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ABSTRACT

For problems in celestial mechanics that involve close encounters, it is necessary to determine
the region where the gravitational influence of a body prevails over the influence of other
bodies. From this need comes the concept of the sphere of influence. The models most used
for the calculation of the radii of these spheres are the Hill sphere and the Laplace sphere. These
are determined in terms of constant parameters, resulting in a fixed-size sphere, independent
of the conditions of the encounter. In this paper, we present a numerical model for the sphere
of influence, whose radius has been defined in terms of the initial relative velocity of the
encounter, and of the mass ratio of the system considered. The same idea was applied to
the delimitation of the regions where the phenomenon of temporary gravitational capture
occurs, for some given initial conditions. With this goal, a numerical study was made through
integrations of the restricted three-body problem and by monitoring the energy variation of
the two-body problem. This study resulted in a complete mapping of the influence and capture
regions, considering systems with a mass ratio from 10−1 to 10−12, with the empirical functions
for the calculation of these limits, called the capture radius and the influence radius.

Key words: methods: numerical – celestial mechanics – Solar system: general.

1 IN T RO D U C T I O N

The problem of close encounters occurs when the movement of a
body takes place in the vicinity of another body, which is massive
enough to be able to influence and change its orbital evolution.
In the Solar system, for instance, it is known that the Sun has a
much larger mass than the other bodies in it, being in gravitational
terms the dominant body. The movement of a particle with relatively
small mass, such as an asteroid or a spaceship, in this system, is
described by the equation of its Keplerian movement around the
Sun, considering the other bodies as disturbing elements. However,
if at some moment this particle approaches a planet or another body
with significant mass, the gravitational influence of that body will
prevail temporarily over the gravitational influence from the Sun.

The concept of the sphere of influence comes from this need to
restrict the region in which the gravitational influence of a body
prevails over the gravitational influence of other bodies. The most
known and used models of the sphere of influence are the Hill sphere
(Hill 1878) and the Laplace sphere (Roy 1988). Some examples of
their applications are the following: the issues of the determination

�E-mail: ran.araujo@gmail.com; ocwinter@feg.unesp.br; prado@dem.
inpe.br; rvm@on.br

of orbital stability zones, usually given in terms of the Hill radius
(Hamilton & Burns 1991; Domingos, Winter & Yokoyama 2006);
studies of the formation of giant planets (Kornet, Wolf & Rózyczka
2006); in particular, problems that involve orbital manoeuvres with
spacecraft, as in the case of gravity-assisted or swing-by manoeu-
vres (Broucke 1988; Prado 2001). This type of manoeuvre has been
used in space missions to explore the Solar system. Examples of
some missions using the gravity-assisted manoeuvre are the fol-
lowing: the mission Mariner 10, in 1974, in which the spacecraft
reached the planet Mercury, by making use of the gravity of Venus
(Dunne 1974); the missions Voyager I and Voyager II, in 1977,
to explore the Jovian and Saturnian systems, which made succes-
sive gravity-assisted manoeuvres with the inner planets as well as
with the visited planets (Kohlhase & Penzo 1977); the Ulysses mis-
sion, which consisted of the exploration of the Sun and employed
a gravity-assisted manoeuvre with Jupiter to achieve a trajectory
extending to high solar latitudes (Wenzel et al. 1992). Recently,
the Cassini–Huygens mission achieved its goal, reaching Saturn
after some swing-by manoeuvres with Venus (twice), Earth and
Jupiter (Peralta & Flanagan 1995). The success of these missions
justifies the increasing interest in this manoeuvre, and consequently
in the phenomena and concepts involved in close-approach prob-
lems, such as the sphere of influence and temporary gravitational
capture.
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It is known that the considerations and approaches made in the de-
duction of the Hill and Laplace sphere of influence models allow us
to calculate the radii of such spheres by taking into account the mass
ratio and the distance between the main bodies. As these parameters
are practically constant, the radii obtained have fixed sizes. They
are completely independent of the orbital evolution of a particle that
is under the gravitational attraction of these two bodies. However,
it is intuitive to think that by considering the relative velocity and
the distance of an encounter between the particle and the secondary
body, it is possible in practice to distinguish three regimes for the
influence from the secondary body. The first regime consists of the
temporary gravitational capture of the particle. In such a condition,
the gravitational influence of the secondary body prevails over the
influence of the central body and, in terms of the two-body prob-
lem energy, this phenomenon will be characterized by the signal
of this energy relative to the secondary body. It is negative in the
case of a captured particle, and changes to positive when it has an
opened orbit around this body, which means that it has escaped
from capture. The second regime takes place in the region where
the particle is no longer captured, but it passes at a distance small
enough to suffer a significant influence, which is characterized by a
variation in the two-body problem particle-central body energy. As
this distance becomes larger, the gravitational influence decreases,
until it has a value that can be considered not so significant, and an
approximation of the two-body problem particle-central body can
be made (third regime).

