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Abstract: This paper presents an overview of the 
technological approaches used in the space teleoperation 
scenario, emphasizing the computational and software 
capabilities that enable real time simulation and control of 
complex space activities. The work also includes the 
technical issues involving supervised autonomy for space 
telerobotics and for collision prevention. 
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1.   INTRODUCTION 

The nowadays space operations to implement spacecraft 
tracking and control are mostly performed remotely. Such 
teleoperations include data transmissions of events, ranging 
from simply vehicle component telemetry data to complex 
mission system information links, such as image downloads 
from high-resolution cameras or even onboard software 
updates. 

All of those operations are always accomplished under 
management of very robust and reliable software systems, 
implemented both at ground stations and at spacecraft via 
onboard-embedded software. This paper discusses the most 
used techniques implemented to perform teleoperations in 
the space environment, especially those on autonomous 
control of unmanned space vehicles and space telerobots. 
The work also explains some of telerobotics procedures to 
provide on-ground and on-board autonomy supervision and 
technical application for some of the most critical and risky 
space maneuvers. These maneuvers require several steps, for 
which techniques for collision detection and avoidance, 
impact stability and force control of the space manipulators 
must be tested and verified. Some of the technological 
approaches related to telerobotics procedures are presented 
here, mainly those focusing on software systems that enable 
those space operations at several different phases. 

 The current literature presents descriptions of some 
useful systems that can be built around the concept of 
humans-supervising telerobots. Based on this approach it is 
possible to develop space telerobots that perform low-level 
operations automatically. Low-level operations refer to the 
basic tasks that can be accomplished by the robot without 
any human operator action. Behind the scenes there are 
many methods for space telerobotics supervised autonomy. 
Supervised autonomy is also a viable near-term approach for 
the remote control of space manipulators. In this context the 
operation safeness is achieved by generating commands 

with specific parameters to each task and assessed by a 
priori simulation. Regarding this approach, actually there 
exists the possibility to simulate dynamical and complex 
real time systems into virtual environments. To improve the 
system performance, the simulation can be run in a 
distributed manner by the use of a modern architecture 
capable to support such distributed or parallel software 
system. 

In this paper the space teleoperation and the space 
telerobotics techniques as well as their applications with the 
software systems concerning real time distributed simulation 
are compared. The section 2 presents an overview of space 
telerobotics and space teleoperated activities. The section 3 
presents the concepts related to the supervised autonomy for 
space telerobotics. Section 4 approaches the techniques for 
collision prevention, stability and force control by space 
manipulators. Then, ideas related to the pre-needed efforts 
to recreate real-time simulation scenarios using parallel and 
distributed systems and architectures are shown in section 5. 

2.   OVERVIEW OF SPACE TELEOPERATION 

Since 1957, when the launching of Sputnik pushed the 
world into the space age vast resources have been invested 
in developing space systems. Those investments have been 
enormously successful. Earth-orbiting satellites have 
revolutionized communications, intelligence gathering, 
weather prediction, resource management and navigation. 
Scientific satellites have provided a wealth of data that has 
significantly improved the scientific understanding of the 
Earth, the solar system, and the universe [1]. 

Successfully manned missions, as Apollo that has taken 
the man to the Moon, and the Space Shuttle, whose crew has 
refurbished the Hubble Space Telescope in December 1993, 
have demonstrated that astronauts can perform assembly, 
maintenance, and repair operations in space. However, the 
use of astronauts on a large scale for such operations is far 
too costly and entails significant safety risk. Teleoperated 
unmanned space vehicles, also known as space telerobots, 
can extend astronaut capabilities and performance, thereby 
increasing mission performance and reducing costs. 

Telerobots can be roughly described as “machines that 
perform physical tasks” [1]. The motivation for using them 
in space is to accomplish tasks as inspection, maintenance, 
repairing, module changing/replacing, cleaning up, assisting 
science and technological experiments, performing 
repetitive operations, and capturing and despinning 
satellites, among other. 
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Ruoff [1] explains that an exclusive feature makes the 
difference when classifying telerobots. That feature is 
associated with the remote telerobot capability of their 
control system, in the sense that the human operators and 
ground support along with the remote telerobots are capable 
of accommodating uncertainties. In other words, the system 
must be able to determine the state of the task and relevant 
objects, iteratively determine the actions to take, predict 
their effects, and coordinate the subsystems to perform the 
actions while monitoring their effects to make sure they are 
consistent with the predictions. If the predicted and observed 
effects are not consistent, there is a potential problem. 
Finally, the control system must be able to monitor and 
maintain the own system health. 

