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ABSTRACT

This paper discusses the basis for a new rainfall estimation method using geostationary infrared and

visible data. The precipitation radar on board the Tropical Rainfall Measuring Mission satellite is used to
train the algorithm presented (which is the basis of the estimation method) and the further intercomparison.
The algorithm uses daily Geostationary Operational Environmental Satellite infrared-visible (IR-VIS)

cloud classifications together with radiative and evolution properties of clouds over the life cycle of meso-

scale convective systems (MCSs) in different brightness temperature (Tb) ranges. Despite recognition of the
importance of the relationship between the life cycle of MCSs and the rainfall rate they produce, this
relationship has not previously been quantified precisely. An empirical relationship is found between the

characteristics that describe the MCSs' life cycle and the magnitude of rainfall rate they produce. Numerous

earlier studies focus on this subject using cloud-patch or pixel-based techniques; this work combines the two
techniques. The algorithm performs reasonably well in the case of convective systems and also for stratiform
clouds, although it tends to overestimate rainfall rates. Despite only using satellite information to initialize
the algorithm, satisfactory results were obtained relative to the hydroestimator technique, which in addition

to the IR information uses extra satellite data such as moisture and orographic corrections. This shows that

the use of IR-VIS cloud classification and MCS properties provides a robust basis for creating a future
estimation method incorporating humidity Eta field outputs for a moisture correction, digital elevation
models combined with low-level moisture advection for an orographic correction, and a nighttime cloud
classification.

1. Introduction

Several studies have focused on the rainfall estima-
tion using infrared-visible (IR-VIS) imagery highlight-
ing its importance due to the low sampling of the
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ground-based radars and the sparse distribution of the
rain gauges. Estimations by satellite provide high spa-
tial and temporal sampling frequencies, but the infor-
mation is inferred through indirect methods, which re-
sult in significant errors in the final rainfall estimation.
Previous works discuss the use of satellite rainfall-rate
estimation in the hydrological, meteorological, and cli-
matological sciences: flood forecasting, verification of
rainfall forecast from numerical weather prediction
(NWP) models, moisture budget studies, and the evalu-

DOI: 10.1175/2007JAMC1684.1

© 2008 American Meteorological Society

1500 VOLUME 47



DELGADO ET AL.

ation of climate models (e.g., Adler and Negri 1988; Ba
and Gruber 2001; Kuligowski 2002; Xu et al. 1999; Vi-
cente et al. 1998; Ebert et al. 1996). Laing et al. (1999)
emphasize the influence of rainfall on agriculture and
how monitoring it can help to reduce human injuries
during floods.

Estimating rainfall rate by satellite using IR imagery
has been a topic of study since the late 1970s. Griffith et
al. (1978) present the Griffith-Woodley technique
based on the study of the life cycle of clouds. The hy-
droestimator (HE) technique (Vicente et al. 1998,
2002) is based on the methodology developed by
Scofield (1987). To compute rainfall rates, it uses a non-
linear power-law relationship between cloud-top tem-
perature and radar-derived rainfall-rate estimates, a
gradient and growth-rate mask, and a humidity mask.
The HE was developed to estimate rainfall rates in in-
tense convective systems. Arkin and Meisner (1987)
developed the Geostationary Operational Environ-
mental Satellite (GOES) precipitation index (GPI)
method, which explores statistical relationships be-
tween cloud-top temperatures and rainfall. The tech-
nique assigns a mean rainfall rate to all the pixels below
a threshold temperature. The GPI is better suited to
estimating monthly cumulative rainfall than shorter
time ranges. The GOES Multispectral Rainfall Algo-
rithm (GMSRA), described by Ba and Gruber (2001),
uses five channels of the GOES satellite and incorpo-
rates cloud-top particle information by taking advan-
tage of the spectralfresolution. Like the HE, GMSRA
uses additional moisture correction to account for
evaporation of rainfall that falls from the clouds but
does not reach the surface (Kidd et al., 2003). Both HE
and GMSRA estimates improve the GPI, with better
correlations, bias, and RMS.

Joyce et al. (2004) present the Climate Prediction
Center Morphing Method (CMORPH); the method
uses motion vectors derived from geostationary satel-
lite IR imagery to propagate the precipitation derived
from passive microwave data. The shape and intensity
of the precipitation's features are modified (morphed)
during the time between microwave sensor scans by
time-weighted linear interpolation. Laing et al. (1999)
present a relationship between SSMI/I-derived precipi-
tation characteristics and IR data to estimate the pre-
cipitation produced by African mesoscale convective
complexes (MCCs). Precipitation is diagnosed using
the IR-observed cold cloud area as a function of time
over the MCC's life cycle. Xu et al. (1999) present a
method for identifying and removing no-rain cold
clouds from IR imagery. Seven cloud-patch features are
used to describe cloud-top properties and produce clas-
sification rules.

Last, some rainfall estimation methods using neural
networks are summarized. Hong et al. (2004) describe
the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks
(PERSIAN) Cloud Classification System (CCS). Local
and regional cloud features are extracted to calibrate
the cloud-top temperature and rainfall relationships for
the classified cloud groups. The results show good cor-
relation coefficients for a 0.25' grid. Tapiador et al.
(2004) present an evaluation of operational procedures
using passive microwave and infrared satellite measure-
ments. Several neural networks are tested, from multi-
layer perceptron to adaptive resonance theory architec-
tures. Bellerby et al. (2000) describe the development
of an algorithm using the precipitation radar (PR)
on board the Tropical Rainfall Measuring Mission
(TRMM) satellite and multispectral GOES imagery.
Coincident PR measurements were matched with four-
band GOES image data to form the training dataset for
a neural network.

