which
compose the process satetite
steps for the

Supervised Database

Maintenance
and Service

diagnostic \/\\\ Saistaan Load Training Data

. Telemetry
generat|0n was Training and | Training and | Training and| Training and | Trainingand | Training and
desi gn ed. The Test Data TestData | TestData Test Data Test Data

architecture of the
tool is shown in Fig.
2 and the process
steps are described
in the following

sections.
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(instances) of

classified examples
is partially shown in

Table 6. These input Table 1. Input data from the virtual satellite XSAT

DATETIME SAG PSAG FFL1 FPL2 PAV BAT VBAT QEAT CBAT IBAT DO STATE
data used as studyrsasoro 1seTo] Sow | 1800 100 75| FULL | 50 B0 12 ] 0 | SAFES
case. consists on|l¥#2010 123040 [ SUN | 1600 100 715 | FUIL | 50 60 13 0 0 | SAFES

L 1942010 12:3L:10[ SUN | 1600 100 715 | FULL | 30 B0 1.2 [] U | SAFES
attribute set of |1sun010 123140 5TR 1600 100 715 FULL 30 60 12 0 0 SAFES
; 19472010 12:32:10[ SUN | 1800 100 75| FULL | %0 &0 1.2 ] U | SAFES
telemetries, 19/4/2010 12:32:40 [ ECL i 100 ] oI5 50 55,54 12| 1947 0| SAFES
parameters and | 1942010 12:33:10 [ ECL i 100 Ei DIE | 2586 | 5968 17 | 1557 | 001 | SAFES
. I 19/4/2010 12:33:40 [ ECL i 100 883 DIS | 4573 | 3951 12 | 1958 | 001 | SAFES
operational limits of |isuamn 12 ECL 0 100 -883 DIS | 4959 | 5933 17 | 1983 | 001 | SAFES
i ifi 19/42010 ECL i 100 883 DIS | 4946 | 5918 12 | 1968 | 001 | SAFE3

a simplified model 19/4/2010 ECL [ 100 883 DIS | 4937 | 5802 | 12 | 1874 | 001 | SAFE3
of a Power Supply 12010 SUN_| 1600 100 715 | (BG | 4508 | o4 | 17 1454 | 001 | SAFE3
191412010 SUN | 1600 100 75| CHG | 4938 | 59.06 12 1451 | 0,01 | SAFE3

&)

715 CHG 4538 59.38 12 14,48 001 SAFE3S

Subsystem (PSS) of|isumon

ST 1600 100

; : 19/42010 SON | 1600 | 100 75 | CHG | B4 | s 11 | 1445 | 001 | SAFES
a V'retual satellite | 5,000 123740 SR Te0 106 75 | CHG | 539 | 962 | 12 | 144 | 001 [SAFES
XSAT". Each |iss2010 123810 508 | 1600 100 715 CHG | 4969 | 59.14 12 14,59 1] SAFES
19/472010 12:50:10 [ SUX | 1600 | 100 75 | CHG | $55 | 9.8 | 12 | 1a52 | 001 | SAFES

telemetry data |1eunm0 125040 [ BT i 500 1585 | DIS | %935 | 893 [ 12 [ 3533 | 002 | SAFES
record i i 19/472010 12:51:10 | ECL i 100 65 | DIS | 4901 | s8.77 | 12 | 1982 | 0.00 | SAFES
eco dis assoc ated 19/42010 12:5140 [ ECL i 100 565 | DS | 4857 | 586 12| 1988 | 0.00 | SAFE3
with classification of |1ss200 125210 B i 100 885 | DI5 | 4883 | 5843 | 12 | 1993 | 003 | SAFES
. | 19a010 125240 [ EcL i 100 $85 | DIs | 487 | 5827 | 12 | 1999 | 0.03 | SAFES
satellite SECUTItY |1gunp0 125310 [ EcL 0 100 385 | DIS | 4856 | 581 | 12 [ 2005 | 0.03 [ SAFES