Satellites and spacecraft have been restricted to operate 
in a free space in the sense that obstacles do not play an 
important rule in the scenario of space operations and 
maneuvers. In such an environment the control objectives 
can be in some aspects easily characterized. Such systems 
do not have or do not need the ability to sense and classify 
complex external situations and make quick onboard 
decisions. They operate in an open-loop manner for long 
periods and most of the control decisions are made on 
ground. On the other hand, rovers and space telerobots must 
be capable of performing mechanical operations at 
reasonable rates in complex natural environments. 

Despite the massive advances in improving the machine 
intelligences, human judgment is still essential for difficult 
situations. In this case the lower level behavior of telerobots 
such as the moderately complex sensor data interpretation 
and the motion/force control are easily automated. 
According to Ruoff [1], a practical approach to develop 
useful telerobot systems can be stated as: 1) automate lower 
level functions by developing reliable control algorithms 
that adapt on the basis of sensory information, 2) rely on 
human operators for providing overall task guidance and 
supervision, and for handling special situations, and 3) 
develop advanced interfaces and tools that aid in planning 
and managing telerobot tasks and permit the operator to 
communicate easily with the system at multiple levels of 
detail. 

2.1.   Space telerobotics systems 

A space telerobot comprises one or more manipulators, 
each with several degrees of freedom, mounted on a 
platform which might be mobile (or free flying). A space 
telerobot also has a sensor suite, usually including arm, 
platform, and mobility state sensors, force sensors, cameras, 
and necessary computation and support systems. The 
telerobot’s major subsystems are computing, coordination, 
external sensors, manipulation, mobility, payload, 
perception, platform, power, telecommunication, thermal 
control, and the telerobot executive. These subsystems are 
described further in Fig. 1. 

In the present work, it will be taken into consideration 
the computing, coordination, perception and executive 
subsystems, since they are all in some means interconnected 
together. The most important subsystem in the approach of 
this paper is the computing one. It is under the control of the 
telerobot executive and aggregates the computational 
devices aboard a telerobot, including general and special 
purpose computers, low level controllers, sensor 
preprocessors, and other dedicated electronics. All control 

resides in the computing subsystem. The telerobot 
executive, perception, and coordination subsystems reside in 
the computing subsystem as well. 

 

Fig. 1.  Space telerobot system showing command and data flow (C. F. 
Ruoff [1], p. 6) 

The coordination subsystem, which performs kinematic 
and dynamic computations as necessary and coordinates the 
behavior of the various subsystems and devices that are 
under the control of the executive, resides in the computing 
subsystem as hardware and/or software. It receives state 
information from telerobot actuators and from external 
sensors (interpreted by the perception subsystem) and can 
send, in advanced systems, predicted state information to the 
perception system so as task evolution consistency can be 
determined, that is, the system can determine if the task is 
proceeding as predicted. 

The perception subsystem receives input from the 
various state and external sensors as well as from the 
telecommunication system. In sophisticated telerobots it 
computes a summary of the external environment, telerobot, 
and task states, which is used by the telerobot executive and 
the coordination subsystems. In simple systems, the 
perception subsystem may just perform transformation on 
sensory data. 

The telerobot executive, which also resides in the 
computing system schedules and controls the overall high-
level behavior of a telerobot’s subsystems, except for 
automatic fault protection and reflexes. It receives operator 
commands and instructions as well as world, telerobot, and 
task state information from the perception subsystem. In 
advanced telerobots the executive includes planning, 
reasoning, behavior prediction, and fault diagnosis tools. 
The executive can issue commands to both the perception 
and coordination subsystems. 

A typical space telerobot system also includes a control 
station and the telerobot itself, shown schematically in Fig. 
1, along with command and data flow. The control station is 
also called as “local site”, and includes the interface which 
the operator uses for both to comprehend the remote task 
and to control the telerobot. The control station 
communicates with the telerobot through a data link. The 
ground may include support of powerful simulation and 
planning computer capabilities. The operator supervises the 
telerobot tasks, resolving difficult situations and determining 
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what routines or macros (series of commands) to use. This 
operator can specify a task and then relinquish control to the 
telerobot, which returns control when either the task is 
complete or an impasse is reached. The operator can also 
seize the control at any time. Thus, control is traded back 
and forth between the operator and the telerobot. 