This work presents a daily rainfall estimation algo-
rithm using satellite imagery (RESAT) for the area of
South America. RESAT uses only satellite data, with-
out including moisture or orographic corrections. The
satisfactory results obtained when compared with
HE-which does use moisture and orographic correc-
tions-during the intercomparison period demonstrate
that RESAT is a valid basis for a new estimation
method that will include moisture and orographic cor-
rections. The South American region, which includes
the Amazonian forest, covers a tropical and subtropical
area where the formation of mesoscale convective sys-
tems (MCSs) with the potential to produce heavy rain-
fall is common. This makes RESAT a valuable tool for
monitoring rainfall originating in both convective and
stratiform cloud types in the zone.

All the works mentioned above can be classified as
pixel-based or cloud-patch-based methods and all of
them have a bearing on this paper. RESAT is based on
both pixel and cloud-patch properties. Griffith et al.
(1978), Scofield (1987), Feidas and Cartalis (2001), Ma-
thon and Laurent (2001), and Schumacher and Johnson
(2005) point out the importance of the relationship be-
tween the life cycle of the MCS and the rainfall it pro-
duces. In spite of this, in some cases only qualitative
relationships are given and in others cases some prob-
lems arise due to the limitations of cloud-patch-based
methods. These limitations include the difficulty in dis-
criminating between cirrus anvils and convective clouds
in the Griffith-Woodley technique, and the require-
ment for the direct interaction of a meteorologist in the
case of Scofield (1987). In this work, a cluster rainfall
estimation is first computed using radiative and evolu-
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tion parameters over the life cycle of the MCS and
then a pixel-based estimation is derived by adding a
correction using cloud-top pixel radiative properties.
Uddstrom and Gray (1996) obtain accuracy upward of
60% in delineating rain and no-rain samples of a cloud
classification that shows the dependence of the final
rainfall estimation on the cloud type. Other authors
emphasize the importance of the relation between the
microstructure of clouds and precipitation potential us-
ing mid-IR thermal channels (Rosenfeld and Gutman
1994; Lensky and Rosenfeld 2003). Finally, Levizzani et
al. (2001) analyze the potential of VIS-IR algorithms.
These results motivated us to use an IR-VIS cloud clas-
sification in order to assign different coefficients to
each cloud type in the final rainfall-rate estimation and
to discriminate between rain and no-rain states.

2. Data and satelfite products

All the data used in this work was provided by the
satellite division (Divisdo de Sat6lites e Sistemas Am-
bientais; DSA) of the Centro de Previsdo de Tempo e
Estudos ClimAticos (CPTEC), which belongs to the In-
stitituto Nacional de Pesquisas Espaciais (INPE) lo-
cated in the state of Sdo Paulo, Brazil. The satellite
division receives data from many satellites, such as
GOES, Meteosat, Terra, Aqua, and the National Oce-
anic and Atmospheric Administration (NOAA). The
following satellite products used in this paper are pro-
duced in the DSA in real time: an IR-VIS cloud clas-
sification; an improved version of the National Envi-
ronmental Satellite, Data, and Information Service
(NESDIS) HE (Vicente et al. 1998), the DSA HE; and
the operational product Forecast and Tracking of Ac-
tive Convective Cells (FORTRACC) that tracks MCSs
and displays information on the expansion, speed, and
other parameters of the systems (Machado et al. 1998;
Machado and Laurent 2004). Both FORTRACC and
the IR-VIS cloud classification algorithm are run in
parallel with RESAT to produce the arrays containing
the inputs to initialize the algorithm.

Two months of TRMM PR data collected over South
America during November and December of 2004 were
also provided by CPTEC's satellite division. Kum-
merow et al. (1998) and Bellerby et al. (2000) empha-
size the quality of the PR as a source of training data, so
TRMM PR rainfall values were used for both the train-
ing and the intercomparison periods. The PR scans a
215-km swath with vertical and horizontal resolutions
of 250 m and 4.3 x 4.3 kM2, respectively, at nadir, while
the minimum detectable signal is approximately 17
dBZ. We also extracted the cloud-top temperature
from the IR GOES channel. The upper side of the flow-

chart in Fig. 1 summarizes the dataset used to initialize
the algorithm. All the input data including the IR
GOES images; the TRMM PR product, the IR-VIS
cloud classification, the DSA HE maps, and the arrays
containing the values of the parameters of each MCS,
were reprojected to a Mercator projection with a spatial
resolution of 0.038' of longitude and 0.036' of latitude.
The South America region is the domain chosen for this
study (Fig. 2). All the cases are located inside a window
centered over Brazil (35°S-5'N, 35 0-75°W).

To select the cases of study, several restrictions were
imposed within two months of data. Because of the use
of the VIS GOES channel to obtain the cloud classifi-
cation, only daily data were chosen. There is a ± 15 min
time difference and a maximum navigation error of 10
km between the TRMM pass and the IR GOES scan-
ning. The IR data closest to the time of the TRMM
observation were chosen to obtain a final time differ-
ence of less than ±5 min and a navigation error of less
than 1 pixel. Finally, the availability of GOES images
covering the Southern Hemisphere is not guaranteed
by NOAA, so when images are missed, no products are
generated. This imposed a limitation on the data that
we were able to use when selecting the cases. In total,
27 cases were selected for the study; 18 during the train-
ing period and 9 for the later intercomparison. During
the intercomparison period we used different rainy sys-
tems from those used in the training period, in order to
guarantee the independence of the data during the
evaluation. RESAT and the DSA HE were compared
using TRMM data. The HE has been rigorously vali-
dated using rain gauges and ground-based radar (Vice-
nte et al. 1998). Comparison with HE is therefore a
valid technique for assessing the performance of
RESAT, although further validations using ground-
based radar information will be needed in the future to
test the estimation method (incorporating the necessary
corrections) based on RESAT. Table 1 summarizes the
date and hour of all the cases selected. In sections 2a-c
we briefly explain the different satellite products used
to initialize RESAT.