715 CHG 4842 5822 12 1477 0.03 SAFES

level AFE2 n 19742010 12:53:40( ST 1600 100 ]
evels S and 715 CHG 4852 58.35 12 14.74 0,03 SAFE3

19/42010 12:54:10( SUN 1600 100

| | | | nf wa || i [n e [uaf wa ua) Ll uafa] calin | e [ | us | en us| el wal waf eaf ua) ua)

SAFE3 (STATE |1oun010 125 1600 100 75 | CHG | 9862 | .47 | 12 | 1871 | 003 | SATES
19/42010 600 | 100 715 | CHG | 4872 | 5859 | 12 | 1467 | 002 | SAFES
class label). 191472010 600 | 100 715 | CHG | %88 | 871 | 12 | 146 | 002 | SAFES
191472010 600 | 100 715 | CHG | 4853 | 5881 | 12 | 1461 | 002 | SAFES
. 19472010 13:44- i 800 15 [ 1595 | DS | %735 | 5639 | 12 | 3713 | 006 | SAFED

B. Processing 19/4/2010 13:45:10 [ ECL i 100

I [

-883 DIs 47 5622 12 -20.71 0.06 SAFE2

datasets using the
machine learning
algorithms

The supervised dataset shown on the Table 1 wakassset of input data for learning algorithms. étimod to
random subsampling called cross-validation.was tsé@ndle the input set for all classifiers algon’. Due to the
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proven effectiveness was selected the 10-fold erakdation method, which the data was segmentedlf equal-
sized partitions. During each run, one of the pars is chosen for testing, while the rest of thara used for
training. This procedure is repeated 10 times abehch partition is used for test exactly once.

Each one of the six classifiers algorithms (Fig. Q)itable for binary classification, representslifierent

classification learning scheme (Table 2)7apie 2. Classification model and classifier corrgmnding
generating its own classification model. The

classifiers algorithms used are an integral part Classification Model Classifier Algorithm
of the Waikato Environment for Knowledge Decision Tree 148
Analysis (WEKA), a suite of machine learning

software written in Java, containing the same Neural Network LVQ2_1
evaluation module used to evaluate the Bayesian NaiveBayes

performance of the classiffer )
The Figure 3 below shows the output of J4g | SuPport Vector Machine SMO
one of the classifier used to prognosis of the Nearest Neighbor KStar
satellite state, which to begin with the decision
tree model, number of rules founded and size of
the tree. Also, performance statistics measures
are included as correctly and incorrectly clasdifiestances, error functions.

Rules JRip

C. Evaluation of classifiers

As algorithms classifiers
used are based on dif‘ferert:; Run infornatLon e 45 C 025
o cheme: weka. classifiers.trees. - . -
methods of predictive| Riation: PSS

classification (Table 2), the| Instances: 214

e H H Attributes: 12

classification of the satellite| G5 " psic ppLi PPz PAV  BAT  VBAT BAT  CBAT IBAT DD STATE
states for the same set dfTest node: 10-fol d cross-validation

training data and test (Table 1) === qassifier model (full training set) === J48 pruned tree
presented differences iN VBAT <= 47.72: SAFE2 (109.0/3.0)

performance between the Sik VBAT > 47.72: SAFE3 (105.0/3.0)

classifiers. The performance nunber of Leaves : 2

measurements are obtainedsize of the tree : 3

from a defined set of statistica) Time taken to build nodel: 0.05 seconds

functions to evaluate &

=== Stratified cross-validation ===

classifief.  Therefore, the| === summry ===
i i Correctly Cassified Instances 202 94.3925 %
|ndu_ctors used In_d_Ude the SameI ncorrectly Cassified Instances 12 5.6075 %
routine containing these kappa statistic 0.8879
functions, as shown in Fig. 3 tg Vean absolute error 0. 0792

e .. Root nean squared error 0.2317
the classifier J48. The statisticgl rel ative absol ute error 15.8356 %
functions defined to evaluate Root relative squared error 46. 3509 %

. Total Nunmber of Instances 214
classifiers are:
=== Confusion Matrix ===

e Confusion matrix; a b <. classified as

e Accuracy and Error rate; 101 4| a=SAFE3

« Kappa statistic; 81011 b=SAFE

e Other functions  error Figure 3. Output from J48 classifier algorithm.
statistics for evaluation of

classifiers.