Thus, based on such characteristics, we can think in terms of a
new model of the sphere of influence, obtained through the analysis
of the variation of energy of the two-body problem, and given as a
function of the relative velocity of the encounter.

(i) When the relative velocity is high, such a sphere of influence
radius is smaller.

(ii) When such a velocity is small, the sphere of influence radius
is larger.

Taking this into account, in this paper we present a new approach.
Here, we apply the idea of limiting a region of significant grav-
itational influence, but this time considering in its definition the
conditions of the encounter, in particular the relative velocity of the
particle at the encounter. The same technique applied to the study
of the temporary gravitational capture mechanism takes us to the
definition of the regions of capture, whose limits are also given ac-
cording to the relative velocity of the encounter and of the system’s
mass ratio. This study has resulted in a complete mapping of the in-
fluence and capture regions, considering systems with a mass ratio
from 10−1 to 10−12, based on the theory of the two-body problem
and the circular restricted three-body problem, and culminating in
the acquisition of the functions for the calculation of the influence
radius and the capture radius, limits that are the borders of these
regimes.

The structure of this paper is as follows. In Section 2, we present
the initial considerations and the initial conditions of the problem.
In Section 3, we present numerical results and discussions about
the temporary gravitational capture. In Section 4, we present the
results for the same technique applied to the study of the sphere
of influence. In Section 5, we present our conclusions, with an
overview of the results presented in the previous sections.

2 IN I T I A L C O N S I D E R AT I O N S

Three bodies are considered: M1, the most massive body, here called
the central body; M2, a less massive body, having a circular orbit

around M1, here called the secondary body; M3, a particle (P) of
negligible mass, which also has an orbit around M1. If M1 is much
larger than M2, the largest part of the particle’s movement around
the central body is described according to the theory of the two-
body problem. Thus, the restricted three-body problem is considered
only when the particle approaches M2. Therefore, the analysis of
the energy of the two-body problem seems to be a good criterion
to determine the regimes of gravitational capture or of significant
influence of the secondary body.

For the integrations required for the calculation of this energy,
two reference systems were introduced: the synodic and the inertial
reference systems. The inertial reference system (ξ , η) is a fixed
system, whose origin is in the barycentre of the system: μ1 = 1 −
μ2 with μ2 = M2/(M1 + M2). The axis ξ is the axis along the
line that connects M1 to M2 at the instant t = 0, which corresponds
to the instant when M1, M2 and M3 are aligned. The axis η is
perpendicular to the orbital plane of the two masses. In this reference
system, both M1 and M2 have a circular orbit around the barycentre
of the system. Because of this characteristic, it is convenient to
introduce the synodic reference system (X, Y) defined so as to follow
the movement of the main masses. In this system, the direction of
the axis X is chosen in such a way that the main bodies are always
on it, and the axis Y is perpendicular to X. This system rotates with
an angular velocity equal to the mean motion, n, of the primaries.
From these definitions, we can conclude that when t = 0, the inertial
and synodic systems coincide.

Fig. 1 illustrates the initial configuration considered. The distance
d is the approach parameter, and corresponds to the distance between
the particle and the secondary body when t = 0. Because in this
instant the particle is on axis X, its initial position in the synodic
system is given by

X = μ1 + d, Y = 0, (1)

and its initial velocity components are

Ẋ = 0, Ẏ = VP − nX. (2)

The particle–secondary body relative velocity (υ) is the difference
between the particle’s velocity (VP) and the secondary body’s ve-
locity (V2), which is

υ = VP − V2. (3)

Here, V2 is the linear velocity of the secondary body, given by

V2 = nμ1. (4)

Thus, from equations (1)–(4) we have the initial conditions of the
particle used in the integrations, given by

X = μ1 + d, Y = 0, Ẋ = 0, Ẏ = υ − d. (5)

M1
M2

P

d PV

System’s
barycenter

2 1

 Y

 X

Figure 1. Initial configuration.
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Sphere of influence: dynamical approach 677

The numerical values that we input into the integrations are given
in a system of adimensional unities, defined in such a way that the
distance between the central body and the secondary body equals
1, as well as the sum of the masses of the system, which is μ =
μ1 + μ2 = 1. The system rotates with period 2π, and so the angular
velocity of the rotation of the system is also unitary, or n = 1.