The telerobot is also called as “remote site”, and 
physically performs tasks under the control of an operator. 
Teleoperators can interact with the telerobot systems in the 
form of master-slave systems, where the master is a local-
site replica of the remote-site slave. In this scenario the 
operator performs a task moving the master by watching a 
visual representation of the remote worksite, as if the master 
were performing the task itself. According to that approach, 
it is necessary the teleoperators to provide telerobots with 
detailed commands, either in the form of macros or in the 
form of motion commands. Human operators must be 
prepared to assist them in locating and identifying objects. 
In this line, Hartley and Pulliam [2] have developed an 
experiment in which heads-up displays and voice 
input/output were implemented on an experimental pilot 
console. Their main objectives were to supply optimized 
future operations of remotely pilot vehicles and the ISS 
operations. 

In non-replica master-slave systems the master and slave 
are not geometrically similar. In all-software teleoperated 
approaches, the master use to be a computational-
mathematical model representation of the slave. In such 
systems, axis coordination is handled by a computer in the 
control-loop that continually maps the present position of 
the master handle into the (scaled) position of the slave 
hand. The computer uses master kinematics to calculate the 
Cartesian position of the master handle in space and slave 
kinematics to transform this position into position 
commands for the slave axes, thus making the slave hand 
perform the same (scaled) Cartesian motion as the master 
handle. Error and contact signals are used to back drive the 
master, giving a sense of contact with the remote 
environment. Those procedures are illustrated by Fig. 2. 

Controlling space telerobots from the ground could make 

them extremely attractive, but ground control places 
stringent demands on their control systems because of 
communication delays, data rate limitations, and task 
uncertainties. To compensate those constraints while 
preserving performance, telerobot systems will need greater 
intelligence and autonomy, which are independent concepts 
related to environmental and task complexity that have a 
profound impact on telerobot system performance. 
Extremely intelligent robots are far beyond the state of the 
art, but useful systems can be built around the concept of 
humans supervising telerobots. Such an approach permits 
robots to perform low-level operations automatically while 
freeing human operators to concentrate on higher level task 
elements. As autonomous system technology advances, it 
will be possible to delegate higher levels of decision making 
to telerobots, reducing the load on human operators, ground 
control, and telecommunication systems while improving 
telerobot performance. In this way future space telerobotics 
will certainly be able to develop advanced machines useful 
for excavation, construction, assembly, maintenance, 
inspection, calibration, repair, solar array emplacement, and 
habitation construction, and site preparation of manned 
outposts or observatories at the Moon and Mars, for 
instance. Space telerobots are also planned to do dangerous, 
risky or costly space activities, as those that handle with 
nuclear reactors, cryogens, and toxic propellant onboard 
spacecraft. 

3.   SUPERVISED AUTONOMY FOR SPACE 

TELEROBOTICS 

Space applications provide both an important purpose 
for telerobotics and many important constraints on its 
implementation approach. Currently, the spacecraft designs 
are developed to be reliable and fail-safe, so their systems 
are optimized to provide only the required most critical 
needs to achieve mission success. Those needs include 
mostly the onboard capabilities for communication and 
control of the spacecraft and instruments. The Earth-based 
segment of the teleoperated systems generates command 
sequences which are telemetered to the remote spacecraft. 

 

Fig. 2.  Teleoperated master-slave systems schema 
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Command generation on the ground, based on updated data 
from the spacecraft, provides the needed system flexibility 
to achieve mission success. Extensive human and 
computational resources are much more complex on ground 
stations than those aboard the spacecraft. As seen in the 
previous section, the spacecraft is able to execute command 
sequences, which have been telemetered from Earth as well 
as to react to anomalous situations. Ground-based control of 
remote unmanned spacecraft is an application of supervised 
autonomous control. 

Telerobotics methods can be separated into three types 
[3], as seen by Fig. 3: manual control, supervisory control, 
and fully automatic control. In manual control, all the robot 
motion is specified by continuous input from a human, with 
no additional motion caused by a computer. In supervisory 
control, the robot motion may be caused either by human 
inputs or computer-generated inputs. In fully automatic 
control, all the robot motion is caused by computer-
generated inputs. 

There are two primary subsets of supervisory control: 
shared control and supervised autonomy. In shared control, 
the operator commands are sent during the execution of a 
motion and are merged with the closed-loop motion 
generated automatically. In supervised autonomy, the 
autonomous commands are generated through human 
interaction. However, the commands are sent for 
autonomous execution remotely. A command can be sent 
immediately or iteratively saved, simulated, and modified 
before it is sent for execution on the real robot systems. 