Hence, it became necessary to include in the tatiitacture (Fig. 2) a procedure for comparing ¢lassifiers
performance, in order to select the predictive rhadt better perform in the classification of thatellite states to
unknown instances (data test).

Performance evaluation of a classifier is basethencounts of test records correctly and incoryegtedicted
by the model. These counts are tabulated in a tai& as confusion matrix. The Table 3 shows thefuion
matrix of the six classifiers (Table 2), used tassify XSAT satellite states.
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Each entrye; in the Table 3

Table 3. Confusion matrix for all classifiers

denotes the number of records from J48 Class = SAFE3 Class = SAFE2 Total
class SAFE3 predicted to be class Class = SAFE3 g =101 g =4 105
SAFE2. For instanceg is the Class = SAFE2 € =8 g =101 109
number of records from class Total 109 105 214
SAFE2 predicted incorrectly LvVQ2 1 Class = SAFE3 Class = SAFE2 Total
predicted as SAFE3. Thus, based dan__Class = SAFE3 &i =99 6 =6 105
the entries in the confusion matrix|___Class = SAFE2 8 =5 g =104 109
the total number of correct Total 104 110 214
predictions and total number of NaiveBayes Class = SAFE3 Class = SAFE2 Totg
incorrect predictions of each mode}—C13SS = SAFES €i=99 6 =6 105
. Class = SAFE2 e = g =107 109
was calculatel From these matrix
elements is possible also get th Total 101 113 214
. i SMO Class = SAFE3 Class = SAFE2 Total
performance metrics such  a$sss = SAFE3 e = 100 6 =5 105
accuracy for each model and theé ™ czss = SAFE2 e =4 e, = 105 109
error rate values, shown in Table 4. Total 104 110 214
Most classification algorithms KStar Class = SAFE3 Class = SAFE2 | _Total
seek models that attain the highest Class = SAFE3 e = 100 g = 105
accuracy, or equivalently, the lowest  Class = SAFE2 g =5 g =104 109
error rate. Then, evaluating in termsg Total 105 109 214
of percentages, the accuracy and JRip Class = SAFE3 Class = SAFE2 Total
error rate values for each classifief,  Class = SAFE3 ei =100 € =5 105
we can say that the classifier  Class = SAFE2 8 = g =104 109
NaiveBayes shows the bettet Total 105 109 214

accuracy value (96,2%) and minor
error rate (3,7%) followed of the

Table 4. Accuracy and Error rate performance metrics

SMO classifier (95,7%) and (4,2%). Classifiers Accuracy (%) Error rate (%)
The worse accuracy and error rate J48 94.3925 % 5.6075 %
associated was the J48 classifier LvQz_ 1 94.8598 % 5.1402 %
(94,4%) and (5,6%). NaiveBayes 96.2617 % 3.7383 %
Other key measure for Eg"to gg-;g‘;"l‘g’ jéggng

H e ; ar . 0 . (4
evaluating classifiers is Kappa IRip 95 3771 % 16729 %

statistics or Kappa coefficient. A

measure of agreement used in
nominal scale, that gives us an idea of how muelotiservations deviate from those expected dulkaooe, giving
us so how legitimate interpretations .afhis observer disagreement is indicated by how relese classify
individual subjects into the same category on tleasarement scalBuring in run, each classifier assigned items to
one of two classes SAFE3 and SAFEZ2, but the numbendividuals assigned to each class by classHier
disagree (see Table 3).