a. IR-VIS cloud classification

Clouds were classified using a cluster analysis with IR
and VIS GOES images; hence, the classification is only
operative during the daytime. The basis of the algo-
rithm has been described in several works (Delgado et
al. 2007; Porcti and Levizzani 1992; Rossow and Garder
1993), so only a brief description is provided here. Four
parameters are used to create a multispectral histo-
gram: the IR brightness temperature (Tb), the visible
reflectivity, and two texture indices computed as the
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TABLE 1. Cases studied during the training and intercomparison
periods.

Date Hour (UTC)

FIG. 2. Domain chosen for the study. The TRMM swath is in
black. The precipitation product detected by the radar for the case
study (1415 UTC 17 Nov 2004) is in blue.

standard deviation between the first neighbors of each
pixel in both channels. Each point in the histogram
corresponds to the number of pixels in the image with
the same four parameter values. After analyzing the
cluster distribution in the multispectral histogram over
several months, 30 seed points are chosen. Every seed
point has four components, corresponding to each of
the four parameters described below and each seed
point will flag a class in the histogram. For the classifi-
cation algorithm to be calibrated properly (i.e., so that
a physical correspondence between the values of the
parameters defining each seed point and a cloud or
surface type may be established) these parameters re-
quire a different value depending on the time of the
day. Three daily segments were used: morning, midday,
and afternoon. The algorithm associates each point in
the multispectral histogram with the closest seed point,
minimizing the Euclidean distance. The main classes
were surface (3 types), cumulus (10 types), cirrus (6
types), stratus (5 types), and multilayer (6 types).

b. FORTRACC

The high temporal resolution of GOES allows the
development of operational methods in order to moni-

4 Nov 2004
5 Nov 2004
7 Nov 2004
7 Nov 2004
7 Nov 2004
8 Nov 2004
9 Nov 2004
9 Nov 2004

10 Nov 2004
10 Nov 2004
12 Nov 2004
12 Nov 2004
14 Nov 2004
17 Nov 2004
17 Nov 2004
18 Nov 2004
20 Nov 2004
23 Nov 2004

27 Nov 2004
3 Dec 2004
8 Dec 2004

11 Dec 2004
12 Dec 2004
17 Dec 2004
20 Dec 2004
21 Dec 2004
22 Dec 2004

Training period

Intercomparison period

1945
1045
1015
1645
2015
2045
1645
1945
1045
2045
1045
1345
1015
1045
1415
1445
1115
1015

1115
2045
1745
1645
1715
1415
1945
1345
1115

tor meteorological phenomena, such as the expansion
and shifting velocity of MCSs. The expansion, mean
temperature difference, and other parameters of MCSs
used in this paper and defined below were obtained
using FORTRACC. The technique is based on an al-
gorithm that allows tracking of the MCS, computing of
the radiative and morphological properties, and fore-
casting of the evolution of these physical properties
(based on cloud-top brightness temperature) up to 120
min, using IR satellite imagery. The algorithm consists
of four steps:

1) Cloud clusters are detected on the basis of a size and
temperature threshold.

2) Morphological and radiative parameters of each
MCS are determined using a statistical module.

3) MCSs are tracked, on the basis of MCS-overlapping
areas between two successive images.

4) Forecasting is based on the evolution of MCS in
previous time steps.

The fourth step is not used in this work. The algo-
rithm is based on the work of Machado et al. (1998).
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The author analyses the life cycle of convective systems
and suggests that the surface expansion of a convective
system could be associated with the high level of wind
divergence and the length of its life cycle.

c. DSA HE

The results of the rainfall-rate estimation algorithm
presented in this work were compared during the inter-
comparison period with the estimations of the im-
proved version of the NESDIS HE (Vicente et al.
1998), hereafter known as DSA HE, which assimilates
GOES (10.5 lim) and Meteosat (11.5 lkm) data, wind,
and humidity data produced by CPTEC's numerical
weather forecast model (Eta model), and topography
information (including an orographic correction). The
NESDIS HE mathematical function, which assesses
rainfall for each GOES pixel, is shifted upward or
downward according to a combination of factors de-
rived from all information assimilated by the DSA HE.
These improvements to the NESDIS HE were made in
order to estimate rainfall over South America more
accurately, mainly in its tropical part.

3. Description of the algorithm

Most of the works mentioned in the introduction de-
velop the estimation technique through general as-
sumptions. We make similar assumptions, taking into
account the importance of the development stage of the
convective system and the cloud classification. Scofield
(1987) summarizes some of these assumptions as having
particular importance:

1) clouds with cold tops in the IR imagery and high
reflectivity in the VIS imagery produce more rainfall
than those with warmer tops and

2) low reflectivity and decaying clouds produce little or
no rainfall, whereas clouds in the forming stage tend
to produce heavy rainfall.

Since these are general assumptions, we do not have
to expect colder pixels to produce more rain than
warmer pixels in all the cases. A warmer cloud system
can produce more rainfall than a cooler one if the
warmer system is in a growing phase.