 

Fig. 3.  Methods of telerobotics control 

The ability to iteratively save, simulate, and modify 
commands before sending them for execution is a critical 
feature of supervised autonomy which distinguishes it from 
other forms of supervisory control. For safety purposes it is 
important to be able to simulate task execution before 
sending command sequences to the manipulator for task 
execution. Safety is achieved by verifying the commands 
before sending them for execution on the real robot systems 
and through real time monitoring. Real time simulation and 
monitoring are discussed further in the last section. 
Commands can be modified and simulated until they are 
acceptable for execution by the telerobot. Individual 
commands can be concatenated into a command sequence 
(macro) which can then be iteratively simulated, correctly 
modified and inserted into a large sequence. Command 
Sequence generation for autonomous spacecraft is a formal 
process because dangerous or incorrect commands could 
result in serious damage, loss of unique scientific 
opportunities (e.g., during a planetary flyby), or loss of the 

entire spacecraft, ruining the mission. In shared control, the 
operator commands are sent immediately to be merged with 
autonomous execution. Safety in shared control is achieved 
either by relying on the operator to input safe motions, or by 
having real time autonomous monitoring and modification 
of the motion specified by the operator. 

One of the most famous situations where a wrong 
command was issued to a spacecraft causing a mission 
failure happened on the Mars Climate Orbiter in 1999 [4]. 
The spacecraft was one of the Mars Surveyor ’98 program 
and was intended to enter in orbit of the red planet at an 
altitude of 140–150 km. However, a navigation error caused 
the spacecraft to reach as low as 57 km above the surface. 
The spacecraft was destroyed by atmospheric stresses and 
friction at this low altitude. The navigation error arose 
because a NASA subcontractor used imperial units (pound-
seconds) instead of the metric units (newton-seconds), as 
specified by NASA. The problem was due to the spacecraft 
flight software errors, partly because the software had been 
adapted from use on the earlier Mars Climate Orbiter, 
without proper testing before launch, and partly because the 
navigation data provided by this software was not cross-
checked while in flight.  

Another well-known mission failure occurred in June 4, 
1996, when the flight 501 of the European Ariane 5 rocket 
veered off its flight path 37 seconds after launch. The 
launcher was destroyed by its automated destruct system 
when high aerodynamic forces caused the core of the 
vehicle to disintegrate [4-5]. The reasons of the failure were 
quite the same as those reported by the Mars Climate 
Orbiter, that is, a malfunction in the flight control software. 
The Ariane 5 software reused the specifications from the 
Ariane 4, but the Ariane 5's flight path was considerably 
different and beyond the range for which the reused code 
had been designed. Specifically, the Ariane 5's greater 
acceleration caused the back-up and primary inertial 
guidance computers to crash, after which the launcher's 
nozzles were directed by spurious data. Pre-flight tests had 
never been performed on the re-alignment code under 
simulated Ariane 5 flight conditions, so the error was not 
discovered before the launch. The error is featured as one of 
the most infamous computer bugs in history. 

Disasters like those could be easily avoided just by the 
use of a prescription described by the supervisory control 
methods, more specifically, the supervised autonomy. As 
mentioned in the first section, flight systems require robust 
flight qualified software running in limited computing 
environments (limited compared to the ground systems). 
Modification of flight software during flight, although 
possible, requires an extensive and costly qualification 
process. Therefore, to prevent undesired situations such as 
those just described, the solution of supervised autonomy 
taken for unmanned robotic spacecraft control are described 
here. 

Another important feature of supervised autonomy is the 
bounded behavior execution. Bounded behavior execution 
allows task execution to diverge from the nominally planned 
motion within a specified bound. Since the remote 
environment cannot be known exactly a priori, real time 
execution will rely on both the pre-planned trajectory and 
perturbations computed via remote sensed data. Thus, the 
safety of execution within a specified bound can be tested a 
priori at the local site. The remote system can then 
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autonomously monitor execution in real time to ensure that 
the state of the motion is within the specified bound. If 
execution moves out of specified bounds, then an automatic 
reflex action is invoked and further local-site commands are 
awaited. 

3.1. Supervised autonomy systems 

The local and remote components of a supervised 
autonomy system can be divided into subcomponents. The 
local site includes sequence generation, sequence analysis, 
monitoring, and telemetry. The remote site includes 
telemetry, command parsing, sequence control, real time 
control, monitoring, and reflex. The command sequences are 
composed of command types and associated data which 
specify the desired spacecraft and instrument control 
behavior. The flight software is fixed but provides general 
command types which can be parameterized to generate a 
wide range of specific control behaviors. 