3 T E M P O R A RY G R AV I TAT I O NA L C A P T U R E

The gravitational capture mechanism has many applications in ce-
lestial mechanics. It was used, for instance, to justify the existence
of the irregular satellites of the giant planets (Peale 1999). Later, it
was shown that, in this problem, the increase in the mass of Jupiter
was one of the factors responsible for making the capture permanent
(i.e. satellites; Heppenheimer 1975; Heppenheimer & Porco 1977;
Brunini 1995; Vieira Neto, Winter & Yokoyama 2004). It also has
an important application in the techniques for manoeuvring with
space vehicles, where orbital transfers are made by using gravita-
tional interaction, resulting in the reduction of fuel consumption
and, consequently, in the reduction of mission costs, which justi-
fies the special interest in this phenomenon (Belbruno 1987, 1990,
1994; Belbruno & Miller 1993; Krish 1991; Krish, Belbruno &
Hollister 1992; Miller & Belbruno 1991; Belbruno & Miller 1990;
Yamakawa 1992; Yamakawa et al. 1993).

Gravitational capture can be understood as the phenomenon in
which a particle approaches a massive body from a great distance
and so remains for a lapse of time, not getting any further. This
capture time depends on the problem being considered. Permanent
capture is possible, for instance, in the restricted hyperbolic problem
(Sizova 1952; Merman 1953). However, in the restricted circular
and elliptical three-body problem, permanent capture is not possible
(Fesenkov 1946; Yegorov 1960; Sung 1969; Tanikawa 1983), thus
the name ‘temporary gravitational capture’.

An important definition for the numerical approach to temporary
gravitational capture presented in this paper is given by Yamakawa
(1992). Yamakawa relates this phenomenon to the two-body prob-
lem energy, and says that if the energy of a particle relative to a
celestial body is initially positive (hyperbolic movement) and then
it becomes negative (elliptical movement) it can be considered that
capture has occurred. Thus, while the particle is temporarily cap-
tured by the secondary body, the relative energy between these two
bodies will be negative. When it escapes from that capture and starts
to orbit the central body, the particle–secondary body energy will be
positive. This condition is shown in the example of Fig. 2, where we
can see that the particle–secondary body energy of a particle with
υ = 0.0050 in a system with mass ratio μ2 = 10−7, which passes
at a distance d = 0.00287, is initially negative, but after a lapse of
time it becomes positive (Fig. 2a). According to the definition of
Yamakawa, this means that it was temporarily captured and then
escaped, going to an orbit relative to the central body. This situation
is better visualized in a graph of the trajectory of the particle in a
planetocentric system, which is a fixed system with the secondary
body in the origin. We can initially see the particle performing laps
around the secondary body, which means it is captured, but later it
backs off, indicating that it has escaped (Fig. 2b). Fig. 2(c) shows
an interesting behaviour of the two-body energy (particle–central
body), which agrees with what was said above. We can see that while
the particle remained captured, this energy varied greatly, because
of its approaching and backing off to the secondary body movement
in that period of time. Some time after the moment at which the par-
ticle escaped, indicated by a point, the energy becomes practically
constant, indicating that the secondary body stopped influencing the
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Figure 2. Particle with υ = 0.0050, d = 0.00287 and μ2 = 10−7. (a) Two-
body problem (particle–secondary body) energy, for integration time equal
to 11 orbital periods of the secondary body. (b) Trajectory in a planetocentric
system, for integration time equal to 11 orbital periods of the secondary body.
(c) Two-body problem (particle–central body) energy, for integration time
equal to 20 orbital periods of the secondary body.

particle and the problem became essentially a two-body problem
(particle–central body).

Thus, in this section we monitor these energies, considering sys-
tems with a mass ratio from 10−1 to 10−12, and particles with dif-
ferent initial relative velocities. We have found the value of the
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approach parameter d when the transition between capture and no-
capture occurs, defined as the capture radius (RCap).

3.1 Numerical integrations

Using the Gauss–Radau integrator (Everhart 1985), a routine was
written to perform numerical integrations that provide the value of
the two-body energy (particle–secondary body) in a dynamics of
three bodies, along the integration period. In this program, we input
the equations that define the initial conditions given by equation (5),
with the system’s mass ratio, with the value of the initial velocity of
the particle relative to the secondary body (υ) and with the approach
parameter d.