We do not work directly with the VIS channel, al-
though the information of this channel is contained in
the cloud classification. Thus, those clouds with a high-
reflectivity top (convective in the cloud classification)
are treated differently in the algorithm. In fact, every
cloud type has different parameterization in the algo-
rithm. We also pay attention to variability in the MCSs
internal brightness temperature, as well as in the value
of Tb. Concerning the second general approach men-
tioned above, different parameters of the evolution

of each convective system were computed using
FORTRACC. These parameters (such as the expan-
sion or the mean temperature difference between two
consecutive images of the same system) describe the
stage of each convective system along its life cycle and
its dynamic conditions. As we explain in section 3c,
those convective systems in a growing phase (some of
them in an exploding phase during the initial stage) are
associated with a high rainfall rate.

Other works (Wylie 1979; Hong et al. 2004) focus on
the importance of working with different Tb thresholds
in order to detect correctly the convective cells embed-
ded in the MCSs. Convective cells are the coldest pixels
in a MCSs, and although they are smaller, they produce
heavier rainfall. As we explain in the next section, five
different Tb thresholds are considered in order to allo-
cate the proper dynamic parameters to the convective
cells embedded in the detected convective systems.
This hypothesis helps to reduce the errors in the final
rainfall-rate estimation.

Many authors (Mapes and Houze 1992; Machado
and Rossow 1993; Machado et al. 1998) consider that
Tb :- 245 K is a satisfactory threshold for identifying
MCSs. The near-linear relationship between the con-
vective system area and its threshold indicates the in-
sensitivity o o f the choice of a specific value within a
range of 10-20 K (Carvalho and Jones 2001). In this
work, we consider a Tb threshold of 250 K to select
MCSs.

The estimation algorithm is organized in three basic
modules: the Tb-range-tracking algorithm, the rain/no-
rain discrimination, and the rainfall-rate estimation.
The first one divides every MCS into the appropriate Tb
ranges and creates the arrays containing the internal
variability (T.) and the MCS parameters. The flowchart
in Fig. 1 shows the organization of the algorithm and
how all the input data is set into the different modules.

a. Threshold divisions

RESAT is based on the correlation between the ra-
diative and evolution parameters of the convective sys-
tems and its mean rainfall rate. Therefore, only pixels
colder than 250 K are considered for the estimation. A
deep convective cloud system is identified by adjacent
satellite image pixels with an infrared brightness tem-
perature colder than a given threshold. To separate ef-
fectively the convective cells contained in the MCS, the
following structure and evolution parameters are com-
puted for IR cloud clusters with Tb colder than five
different thresholds (250, 240, 230, 220, and 210 K):
mean and minimum temperature (Tm, and Tmin), mean
temperature difference between two consecutive im-
ages (ATm), minimum temperature difference between
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FIG. 3. Flowchart of the Tb range-tracking algorithm.

two consecutive images (ATmin), and the expansion
computed as the normalized difference between areas
divided by time (30 min) in two consecutive images,
defined as AE = 1/A x (dAldt) (see Machado et al.
1998; Machado and Laurent 2004), where A is the area
of a given MCS at a given time. The computation of
MCS parameters is independent of the IR-VIS cloud
classification; that is to say, there is no database with
the values of the parameters for every cloud type. Each

Tb threshold will define a Tb range in each MCS (see
Fig. 3), the most external being the one defined as all
the pixels colder than 250 K (first Tb range) and the
most internal being the one defined as all the pixels
colder than 210 K (fifth Tb range). Both rain/no-rain
discrimination and rainfall-rate estimation were com-
puted for each of the cloud Tb ranges obtained by ap-
plying the Tb-range-tracking algorithm, summarized in
the flowchart of Fig. 3.
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The Tb-range-tracking algorithm first assigns the
value of the estimated rainfall computed for the first Tb
range of each MCS. If the MCS is divided into more Tb
ranges, the algorithm superposes the estimated values
of rainfall rate to the pixels in the second Tb range. The
process continues for the rest of the Tb ranges down to
the last one.

The difference between Tb of each pixel and Tm of
the cloud cluster where the pixel is located is also used.
The difference is denoted by T.. This variable indicates
the internal variability of the MCS with respect to Tb.
Pixels with negatives values of T. are located in the
coldest region of the Tb range, with a higher probability
of having rainfall. The definition of T, helps us to dis-
criminate better between two pixels with the same Tb

but different values of the rainfall rate.

b. Rain/no-rain discrimination

Nearly 97% of the rain pixels of the selected cases
during the analyzed period fall into six cloud types: four
convective, one cold stratiform, and one cumulus (a
single cumuliform vertically developed cloud in its first
stage of development). One of the four convective
types was flagged as a deep convective cloud (DCC)
and the other convective ones can be interpreted as the
coldest part of the anvil of the DCC in different tem-
perature ranges. We refer to these three as convective
(C1, C2, and C3) to differentiate them from DCC. Pix-
els classified as Cl are the colder ones, being located
close to the cold core (DCC) of the MCS; their reflec-
tivity in the VIS channel is also higher. Pixels classified
as C2 are also colder than C3, but with similar values of
VIS reflectivity and considerable differences in the tex-
ture indexes, C3 being the roughest and C2 the smooth-
est.

The percentage of pixels of each class for every Tb
range is computed in each MCS. Each Tb range is as-
sociated with the class of which it contains most of the
pixels. Only MCS Tb ranges associated with the rainy
cloud types mentioned above are classified as rain clus-
ters. Only pixels belonging to the six cloud types men-
tioned above, in each Tb range that is classified as rainy,
are flagged as possible rain pixels. The final rain/no-
rain discrimination depends on the cloud type:

1) Cumulus pixels embedded in Tb ranges associated
with convective, DCC, and cold stratiform cloud
types are classified as rain pixels. Those embedded
in Tb ranges associated with the cirrus cloud type are
not classified as rain pixels.