Sequence generation is the process of generating a 
command sequence which can be telemetered to a remote 
autonomous robot control system. An operator interface is 
provided and the operator uses this interface to specify the 
desired commands. Computer aids can also give support in 
the specification of tasks, commands, and parameterization. 
Computer aids include modeling, visualization, and task 
planning. Computer modeling provides a model of the 
manipulated systems or the task execution environment. The 
model can even be modified to match the remote scene 
using data returned from the remote environment. 
Visualization provides a graphical representation of the 
scene. An accurate representation of the task execution 
scene is important to ensure that the priori simulation is a 
valid representation of the execution that will occur on the 
real robot. Sequence analysis determines the expected result 
of executing a generated sequence and the level of 
confidence in achieving that result. Automatic analysis by 
the computer may provide tests for dynamic loading, 
collisions, valid range of motion, and valid commanded 
velocities and accelerations. Local-site monitoring analyses 
the reports from the remote site to test for valid execution 
and system health. The local site will usually have much 
greater diagnostic capabilities than the remote site due to the 
greater human and computational resources available. 
Local-site telemetry provides the communication of 
command sequences to the remote site and the reception of 
status and data from the remote site.  

Remote-site telemetry receives command sequences 
from the local site and sends status data to the local site. 
Command sequences are parsed at the remote site into 
individual commands for execution. Sequence control 
provides the transition to the next command in a command 
sequence on expected termination and transition to reflex 
action on a reflex monitor event. Real time control provides 
the closed-loop servo control of the remote-site 
mechanisms. The control is based on commands generated 
at the local site. Remote-site monitoring is responsible for 
the analysis of remote-site execution, providing information 

on whether to implement the transition the state of 
execution. Reflex is the ability to respond to monitored 
conditions. The most common reflex is to transit to the next 
command in a command sequence based on a monitor event 
which indicates that the previous command has been 
successfully completed. An equally important reflex is the 
ability to transit to a safety reflex action based on an 
unexpected monitor event. 

A local-remote system architecture incorporating 
supervised autonomy concepts is shown by the block 
diagram in Fig. 4. This architecture is part of a work 
developed by the Jet Propulsion Laboratory (JPL), at 
California Institute of Technology (Caltech) [3]. That work 
presents the simulation the features and capabilities of a 
system providing supervised autonomy of a remote 
manipulator system through the implementation of an 
operational laboratory simulation system. The system 
employed specific sensors, such as a stereo camera, and two 
motion-cooperative robotic arm manipulators as actuators. 

 

Fig. 4.  Laboratory simulated local-remote system block diagram (P. G. 
Backes [3], p. 143) 

In the system above the primary operator interface 
workstation provides interactive task description, sequence 
generation, and status display. A graphics workstation 
provides a stereo graphics overlay on stereo video as well as 
an interactive designation of objects or destinations. The 
remote-site simulator simulates remote-site execution with 
execution status displayed on the primary workstation and 
motion displayed on the graphics workstation. The remote 
site provides two control systems, one for independent, 
coordinated, or cooperative control of the two manipulators, 
and one for control of a third manipulator for positioning a 
suite of four cameras. The system’s executive module 
provides communication with the local site and initiates task 
commands as specified by the local site. Task primitives 
provide joint and task space control and monitoring of single 
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or dual cooperating manipulators. 
The remote-site system design of a space telerobotics 

system has more constraints imposed on it than the local-site 
system. A primary remote-site constraint is flight 
qualification of the software. This creates the need for fixed 
flight software, which has been validated before flight (or 
modified, validates and uplinked). Fixed flight software 
precludes custom optimized programs for each mission task. 
Rather, the fixed flight software must provide sufficient 
functionality to complete both expected and unexpected 
mission tasks. 

The solution provided in that laboratory system [3] is a 
family of parameterizable task called primitives, each of 
them with a general functionality for a class of manipulation 
tasks. Separate commands provide other needed capability 
such as database update, status request, and execution 
interruption. Task execution primitives are self-contained 
programs, which provide the manipulator control capability 
with behaviors as specified by an input parameter set. A 
natural interface between the local and remote-site systems 
is then the parameter lists for the various task primitives. 

The executive provides functionality similar to that of a 
spacecraft command and data subsystem. It receives 
commands from the local site, parses the commands to 
determine command types, and initiates execution of the 
commands by executing task primitives or other commands 
with the parameterization given in the command data sets. 
The executive also returns system state information to the 
local site. The interface commands that can be sent to the 
remote site by the local site include database, status, and 
execution commands. The database command has 
parameters specifying the arm and database datatype 
followed by the specific database parameters. The task 
primitives along with the task primitive parameters when 
executing a task use the database parameters. The status 
command requests that the remote site return the state of the 
arm specified in the command. Finally, the execution 
command effectively starts the preset autonomous motion 
execution tasks of the arm, such as moving to touch or grasp 
commands.  