The method applied consists of keeping the system’s mass ratio
fixed, putting a particle with the initial relative velocity to the sec-
ondary body υ also fixed in this system, and then increasing the
value of the distance d from the secondary body that it passes. For
each value of d, we analysed, through the variation of the two-body
problem energy and the trajectory of the particle in the planetocen-
tric system, whether the capture occurred. The value of d, for which
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Figure 3. Particle with υ = 0.0050 in a system with a mass ratio of 10−7. (a) Trajectory of the particle in the planetocentric system for d = 0.00287.
(b) Variation of the two-body problem energy (particle–secondary body) for d = 0.00287. (c) Trajectory of the particle in the planetocentric system for
d = 0.00289. (d) Variation of the two-body problem energy (particle–secondary body) for d = 0.00289.

there is no capture, is then considered as the capture radius (RCap)
for particles with the initial relative velocity and the mass ratio fixed
previously.

The following example illustrates the application of this method.
The same particle as in the example presented in Fig. 2 was con-
sidered, with υ = 0.0050, μ2 = 10−7 and for an integration time
equal to five orbital periods of the secondary body. The problem
starts with the value d = 0.00287, which, as shown before, results
in a particle initially captured, as shown in Figs 3(a) and (b). So,
increasingly, the value used for d, up to the value for which the
particle is no longer captured, is found, as shown Figs 3(c) and
(d) (i.e. d = 0.00289). From this example, we can conclude that
a particle with an initial relative velocity equal to υ = 0.0050,
in a system whose mass ratio is 10−7, will be captured if it passes at
a distance less than 0.00289 from the secondary body, and it will not
be captured if the distance is larger than this value. Thus, the value
of d that limits this condition (i.e. d = 0.00289) is then considered
to be the capture radius (RCap).

This procedure, applied to a large number of initial conditions,
allows the acquisition of a model in which the capture radius is
obtained as a function of υ and μ2 [i.e. RCap(υ, μ2)].
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Figure 4. Capture radius as a function of the particle–secondary body rel-
ative velocity, to μ2 = 10−6.

We limited our study to positive initial relative velocities and
d ≤ 0.5 Hill radius, as such limits are enough to guarantee its
application.

3.2 Numerical modelling of temporary gravitational capture

Integrations for 12 mass ratios, from 10−1 to 10−12, were made.
These values basically comprise the mass ratios found in the Solar
system, as well as in the Pluto–Charon system, where the mass ratio
is about 10−1, passing to the Sun–planets mass ratio, and ending up
with extremely small mass ratios, of about 10−12, such as those that
can be found in the system formed between Saturn and its smaller
satellites.

For each of these mass ratios, after a significant number of simu-
lations, a curve like that shown in Fig. 4, made for μ2 = 10−6, was
obtained. Each point of this graph was obtained following the steps
presented in Section 3.1.

A linear fit (solid line) takes us to the equation of this curve,
which corresponds to the function for the calculation of the capture
radius as a function of the relative velocity, RCap(υ), given in the
Hill radius. For the system with mass ratio 10−6, this is given by

RCap(υ) = 1.208 − 29.847υ. (6)

The curves for all the mass ratios are shown in Fig. 5. As in the
example of Fig. 4 and equation (6), each of these curves provides a
function

RCap(υ) = ACap − BCapυ, (7)

with their respective coefficients ACap and BCap given in columns 2
and 3 of Table 1. With these results, we already have the capture
radius as a function of the relative velocity. Now, we want to obtain a
single function that expresses it, not just depending on this velocity,
but also on the system’s mass ratio.

Primarily, we note that the coefficient ACap varies very little as a
function of the mass ratio, being almost constant, around the mean
value:

ACap = 1.219 ± 0.036. (8)

Unlike ACap, it is noticeable that the coefficient BCap varies consid-
erably, as the mass ratio decreases. Thus, it is necessary to express
this as a function of the mass ratio. In order to do this, we consider
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Figure 5. Capture radius as a function of the relative velocity: (a) mass
ratios from 10−1 to 10−6; (b) mass ratios from 10−7 to 10−12.