2) Cold stratiform pixels embedded in Tb ranges asso-
ciated with DCC and cold or warm stratiform cloud
types are classified as rain pixels.

3) Convective pixels embedded in Tb ranges associated
with convective, DCC, and cold stratiform cloud
types and with T. < 0 are classified as rain pixels.

4) DCC pixels embedded in Tb ranges associated with
DCC and convective cloud types and with T, < 0 are
classified as rain pixels.

c. Rainfall-rate estimation

The rainfall-rate estimation of the pixels classified as
rainy pixels consists of three steps.

1) In the first step, the mean rainfall rates from the
TRMM PR data are computed for each MCS for
each Tb threshold. This value is compared with the
parameters that describe the stage of evolution of
the MCS for the same Tb threshold. A multiple lin-
ear regression is computed between these variables
and the mean rainfall rate. A rain value (the cluster
rainfall estimation, Rj) is associated with each Tb

range of each MCS by superposing the value of R,
for each Tb threshold.

2) In the second step, T, is used to assign a more ac-
curate value of rainfall rate to each pixel, the pixel
rainfall estimation (Rp). In this step, a pixel correc-
tion (pixel rainfall correction, r,) is added to R, us-
ing a nonlinear relation between T, and the PR data
for each pixel of the MCS in a given Tb range.

3) In the third step, the frequency distribution com-
puted over all the cases of the training period of the
PR data and Rp is approximated to an exponential
distribution. The Rp cumulated distribution is fitted
to the PR data distribution in order to increment its
range and obtain the final value of the estimated
rainfall rate R.

1) CLUSTER RAINFALL ESTIMATION

This first step assesses the development stage of ev-
ery MCS in every Tb range. Systems in a growing phase
will be assigned a higher value of R,. As commented in
section 2, a warmer MCS in a growing phase can have
more rain associated with it than to a colder more ma-
ture MCS.

A multiple linear regression is computed between
AE, T., ATm, Tmin, ATmin, and the mean TRMM PR
rainfall rate for each Tb threshold in each MCS. Thus,
each pixel from the same MCS in the same Tb range is
associated with the same cluster rainfall estimation
(R,), given by the following expression:

R, = aiAE + biTm + ciTm + diTr,in + eiTmin + fi,

(1)
where i is the Tb range; aj, bi, ci, di, and ej are the linear
coefficients of each variable; and fi is the constant term.
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TABLE 2. Coefficient values and correlation coefficients of the multiple linear regression to obtain the cluster rainfall estimation for
all the Tb thresholds.

a b c d e f

250 K
Coef value 0.00081 -0.04826 -0.083 93 -0.021 99 -0.020 15 19.24
Correlation 0.32 -0.45 -0.41 -0.46 -0.37

240 K
Coef value 0.00236 -0.019 61 -0.063 05 -0.05048 0.00724 18.46
Correlation 0.35 -0.44 -0.28 -0.44 -0.24

230 K
Coef value 0.001 94 -0.07076 -0.17429 -0.011 76 -0.013 25 21.79
Correlation 0.41 -0.44 -0.46 -0.43 -0.40

220 K
Coef value 0.00254 -0.110 85 -0.123 12 -0.10822 -0.020 18 2.49
Correlation 0.39 -0.32 -0.35 -0.37 -0.39

210 K
Coef value 0.001 37 0.007 20 -0.119 89 -0.127 44 -0.073 76 28.41
Correlation 0.45 -0.41 -0.41 -0.47 -0.48

rest of the Tb thresholds. When the process ends, eý
Tb range in the MCS has an associated value of
Figure 5 shows the mean TRMM PR value versus
computed for all the Tb thresholds. Since the life cy
MCS parameters are associated to the whole cloud s
tem for every Tb range, the IR-VIS cloud classificat
is not considered in this step. The information c,
tained in every cloud type is used in the next two ste

2) PIXEL RAINFALL ESTIMATION

In the second step, the following rainfall rate is
signed to each pixel that belongs to one of the six cl
types producing rainfall:

Rp = R, +r,

where r, is the result of the comparison between
mean value of the difference between the PR value
R, for each 1-K interval of T,. Therefore, Rp is a fu
tion of T. and the cloud type. A similar methodolog,.
used in Vicente et al. (1998). Figure 6 shows this re
tionship for the six cloud types. The points were fit,
to a third degree polynomial curve. The curves in Fil
have different shapes depending on the cloud type..
though only a weak dependence between r. and Tl
found for the cumulus, convective 2, convective 3, e
stratiform clouds, a general tendency is observed: 1
values of T, (corresponding to the coldest pixels of 1

MCS) are associated with higher values of r,. In i
case of convective 2 pixels (with a concave downw;
shape) this is only true for the colder ranges of T,. The,
pendence between T. and r, is strong for deep cony
tive clouds and it is clear that colder pixels produce hig]
rain values. This dependence is weaker in colder ran
of T, in the convective 1 cloud pixels, which are not

ach the core of the MCS. Table 3 summarizes the coeffi-
R,. cients of the polynomial curve for all the cloud types.
R, Both R, and r, contribute to the value of Rp. The Re

,cle is the cluster contribution and its value depends on the
;ys- radiative and evolution parameters that characterize
ion each MCS. The r, is the contribution of pixels to the
on- total rainfall rate and is a function of T,, which gives an
ýps. idea of the value of the spatial temperature gradient

within the MCS. However, both contributions are de-
rived as functions of the mean value of the TRMM PR
data. As a consequence, the range of Rp in the cumu-