The remote-site system design specifies the interface that 
the local site can use to control the remote manipulators. 
The local-site system is then designed to provide the remote-
site capability to the operator. The task descriptions and 
sequence generations are provided by the User Macro 
Interface (UMI). The UMI abstracts away the details of the 
local-remote interface and provides the operator with more 
natural menus for specifying tasks and parameterization. 
The resulting inputs from the operator are converted to 
equivalent commands and parameterization to be 
communicated to the remote site. The operator has the 
option of running either the real remote-site robots or 
simulating the motion at the local site by sending commands 
to the remote-site simulator (which is physically located at 
the local site) and observing the results on the graphics 
display. The simulation mode is selected as a parameter in 
the UMI environment menu. The remote-site simulator runs 
identical control software as in the remote-site system and 
sends joint angle data to the UMI graphics displays. The 
UMI eventually specifies task primitives and their 
parameterization to the local-site executive to perform the 
specific tasks desired by the operator. The operator may 
save a specific parameterization of a task as a task command 

for later utilization. The status of the remote-site system is 
updated on the local-site operator control station monitor 
whenever a system status or command result is returned 
from the remote site. 

When handling with telerobots that perform controlled 
autonomous motion, it is important to consider the effects 
caused by relative and absolute motion commands. A 
relative motion command produces the same relative motion 
from the starting point as when the motion was told to 
begin, even though the absolute starting point changes. In 
other words, the motion is always relative to its starting 
reference, not taking into consideration whether this initial 
point has been changed. This is useful for tasks being 
executed relatively to their environment. Absolute motion 
commands have an absolute position destination 
independent of where the motion has started. This is useful 
for moving to an absolute position before beginning a 
relative motion command. 

3.2.  Command sequence controlling 

Sequence control is responsible for the management of 
the transition between commands in a sequence or transition 
to a reflex action. Two important parts of sequence control 
are: runtime binding, executed before each command, and 
termination condition testing, executed at the end of a 
command. Runtime binding actually binds parameters to a 
task command just before its execution is initiated. 
Parameters bound at runtime may not be known at the time 
the command is built. Some examples of runtime binding 
include binding the current safety parameters, speed factor, 
and the reporting period to the parameter list. Each 
command in a task sequence completes due to satisfaction of 
a termination condition (including safety conditions). If the 
termination condition is one of the acceptable termination 
conditions specified in the command, then the next 
command of the sequence is issued. If not, then a safety 
reflex action is initiated, and a new command sequence must 
be sent.  

Transition between commands in a sequence can occur 
either at the local or the remote site, but transitioning to a 
reflex action should be done autonomously at the remote 
site. For sequence control at the local site, a delay at least as 
long as the round-trip time delay will occur between 
execution of each command in a sequence, because the local 
site must then receive the remote-site status indicating that 
the command has been terminated successfully before 
sending the next command in the sequence. This situation 
implies the need of some round-trip time delay measurement 
equipment, based on data transmission estimatives and 
network latency real time information. In case of the local 
site receives a timeout status from the last command sent, it 
means that a middle-way problem has been detected, such as 
a possible loss of data or a breakdown communication with 
the remote site. 

4.   COLLISION PREVENTION TECHNIQUES FOR 
SPACE MANIPULATORS 

Space manipulators, along with space telerobots, are 
designed and developed to operate in environments that 
differ from the usual Earth-grounded ones. When these 
telerobots are not performing tasks on other planet (or other 
Astros) surfaces, they usually find themselves in zero-g 
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environments, performing operations suitable to those 
gravity/friction/drag-free locations. Such operations also 
require special control algorithms developed for space 
robotics. Regarding those differences between terrestrial and 
space robotics, there are three main issues: unconstrained 
motion, stability during the contact transition, and force 
controlled manipulation of the environment. 

Unsuccessful autonomous unmanned/telerobotics 
mission failures due to spacecraft impacts have been 
reported, such as the one experienced by the DART space 
vehicle [6]. DART was a spacecraft project which focused 
its mission on the testing of autonomous rendezvous and 
docking technology application. The spaceship was 
expected to rendezvous with MULBCOM satellite, launched 
on May, 1999, and grasps this obsolete satellite. But less 
than 11 hours into the mission, the DART collided with 
MULBCOM. This fact enhances the risky features 
associated to unexpected collisions. 