Fig. 6, created using the data from columns 1 and 3 of Table 1.
A logarithmic scale on the two axes was adopted, resulting in a
straight line. Such behaviour suggests a relation of the kind

BCap(μ2) = αμ
β

2 . (9)

The coefficients α and β are obtained through a linear fit in this
curve: α = 0.3532 ± 0.0162 and β = −0.3246 ± 0.0027. Thus, the
coefficient BCap relates to the mass ratio μ2 through

BCap(μ2) ≈ 0.35μ−0.32
2 . (10)

The errors between the empirical values of BCap and the values
obtained through this equation are given in Table 1. Therefore, from
equations (8) and (10), we found that the mathematical function that
expresses the capture radius as a function of the mass ratio and the
relative velocity is approximately given by

RCap(υ,μ2) ≈ 1.2 − 0.35μ−0.32
2 υ. (11)

The unity of the capture radius calculated through this function is
the Hill radius.
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Table 1. Coefficients ACap and BCap of equation (7) and the values for the
coefficient BCap obtained through a linear fit with their respective errors.

Mass Coefficient Coefficient Coefficient BCap Error
ratio ACap BCap linear fit per cent

10−1 1.301 0.897 0.746 20.2
10−2 1.282 1.573 1.575 −0.2
10−3 1.232 3.099 3.325 −6.8
10−4 1.216 6.572 7.021 −6.4
10−5 1.209 14.042 14.826 −5.3
10−6 1.208 29.847 31.306 −4.7
10−7 1.199 63.688 66.103 −3.7
10−8 1.195 136.532 139.579 −2.2
10−9 1.201 295.063 294.728 0.1
10−10 1.190 630.978 622.330 1.4
10−11 1.195 1363.655 1314.077 3.8
10−12 1.201 2942.123 2774.730 6.0
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Figure 6. Coefficient BCap as a function of the mass ratio, in a logarithmic
scale.

3.3 Analytical approach

In order to interpret our numerical results, in this section we make
a comparison between these and what is expected from the circular
restricted three-body problem. From such a theory, it is known that

V 2 = 2U − C, (12)

where V2 is the square of the particle’s velocity in the synodic ref-
erence system, C is the Jacobi constant and U is called the ‘pseudo-
potential’, given by

U = 1

2
(X2 + Y 2) + μ1

r1
+ μ2

r2
. (13)

Considering the particle’s initial condition, and that d and μ2 are
very small, the approximations μ1 ≈ 1 and r1 ≈ 1 are valid. Using
this consideration in equation (13) we have that

2U ≈ 3 + 2μ2

r2
. (14)

For the particle, r2 ≈ d, and so, from equations (12) and (14):

V 2 ≈ 3 + 2μ2

d
− C. (15)

However, if a capture is required, the value of the Jacobi constant
C should be approximately the value of such a constant at the sec-
ond Lagrangian point C(L2). Considering again the approximations
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Figure 7. Comparison between the numerical and analytical models for
capture radius, as a function of the velocity (V or υ), considering μ2 =
10−6.

above, it is possible to show that for this Lagrangian point, r2 ≈
(μ2/3)1/3, which is the definition of the Hill sphere of influence
radius (RH), (see, for example, Valtonen & Karttunen 2006). So,
from equations (12) and (14), and remembering that for L2 in the
synodic reference system, V2 = 0, we have

C(L2) ≈ 3 + 2μ2

RH
. (16)

Combining equation (16) with equation (15), it is possible to obtain
a function that approximately gives d for capture cases in the Hill
radius, as a function of the particle’s velocity in the synodic system,
according to the three-body restricted problem theory. This will be

d

RH
≤ 1

1 + (
V 2RH/2μ2

) . (17)

This value corresponds to the distance for which, given a velocity
V , C(L2) remains constant. So, when V = 0, d = 1RH, which is
exactly r2 for the Lagrangian point L2. The symbol (≤) in this
equation indicates that the numerical value obtained represents the
limit of a region where the capture occurs.

Now we compare this analytical model with the numerical model
given in Section 3.2. With this aim, in equation (17) we used the
values for the relative velocity presented in Fig. 5, remembering that
V 2 = Ẋ2 + Ẏ 2 = (υ − d)2, according to equation (5). Fig. 7 shows
the numerical and analytical results for μ2 = 10−6 considering
only prograde cases. We have found that these two models agree
with each other for small velocities, but as this value increases,
the difference becomes larger. For the mass ratios considered in
Fig. 7, for instance, the largest difference is about 15 per cent,
which corresponds to the largest velocity. This same characteristic is
observed for the other mass ratios. In all cases studied, the difference
is about 20 per cent. The largest difference occurs for μ2 = 10−2,
with a difference of 21.3 per cent.