)ud lated frequency distribution is smaller than the range of
the PR data (Fig. 7), but both PR and Rp distributions
fit into an exponential distribution. The average value

(2) of the PR data in different grid sizes was also computed

the and its spatial distribution was compared to the R, dis-
ind tribution: the greater the grid size is, the more similar
nc- are the ranges of the two distributions.
y islia- 3) RANGE INCREMENT

ted In the third step of the rainfall-rate estimation, both
g. 6 PR and Rp frequency distributions are approximated to
AJ- an exponential probability density function (pdf) for
". is each cloud type. The final value of the estimated rain-
ind fall rate R is given by fitting the Rp exponential pdf to
ow the PR exponential pdf. Figure 7 shows both distribu-
the tions in the case of DCC. To fit one pdf into the other,
the we assume the following approximation: the PR data
ird pdf and the final estimated rainfall-rate pdf have the
de- same rate of decay. The fitting method associates a
ec- certain value of RP with the value of the PR data that
ler has the same rate of decay in both exponential pdfs.
ges This value assigned to Rp will be the final rainfall-rate-
in estimated value, R, given in the following expression:
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FIG. 5. Scatterplots between the cluster rainfall rain es-
timation and the mean rainfall value for every MCS for all
Tb thresholds.
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R(R,, AR., ,r) = (AR/kr)Rp, (3)

where A is the rate parameter of the distribution.
Table 4 summarizes the values of AR and A, for all

the accumulated histograms of the different cloud
types.

4. Results

Several statistical measures were used to compare
the rainfall-rate estimation with the PR data. In the
case of the rain/no-rain discrimination, we used the
false-alarm ratio (FAR), the probability of detection

a.

E

,.E

E

E.

1510 VOLUME 47



DELGADO ET AL.

Cumulus
4

2

* 4 .t4 ÷ I

-4

-6 --- ---- - --
-10 0 10 20 30

TV (K)

Convrectiv 2
4

2

-2-* 4 4

-4

-10 0 10 20 ,o
Tv (K)

Strotiform

0

-2 .

-4 -

S. .. . . . . . . . . . . ° . . . . ..u l,u. . . .

-10 0 10
TV (K)

20

2

-2

-4

Convective 3

-10 0 10 20 U
Tv(K)

S.. ..... • PC onve tive

-2

-3 4

-44

-10 0 10 20 3
Tv (K)

I0 Dfte. eonve..tive

0 ,

-io

-15 -10 -5 0 $ 10 15 20
ry (K)

FIG. 6. Mean value of r, computed for each 1-K interval of T, for the six cloud types considered. The curve is
fitted with a third degree polynomial function. A different curve is obtained for every cloud type, which allows
discrimination between cloud types in the final rainfall estimation.

(POD), the error (ERR, and the frequency bias index
(FBI). The range of POD, FAR, and ERR is 0 to 1. The
perfect score for FAR and ERR is 0 and for POD is 1.
Values of FBI greater (less) than 1 indicate overesti-
mation (underestimation).

In the case of rainfall estimation, we used the corre-
lation coefficient, the RMSE, the bias, and the standard
deviation. Values of bias greater (less) than 0 indicate
overestimation (underestimation).

RESAT was compared with the HE method (Vicente

TABLE 3. Coefficients of the third-degree polynomial function fitted to obtain the pixel rainfall estimation for all the cloud types.

Cloud type Third degree Second degree First degree Constant term

Cumulus 3.09 X 10-4 -64.21 X 10-4 -0.049 499 -0.584 657
Convective 3 -2.47 x 10-4 78.36 x 10-4 -0.118 129 -1.784 454
Convective 2 -2.30 X 10-4 0.014 565 -0.215 432 -1.047433
Convective 1 4.68 X 10-4 -0.019 028 0.103 186 -3.014 308
Stratiform -1.77 x 10-4 -11.12 x 10-4 -0.015 940 -1.693 500
Deep convective -23.40 )< 10-4 0.037 950 -0.074 900 -2.930 100
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FIG. 7. Frequency distribution of rainfall from radar and the pixel rainfall estimation (Rp)

for DCC pixels. Both distributions can be approximated by an exponential distribution. The

algorithm fits the Rp distribution into the radar distribution to obtain the final rainfall esti-
mation.

et al. 1998). The HE method uses a nonlinear power-

law relationship between the cloud-top temperature

and radar-derived rainfall estimates to compute rainfall

rates. The HE uses a gradient and a growth rate mask

to make the rain/no-rain discrimination. The main dif-

ferences between RESAT and HE are that the HE

does not take into account the cloud types and uses
moisture and orographic corrections. The HE was

originally developed to estimate rainfall rates in intense

convective systems.

TABLE 4. Rate parameters of the pixel rainfall estimation (A,")
and radar frequency distributions (Akr) for all cloud types.

Cloud type

Cumulus
Convective 3
Convective 2
Convective 1
Stratiform
Deep convective

ARp

0.98
1.12
0.77
2.13
2.63
0.90

.r

0.19
0.18
0.14
0.22
0.24
0.17

a. Rain/no rain

Table 5 shows the values of the different statistical
index for the training and intercomparison periods.
There are few differences between both periods. POD
and FBI perform better during the training period, but
FAR improves during the intercomparison period. This
behavior seems logical, because FBI shows an under-
estimation of the rainy pixels in the intercomparison

TABLE 5. Statistical index describing the accuracy of the rain/
no-rain discrimination of the RESAT method (training and inter-

comparison periods) and the HE method (intercomparison
period).