The values of Kappa are interpreted as the maximiufnwhen agreement is perfect, 0 when agreememb is
better than chance and negative values when agnteismievorse than chance. Other values can be rgughl
interpreted &s

« Poor agreement = Less than 0.20 Table 5. Kappa coefficient values provided by thelassifiers

* Fair agreement = 0.21 to 0.40 Classifiers Kappa Agreement

* Moderate agreement = 0.41 to 0.60 J48 0.8879 Very good

« Good agreement = 0.61 to 0.80 LvQz_1 0.8971 Very good

* Very good agreement = 0.81 to 1.00 NaiveBayes 0.9252 Very good

Kappa measures the percentage of data Egﬂtgr 8'2322 xz;y gggg

values in the main diagonal of the confusipn JRip 0'9065 Verz good
matrix (Table 3) and then adjusts these values :

for the amount of agreement that could be expedtedio chance alone. In Table 5, the kappa coefficialues of
each classifier are reported and interpreted.

When the results of accuracy, error rate or kappang classifiers show very similar or even identices
observed in KStar and JRip, becomes necessaryetothsr statistics functions for additional measuceevaluate
classifier§. They are: Mean Absolute Error, Root Mean Squétedr, Relative Absolute Error and Root Relative
Squared Error. The values obtained for each meamunteare presented in Table 6 below:
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The results of the performance

V. Discussion

Table 6. Other statistical functions to evaluate ezh classifier quality

metrics presented in Table 4 show Mean Root M Relati Root Relative

that all classifiers had accuracy in  Classifier Absolute | ¢ 00 deEan Ab f?"ée Squared

the classification of states around Error quared &ror solute rror Error

95% and an error rate around 5%. J48 0.0792 0.2317 15.8356 % 46.3509 %

the range (0.81 to 1), whose e e 0a0st e | 4loirro

; ; H . . . () . (

:;]etﬁ::gse ta;uhoen n?jmg: ;greci?:ggg KSt_ar 0.0601 0.1948 12.0209 % 38.9689 %

answers very close to the maximun JRip 0.0732 0.2132 14.634 % 42.643 %

value of 1 (Table 5), i.e. an

excellent concordance in

comparison to the existing| 190%

classification in the training set. All| 90% -

metrics used to compare the gow |

classifiers  performance are 400 | o s

presented in Figure 4 below: 60% | mLvQ2 1
The results indicate that all the O NaiveBayes

classification models used showed oSMO

reliability around 95% in the | 40% mKStar

prediction. However, for this case 30% - @ JRip

study, the stochastic classifier 20 |

algorithm NaiveBayes presented ., |

better results, indicating the 0% |

BayESIan ) methOd as the beSt Accuracy Error Rate Kappa Mean Root Mean Relative Root

classification model generated tg Absolute  Squared  Absolute  Relative

predict future satellite states with a Error Error Eror  Squared

confidence degree higher than 96%. Errer

However, the modifications ingigyre 4. Graph comparing the statistics of the cissifiers.
telemetry and parameters

describing the power supply for each satellite ob@e necessary to perform again the processing maddérning
data sets using the algorithms and evaluate o$itis for determining the classification modektwihe highest
accuracy, explaining the sequence of componerigire 2.

VI.

Designed as an alternative to use of expensivelaiorg to predict operational states of satellitesrbit, this
paper presented to build the mathematical modalp&diction tool, based on machine learning allgors and data
mining techniques in artificial intelligence, totalm a model able to provide greater accuracy endiagnosis of
these states, to increase security in maintairiagrtegrity of the satellite.

Thus, it was realized a comparative study of pemnforce between classifiers algorithms used in datdigiion
to determine the classification model that providgeater accuracy to predict satellite future stat€he
classification model consist on the design of aioteon tool, developed to performs data predictidra critical
platform subsystem, directly affected by the actioontained in each flight operation plan gener&tezbntrol and
track satellites. In addition, the tool assistsezipin impact analysis of each plan’s action endatellite behavior.

Other significant contribution of the Diagnosis @eator tool is related to decision support makjpgyviding
effective support to experts, and representing Gwrarece in safety of the satellite control actiwfiespecially
considering multiple launchings planned for therrfeéure, when a careful evaluation of these pld&sfore real
execution would be impossible.

Conclusion
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