4 SP H E R E O F IN F L U E N C E

In the previous section, we have shown that, for particles with
a given initial relative velocity, there is a distance limit that deter-
mines whether they will be captured or not; this is called the capture
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Figure 8. Variation of the two-body problem energy (particle–central body)
as a function of the time, to a particle with υ = 0.0080 and μ2 = 10−7.

radius (RCap). So, if the approach parameter is smaller than RCap, the
particle is captured. For values of d larger than RCap, there will be,
initially, a region where the particle is no longer captured, but d is
small enough for the secondary body to exercise a significant influ-
ence over it. Nevertheless, as d increases, the effect of the secondary
body perturbation decreases, as the initial particle–secondary body
relative velocity remains the same. So we have a two-body problem
(particle–central body) with almost constant energy. This evolu-
tion is shown in Fig. 8, for a particle with initial relative velocity
υ = 0.0080 in a system with mass ratio 10−7. In this example, the
integration starts with the first value of the approach parameter,
which does not result in the capture of the particle for this velocity.
Then, the value d is increased. For each of these values, the system
is integrated in time (t = 2 orbital periods of the secondary body).
We can see that for the smallest d values, the variation of energy is
very large. As d increases (i.e. as the particle gets further from the
secondary body), the smaller the variation of energy provided by
the encounter is, and so on, until it becomes practically constant,
indicating that the particle has left the sphere of influence of the
secondary body.

Next, we compute the variation of energy �E provided by each
of these encounters. To calculate such a variation, we consider the
two-body energy (particle–secondary body), when t = 0, here called
Einitial, and the same energy value at the final integration time, called
Efinal, in such way that

�E = (Einitial − Efinal)

Einitial
100 per cent. (18)

This variation is the parameter that will tell us whether the particle
with the initial conditions given was significantly influenced by the
encounter with the secondary body. The question is, what �E value
should be considered as a limit for the secondary body influence?
This is an arbitrary value, and it will depend on the characteris-
tics of the problem being studied. In this work, we fixed �E =
1.0 per cent for a significant influence of the secondary body. Thus,
in our method, if the integration for a given value of d results in an
energy variation larger than 1.0 per cent, we consider that the par-
ticle is within the sphere of influence of the secondary body. If this
variation is smaller than 1.0 per cent, we consider that it is outside
that sphere of influence. The exact value of d for which this energy
variation occurs becomes the influence radius, RInf . This value of
d is obtained through a graph like that in Fig. 9, which shows how
the energy of the two-body problem (particle–central body) varies
as a function of the approach parameter, made from the encounters

0,70 0,75 0,80 0,85 0,90 0,95 1,00

0,2

0,4

0,6

0,8

1,0

1,2

d=0.73

Tw
o-

bo
dy

 e
ne

rg
y 

va
ri

at
io

n 
(p

ar
ti

cl
e-

ce
nt

ra
l b

od
y)

(%
)

d (Hill's radius)

Figure 9. Variation of energy (particle–central body) as a function of the
approach parameter d, to a particle with υ = 0.0080 and to μ2 = 10−7.

exemplified in Fig. 8, taking intermediary values for d, in the inter-
val from 0.7 to 1.0 Hill radius. The dotted line indicates when the
variation of energy is 1.0 per cent.

Thus, the method for this study consists of keeping the system’s
mass ratio and the initial relative velocity fixed, and for these con-
ditions varying the approach parameter. For each of these values,
the system is integrated, and the variation of energy is computed.
These data are organized in a graph like that in Fig. 9, and from this
we can obtain the exact d value that leads to an energy variation
with percentage equal to 1.0 per cent, which is then considered the
radius of influence, Rinf

4.1 Numerical integrations

In the numerical integrations of this study, the routine used in the
case of the temporary gravitational capture was adapted, so that this
time it can provide the value of the energy of the two-body problem
(particle–central body), in a dynamics of three bodies, along the
period of integration. In this program, we input the same equations
that define the initial conditions given by equation (5), with the
system’s mass ratio, the initial relative velocity (υ), the value of the
approach parameter d and the integration time equal to two orbital
periods of the secondary body. As before, we limited our study to
prograde movements, and to d ≤ 0.5 Hill radius.