POD
FAR
ERR
FBI

Training Inte
period

0.61
0.43
0.26
1.06

rcomparison
period

0.55
0.32
0.27
0.81

Intercomparison
HE

0.43
0.42
0.33
0.74

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Rain rate range (mrn/h)
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TABLE 6. Statistical index showing the accuracy of the rain/no-
rain discrimination for different cloud types (deep convective,
cumulus and cold stratiform) for both the RESAT and HE meth-
ods. Results show how RESAT much performs better in the case
of cold stratiform and cumulus cloud types.

DCC Cold stratiform Cumulus

RESAT HE RESAT HE RESAT HE

POD 0.65 0.55 0.45 0.12 0.83 0.16
FAR 0.42 0.38 0.42 0.47 0.39 0.35
ERR 0.43 0.41 0.36 0.45 0.35 0.39
FBI 1.12 0.91 0.78 0.11 1.36 0.25

period and an overestimation during the training pe-
riod. The overestimation leads to better POD scores
and the underestimation leads to better FAR scores.
The difference in the values of FBI between the train-
ing and intercomparison periods may be due to the high
percentage of DCC pixels (associated with high prob-
ability of rainfall) in the training period.

The entire index performs better in the RESAT than
in the HE (Table 5). As already stated, the HE was
developed to estimate intense convective rain. In this
study, it was used for different kinds of meteorological
situations; some involving convective storms character-
ized by the presence of deep convective clouds, others
involving cloud systems that contain cumulus, stratus,
and warm convective clouds. The HE clearly underes-
timates the rain pixels as the value FBI = 0.74 shows,
this underestimation may be due to the fact that HE
tends to classify mainly DCC as rainy pixels. Table 6
shows the sensitivity of the cloud type in the rain/no-
rain discrimination for both RESAT and HE for DCC,
cold stratiform clouds, and cumulus. The table shows
how even RESAT performs better than the HE; similar
values of FAR (0.42 RESAT and 0.38 HE) and better
scores in the POD (0.65 RESAT as opposed to 0.55
HE) are found in the case of DCC. Neither technique
scores very well in the case of cold stratiform clouds,

but clearly RESAT scores better than HE. The under-
estimation of rainy pixels in the HE with a value of
FBI = 0.11, as opposed to the RESAT value of 0.78,
leads to a better score of the FAR for the HE for this
type of cloud. The differences between the two tech-
niques are clear in the case of cumulus clouds, where
RESAT scores a POD of 0.83, which is clearly higher
than the HE score (0.16). In short, cloud classification
as an input in the algorithm gives better results for
rain/no-rain discrimination, especially for cold strati-
form and growing cumulus clouds, but also in the con-
vective ones.

b. Rainfall estimation

The statistical variables used to validate RESAT
were computed for different grid sizes: 5 X 5 pixels
(20 x 20 km), 9 X 9 pixels (36 X 36 km), 15 X 15 pixels
(60 X 60 km), and 25 X 25 pixels (100 X 100 km). The
spatial mean rainfall rate was computed with the esti-
mated rainfall rate; 1 h of cumulated rainfall would lead
to better results (Vicente et al. 1998), but the TRMM
satellite does not pass frequently enough to obtain the
required data. The rain/no-rain statistical parameters
(POD, FAR, ERR, and FBI) were also computed for
the different grid sizes, which generated results similar
to those already discussed. Table 7 shows the results for
both the training and intercomparison periods.

The parameters used for the intercomparison score
slightly better during the training period, without sig-
nificant difference. The statistical parameters tend to
converge to a similar value in both the training and
intercomparison period when the grid size is increased,
except for the bias. In both periods, RESAT tends to
overestimate (bias > 0) the value of rainfall, with
greater values of the bias during the intercomparison.
This pattern is also observed in each of the studied
cases. RESAT seems to perform reasonably well for a
60 X 60 km grid size, with a correlation factor of 0.54 in

TABLE 7. Statistical index showing the accuracy of the RESAT rainfall estimation for different grid sizes during the training and
intercomparison periods.

Period Training Intercomparison

Grid size (km) 20 x 20 36 x 36 60 x 60 100 x 100 20 x 20 36 x 36 60 X 60 100 X 100

Sample size 4460 1781 704 244 1488 524 205 75
Correlation 0.32 0.45 0.54 0.64 0.26 0.39 0.53 0.64
Satellite std dev (mm h-') 2.61 2.26 1.87 1.37 3.42 3.01 2.44 1.90
Radar std dev (mm h-1) 2.35 1.86 1.38 0.92 2.76 2.22 1.68 1.24
RMSE (mm h-1) 4.45 4.15 3.95 3.99 5.92 5.63 5.23 5
Bias (mm h-1) 1.1 1.01 1 1.11 1.63 1.55 1.38 1.42
POD 0.81 0.88 0.94 0.98 0.73 0.81 0.87 0.93
FAR 0.16 0.11 0.07 0.03 0.17 0.13 0.08 0.04
ERR 0.23 0.17 0.11 0.03 0.25 0.2 0.13 0.07
FBI 0.97 1 1.02 1.01 0.89 0.94 0.95 0.97
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FIG. 8. Scatterplot of the RESAT estimates for (left) the ana-

lyzed period and (right) the validation/intercomparison period for
four different grid sizes.

the training period and 0.53 in the intercomparison pe-
riod. The RMSE also decreases when the grid size in-
creases. The bias seems to be independent of the grid
size. Figure 8 show the scatterplots of the RESAT es-
timates for four different grid sizes.