If a space robot is unattached to its environment, it is 
considered that the robot is free-flying robot or a robot 
having a moving-base, forming two independent systems. In 
this case, the main preoccupations of the designers include: 
path planning, obstacle avoidance, and rendezvous and 
docking. Force control is not pertinent, because any forces 
exerted between the robot and its environment will tend to 
repel each of them away from the other. Therefore, if force 
control is to be applied, the robot should attach itself to the 
environment, making a continuous kinematic chain. The 
attachment of the robot to the environment is typically 
achieved through slow docking followed by base attachment 
or grasping by one arm or a multi-arm system. Once the 
robot and its environment are coupled, all three problems, 
robot collision-free motion, contact transition, and force 
control, are important. Collision-free motion is often more 
difficult when including the constraint of the attached base. 
However, the attachment does allow the control of 
interaction forces, in the form of impact control and accurate 
force trajectory following on the contacted surfaces [7]. 

The author divides the research of obstacle avoidance to 
reach the goal location into two classes of methods: global 
and local. Global methods rely on the description of the 
obstacles in the configuration space of a manipulator. Local 
methods rely on the description of the obstacles and the 
manipulator in the Cartesian workspace, referring to the 
local working envelope of both systems. 

Global methods require two main problems to be 
addressed. First, all the obstacles of the environment must 
be mapped into the configuration space of the manipulator. 
Second, a path through the configuration space must be 
found for the point representing the manipulator. Two 
techniques are used to generate those paths: geometric 
searches and artificial forces. The geometric search 
technique relies on an exhaustive search of the unoccupied 
configuration space for a continuous path from the start 
point to the goal point. The artificial force technique 
surrounds the configuration space obstacles with repulsive 
potential energy functions, and places the goal point at a 

global energy minimum. The point in the configuration 
space representing the manipulator is acted on by a force 
equal to the negative gradient of this potential field, and 
driven away from obstacles and to the minimum. In the real 
flight software, the real time control should be based in 
those potential functions, calculating the current manipulator 
positions and making them deviate from the gradient peaks, 
which means the environment obstacles. 

Global methods have several disadvantages. The 
algorithms necessary for global methods are 
computationally intensive. Thus, they are suited only for 
off-line path planning and cannot be used for real time 
collision avoidance. An immediate consequence is that 
global algorithms are difficult to use for collision avoidance 
in dynamic environments, where the obstacles are moving in 
time. Also, when using global algorithms it becomes very 
difficult to describe complicated motion planning tasks such 
as those performed by two manipulators moving 
cooperatively. 

The local methods are possible alternatives to global 
methods.  Local methods also employ the use of artificial 
forces. However, unlike configuration space forces, local 
forces are expressed in the Cartesian workspace of the 
manipulator. Object collisions are prevented by surrounding 
them with repulsive potential functions, and the goal point is 
surrounded by an attractive well, as shown in Fig. 5. These 
potentials are added to form a composite potential which 
imparts forces on a model of the manipulator in Cartesian 
space. Torques equivalent to these forces cause the motion 
of the real manipulator. Those models referred here are 
computed using mathematical dynamic modeling of 
specified robot manipulators [8]. 

 

Fig. 5.  Repulsive potential added to an attractive well (R. Volpe [7], p. 
178) 

The main advantage of local techniques is that they are 
less computationally demanding than the global ones, 
permitting their use in real-time control. Further, they 
provide the necessary framework to deal with changing 
environments and real time collision avoidance. When used 
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with a teleoperated manipulator, local artificial forces also 
provide low-level collision avoidance, while human 
operators perform high-level path planning of the 
manipulator. 

5.   REAL TIME DISTRIBUTED AND PARALLEL 
SOFTWARE SYSTEMS 

The need for computer simulation of real systems before 
implementing tasks associated with the project development 
is very important and is considered strictly necessary. In this 
sense, the easy access to computer facilities always plays a 
fundamental role in simulating real time systems. The ever-
increasing advancement of computer-based technology used 
to be isolated systems, are now connected together to form a 
complex “system of systems” [9]. In this reference the 
author explains that simulation does not replace the 
fundamental needs for “live” training activities, but it allows 
them to focus on high value training evolutions by 
implementing preparatory activities to be undertaken, in 
advance, in virtual environments. 