4.2 Results

4.2.1 Systems with mass ratio from 10−1to 10−6

The integrations made for these mass ratios have shown that there is
no region where we can consider that the gravitational influence of
one of the primary bodies can be neglected. In fact, the secondary
body will always influence the particle’s movement. This conclusion
comes straight from the analysis of the energy of the two-body
problem (particle–central body), as shown in Fig. 10(a), made for
a particle with υ = 0.370, d = 0.104 (0.70 Hill radius) and for
μ2 = 10−2. We can see that the two-body problem energy does not
remain constant, as predicted by the theory, but continues to vary
along the integration period, even when the particle is distant from
the secondary body, as Fig. 10(b) shows. This means that, for these
mass ratios, the approach of the two-body problem, with �E <

1 per cent, cannot be made. So the problem must be always treated
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Figure 10. (a) Variation of the two-body problem energy (particle–central body). (b) Trajectory of the particle in the planetocentric system, for a particle
initially with υ = 0.370, d = 0.104 (0.70 Hill radius) in a system with mass ratio 10−2. (c) Variation of the two-body problem energy (particle–central body).
(d) Trajectory of the particle in the planetocentric system, for a particle initially with υ = 0.015, d = 0.00105 (0.70 Hill radius) in a system with mass ratio
10−8.

as a three-body problem, therefore not applying to it the concept of
the sphere of influence for these cases.

4.2.2 Systems with mass ratio from 10−6 to 10−12

For these mass ratio values, the approach of the two-body problem
with �E < 1 per cent becomes valid. Fig. 10(c), which was made
considering a particle with υ = 0.015, d = 0.00105 (0.70 Hill radius)
in a system with mass ratio 10−8, confirms this behaviour. We can
see that, initially, the energy varies, indicating the action of the sec-
ondary body, but later it becomes practically constant, showing that
the secondary body stopped significantly influencing its movement.
Then, we essentially have a two-body problem (particle–central
body), with constant energy, as can be seen in Fig. 10(d).

From our simulations we found that for 2 × 10−8 ≤ μ2 ≤ 2 ×
10−6 the numerical modelling for the sphere of influence that we
propose works well. Fig. 11 shows the results for these mass ratios.
Each point of this graph was obtained through the method described
in Sections 4.1 and 4.2. Through a linear fit to each of these curves,
we can obtain the equations of these curves, which correspond to the
functions for the calculation of the radius of influence as a function

of the relative velocity (υ). Because of its linear characteristics, it
will have the form

RInf (υ) = AInf − BInfυ, (19)

with the respective coefficients AInf and BInf given in columns 2 and
3 of Table 2. The coefficient AInf is approximately constant, around
the mean value,

AInf = 1.005 ± 0.035, (20)

while the coefficient BInf varies significantly with the mass ratio.
With a graph such as that in Fig. 6, we find that this variation also
follows a relation of the kind

BInf (μ2) = αμ
β

2 , (21)

when we consider a linear fit in such a curve. In this case,
the coefficients α and β are α = 0.00057 ± 0.00023 and β =
−0.68346 ± 0.02622, and so

BInf (μ2) ≈ 0.00057μ−0.68
2 . (22)

However, it will be

BInf (μ2) = 10αμ
[β+δ log(μ2)]
2 (23)
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Figure 11. Influence radius as a function of the relative velocity υ: (a) mass
ratios from 2.0 × 10−6 to 2.0 × 10−7; (b) mass ratios from 1.0 × 10−7 to
2.0 × 10−8.

when a quadratic fit is considered, with α = −9.6050 ± 0.5607,
β = −2.6002 ± 0.1686 and δ = −0.1432 ± 0.01259, in such way
that

BInf (μ2) ≈ (2.48 × 10−10)μ−2.60−0.14 log(μ2)
2 . (24)

The quadratic fit leads to smaller errors when compared to the
linear fit, leading, in this way, to higher precision in the results, as
the values in Table 2 show. With these considerations, we finally
have that the radius of the sphere of influence as a function of the

Table 2. Coefficients AInf and BInf of equation (19) and the values obtained through a linear and quadratic fit for BInf with their respective
errors.

Mass Coefficient Coefficient Coefficient BInf Error Coefficient BInf Error
ratio AInf BInf linear fit (per cent) quadratic fit (per cent)

2.0 × 10−8 1.06 85.93 103.659 17.1 84.082 2.2
4.0 × 10−8 1.05 62.16 64.545 −3.7 62.063 0.2
6.0 × 10−8 1.04 50.10 48.923 2.4 50.543 −0.9
8.0 × 10−8 1.02 42.50 40.190 5.7 43.153 −1.5
1.0 × 10−7 1.02 36.92 34.505 7.0 37.903 −2.6
2.0 × 10−7 1.00 24.19 21.485 12.6 24.352 0.7
4.0 × 10−7 0.98 14.68 13.378 9.7 14.738 0.4
6.0 × 10−7 0.96 10.74 10.140 5.9 10.686 0.5
8.0 × 10−7 0.97 8.75 8.330 5.0 8.402 4.1
1.0 × 10−6 0.98 7.24 7.152 1.2 6.923 4.6
2.0 × 10−6 0.97 3.46 4.453 −22.3 3.647 5.1

relative velocity and the mass ratio of the system is

RInf (υ,μ2) = 1.00 − 0.00057μ−0.68
2 υ, (25)

or, more precisely,

RInf (υ,μ2) = 1.00 − (2.48 × 10−10)μ−2.60−0.14 log(μ2)
2 υ (26)

when the quadratic fit is considered.
We note that equations (25) and (26) are valid for 2.0 × 10−8 ≤