COMPARISON WITH THE HE METHOD

Table 8 summarizes the values of the statistical pa-
rameters computed for both methods during the inter-

SOUA4M C611an t-4kA4

I

p
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comparison period and Fig. 9 shows the scatterplots of
HE estimates for two grid sizes. In general, RESAT
performs better than the HE with clearly greater cor-
relation coefficients and RMSE in all grid sizes. Even
though both RESAT and HE present similar values of
bias, bias seems to converge in the case of the HE. As
was noted in the last section, in the case of RESAT, the
bias does not decrease when the grid size decreases.
This behavior can be explained by the fact that pixels
within the same Tb range that belong to the same cloud
type are associated with a similar value of rainfall (the
small differences would be given during the second step
of the estimation); thus, the calculation of a spatial
mean of the rainfall rate does not present high variabil-
ity when the grid size is decreased.

Figure 10 shows an event during the intercomparison
period with the RESAT and the HE estimations. It is a
convective system in a growing phase, located near the
Brazilian coast. Both the RESAT and TRMM PR im-
ages show how the cold core of the system, with a
greater value of expansion, produce a heavier rainfall
than the anvil, with a lower brightness temperature and
lower value of expansion.

5. Summary and future work

The satellite rainfall-rate estimation algorithm we
present, RESAT, mixes cloud-patch and pixel-based
techniques. It is compared with the HE technique (Vi-
cente et al. 1998), obtaining satisfactory results despite
the fact that RESAT does not incorporate either moisture
or orographic corrections. The TRMM precipitation ra-
dar product was used in the training and intercompari-
son periods in order to design and test the accuracy of
the algorithm. The algorithm first discriminates the
rainy pixels associated with rainfall only with respect to
the pixels classified as cumulus, convective clouds, or
cold stratiform clouds. To estimate rain in those pixels
classified as rainy, the algorithm uses some radiation
and evolution properties of MCSs at different bright-
ness temperature thresholds. The MCS is divided into
brightness temperature ranges using the Tb-range-
tracking algorithm (Fig. 3), in order to detect the con-
vective cells embedded in the MCS. MCS properties,
such as the expansions of the MCS or its mean tem-
perature difference, correlate linearly with the mean
rainfall rate computed using the TRMM radar data for
each MCS in each Tb range. This permits us to assign an
estimated value of rainfall rate to each MCS in each Tb

range. The use of IR-VIS cloud classification is accu-
rate for both rain/no-rain discrimination and rainfall-
rate estimation. The TRMM PR brightness tempera-
ture relationship and the cumulative TRMM data his-

1
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TABLE 8. Statistical index comparing the rainfall-rate estimation of RESAT and HE for different grid sizes.

RESAT HE

Grid size (km) 20 x 20 36 X 36 60 x 60 100 X 100 20 X 20 36 x 36 60 X 60 100 X 100

Sample size 1488 524 205 75 1488 524 205 75
Correlation 0.26 0.39 0.53 0.64 0.22 0.39 0.41 0.49
Satellite std dev (mm h-1) 3.42 3.01 2.44 1.90 5.14 3.76 2.67 1.72
Radar std dev (mm h-') 2.76 2.22 1.68 1.24 2.35 1.86 1.38 0.92
RMSE (mm h-') 5.92 5.63 5.23 5 6.01 5.66 5.54 5.56
Bias (mm h-1) 1.63 1.55 1.38 1.42 1.66 1.46 1.37 1.36
POD 0.73 0.81 0.87 0.93 0.64 0.73 0.84 0.93
FAR 0.17 0.13 0.08 0.04 0.18 0.13 0.08 0.03
ERR 0.25 0.2 0.13 0.07 0.39 0.33 0.21 0.09
FBI 0.89 0.94 0.95 0.97 0.81 0.87 0.92 0.97
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FIG. 9. Scatterplot of HE for (left) 60 X 60 km and (right) 100 x 100 km grid sizes for the
validation period.

FIG. 10. Rainfall rate at 1045 UTC 17 Nov 2004: (top left) RESAT, (top right) HE, and (bottom left) radar.
The square box on the map shows the area of the case study.
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tograms strongly depend on the cloud type. Different
parameterizations are set in the algorithm, according to
the cloud type. As a result, the rainfall estimation yields
good results over large temperature ranges.

POD and FBI obtain better scores during the train-
ing period (0.61 and 1.06, respectively) than during the
intercomparison period (0.55 and 0.81), while the FAR
scores are the worst (0.43 in the training period and 0.32
in the intercomparison period). This behavior is logical,
as RESAT overestimates rainy pixels during the train-
ing period and underestimates them during the inter-
comparison period. The comparison was performed for
different grid sizes. All the statistical variables seem to
converge at a similar value for the two periods when the
grid size is increased, except for the bias, which is al-
ways positive, indicating overestimation. The statistical
variables show that RESAT gives satisfactory results
for a grid size of 60 X 60 km, with a correlation coef-
ficient of 0.53 and almost perfect POD (0.87) and FAR
(0.08) scores. When compared with HE, RESAT al-
ways has a better correlation. The use of the cloud
classification acquires special importance in the rain/
no-rain discrimination. Few differences are observed
between the two methods for cold pixels belonging to
convective clouds. These differences increase signifi-
cantly in RESAT's favor when the methods are com-
pared for cumulus and stratiform clouds. RESAT also
presents a better correlation and lower values of RMSE
than HE for all grid sizes (Table 8).

The comparison with HE shows that RESAT is ready
to be put into operation and used as a complement to
HE. A final future version of RESAT (able to replace
HE) should have moisture and orographic corrections
incorporated as well as a night cloud classification using
the IR band channels of the GOES satellite.
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