A computational model as defined here refers to the 
computer architectures that represent the space telerobot 
system dynamics as it would be in the remotely space 
environment. The associated computer simulations are 
processes of reproducing the behavior of some real system 
(space system for example) approached by mathematical 
models. In this regard, the parallel/distributed simulation 
technologies enable a simulation program to be executed on 
parallel/distributed computer systems. Such systems are also 
usually known as clusters of workstations, namely, systems 
composed of multiple interconnected computers, or 
multiprocessor systems, that is, many processors 
interconnected in the same computer allowing program 
parallel executions. Fujimoto [10] comments the primarily 
four principal benefits of executing a simulation program 
across multiple computers: reduced execution time, 
geographical distribution of machines and users, integrating 
simulators that execute on machines from different 
manufacturers and fault tolerance. 

The scenario concerning telerobotics supervised 
autonomy, as described in the section 3, may require exactly 
the parallel/distributed real time simulation purposes 
introduced here. In other words, if there exists a more 
powerful computational resource at ground stations (local 
site) to simulate pre-planned generated commands, it 
becomes strictly necessary to simulate those commands 
before sending them to the space telerobot (remote site). 
Thus, using a real time distributed/parallel software system 
to accomplish those types of tasks would be a reliable 
solution to measure the space telerobot systems 
effectiveness, safeness and fault-tolerances. Hence, once the 
system pre-requisites are defined, it becomes necessary to 
define a distributed virtual architecture that allows the real 
scenario representation by simulating it in a distributed 
environment. The three main existing architectures known 
in the literature are: Distributed Interactive Simulation 
(DIS), High-Level Architecture (HLA) and Test and 
Training Enabling Architecture (TENA) [9]. 

A very simple, stable, reliable and validated architecture 
available today is the DIS. The DIS architecture is 
comprised by a communication standard that provides a 
method of communicating entity state and other information 

by means of message packets called Protocols Data Units 
(PDUs). The DIS is nowadays considered as a fully mature 
simulator/simulation communication technology. It employs 
a 3D geocentric coordinate system and a standard set of 
dead reckoning algorithms to reduce the required 
bandwidth. The PDUs are all standardized and enumerated 
in a comprehensive way so as to comprise entities, sensors, 
communication devices, environmental descriptors, collision 
detectors and other attributes. It is observed that DIS is 
mainly focused in the communication methods between 
entities or software systems, which correspond to the data 
flow bus analysis presented by the laboratory simulated 
local-remote system scenario referenced in this paper at 
section 3. DIS is also not so complicated to install over an 
existing infrastructure, requiring only a network of suitable 
necessary bandwidth and latency. If the simulation could run 
effectively in a DIS virtual environment, then it will be 
simpler to transport the validated system to a real test 
platform including real time operating systems containing 
distributed/parallel shared memory applications, physical 
sensors and links susceptible to noised measurements, 
besides other features inherent of real-working engineering 
systems. 

6.   DISCUSSION 

Software systems incorporating technologies that 
involve real time modeling, simulation and control represent 
today a newly upcoming effort from software engineers, 
whose goals are mainly toward to the development of robust 
simulation and control frameworks. Regarding the Brazilian 
updated space mission projects, it could be addressed to the 
SARA Space Retrievable Orbital Platform [11]. SARA is an 
acronym for SAtellite for Re-entry in Atmosphere, and shall 
include a docking port for small satellite coupling. This 
feature is necessary for the SARA objective accomplishment 
of space rendezvous and docking maneuvers. The idea is to 
provide the platform with the capability of on-orbit 
maintenance and on-orbit experiment replacement [12]. 
Some researches to introduce real time computational 
simulation and control planning into SARA’s onboard 
computer simulators are discussed in [13]. Those studies 
aim to meet the software requirements that would allow the 
successful achievement of the spacecraft guidance, 
navigation and control to perform the rendezvous and 
docking maneuvers autonomously. Again, it shall be taken 
into consideration techniques employing real time 
supervised autonomy, collision prevention, and previously 
simulations which shall use distributed simulation software 
systems. 

7.   CONCLUSION 

Technological approaches on the planning of complex 
space mission designs are always concerned on how reliable 
would be the mission teleoperated systems. This work has 
described how a teleoperated or telerobot system works with 
emphasis on the computing subsystems. Special emphasis 
has been put on software systems available that compose 
these subsystems. The paper has also presented the 
supervised autonomy concept, one of the most useful space 
telerobotics automatic control policies. A discussion about 
risky space maneuvers has been addressed here by detailing 
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the collision prevention techniques used onboard telerobots. 
All those subjects have then been related to the recent 
technologies involving real time simulation and control, 
usually performed in such a distributed or parallel virtual 
environment. Some architecture available to recreate 
complex real time system scenarios has also been 
commented. The issues presented by this work aim future 
Brazilian space mission project applications, such as the 
SARA spacecraft, which intends to demonstrate near-term 
technology implementation. 
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