μ2 ≤ 2.0 × 10−6.
For the values of μ2 < 2.0 × 10−8, we found that �E < 1 per cent

will occur only if d < 0.5 Hill radius. This is because as the mass
ratio decreases, the particle must approach the secondary body, in
order for a variation of 1.0 per cent in energy to occur, as the
initial relative velocity remains fixed. We can imagine that, being
so small, these bodies with such mass ratios will influence very
little the movement of the particle. The central body will prevail
practically along the whole orbital period of the particle. So, we
have essentially a problem of two bodies (particle–central body),
weakly modified by the secondary body, only when the particle
passes extremely near it. This means that the sphere of influence, in
this case, considering our approach, does not exist in practice.

5 C O N C L U S I O N

In this paper, we have introduced an approach to identify the sphere
of influence and the capture radius as a function of the encounter
velocity and the mass ratio of the primaries.

The capture regions are well determined with the limits of this
regime given by equation (11), which provides what we have defined
as the capture radius, RCap.

The influence radius is defined according to a measure of the
variation of the two-body energy (particle–secondary body). Con-
sidering �E = 1.0 per cent as the border of the influence region,
we have found that there are basically three different regimes.

For large mass ratios, 10−6 ≤ μ2 ≤ 10−1, we have concluded that
the secondary body will constantly influence the movement of the
particle. Therefore, the two-body problem (particle–central body)
approach is not valid and, consequently, the idea of the sphere of
influence no longer makes sense. So, a particle moving in these
systems will have its capture possible, or will have its movement
essentially described by the three-body problem, depending on the
distance of the encounter.

For intermediary mass ratios, 2.0 × 10−8 ≤ μ2 ≤ 2.0 × 10−6, we
have a region where the secondary body temporarily dominates the
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Figure 12. Diagrams showing the capture and influence regions as a function of the mass ratios, relative velocity and the distance of the encounter. Their
limits are determined by equation (11) for capture and equations (25) or (26) for the influence radius.

dynamics of the particle. For these values, a model for the sphere of
influence was obtained. The radius computed as a function of the
relative velocity and the mass ratio is given by equation (25), or,
more precisely, by equation (26).

For mass ratios 2.0 × 10−12 ≤ μ2 ≤ 1.0 × 10−8, we have shown
that the secondary body will significantly influence the particle only
if it goes too close to the secondary body. For these cases, the sphere
radius will always be smaller than 0.5 Hill radius. Thus, a particle
with a given velocity in these systems will either be captured or
will essentially be in a Keplerian orbit around the central body,
which will be weakly disturbed only when it goes very close to the
secondary body.

Fig. 12 provides an overview of this mapping of the capture
and influence regions in the interval of mass ratios considered,
as a function of the distance d and the relative velocity of the
encounter. In these diagrams, the borders of influence or capture are
determined by equation (11) for capture and equations (25) or (26)
for the influence radius. These always start with values higher than
0.5 Hill radius, which was imposed by the method, and the interval
of velocities will depend on each case being studied, as Figs 5 and
11 show.
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Kornet K., Wolf F., Rózyczka M., 2006, A&A, 458, 661
Krish V., 1991, Dissertation, Massachusetts Institute of Technology,

Cambridge, MA, USA
Krish V., Belbruno E. A., Hollister W. M., 1992, in Upadhyay T. N.,

Cotterill S., Deaton A. W., eds, AIAA/AAS Astrodynamics Confer-
ence. American Institute of Aeronautics and Astronautics, Washington,
DC, p. 439

Merman G. A., 1953, Bull. Inst. Teor. Astron., 5, 325
Miller J. K., Belbruno E. A., 1991, in AAS/AIAA Space Flight Mechanics

Meeting 1. American Institute of Aeronautics and Astronautics, Wash-
ington, DC, p. 97

Peale S. J., 1999, ARA&A, 37, 533
Peralta F., Flanagan S., 1995, Control Eng. Pract.e, 3, 1603
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