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ABSTRACT

A neuro-fuzzy modeling for forecasting the future dynamical behavior in vibration testing during
satellite qualification is proposed in this paper. Vibration testing is employed for emulating
vibrations present during the lifetime launching. There are different levels of excitation during
vibration testing in order to verify and assure that the satellite and their sub-systems will support
the efforts when in orbit or during the launching. The analysis of the dynamical behavior
can help not only to avoid breaks and other damages but also allows feasible adjustments
in the structure model. The neuro-fuzzy model is used to describe the dynamical behavior
through actual data measured during the qualification of space systems in the Integration and
Testing Laboratory (LIT) at the National Institute of SpaceResearch (INPE). The model uses
part of a low amplitude signal for training the neuro-fuzzy system; the remaining set of data
is used to validate the model. Afterward, the dynamical behavior is estimated when a new
high amplitude input signal is applied. Results of the structural model used in the design of
the satellite and of their sub-systems are confronted with the real behavior presented by the
structure, allowing eventual adjustments. Results show the neuro-fuzzy modeling is a feasible
solution for forecasting dynamic satellite behaviors under distinct exogenous input due to its
capacity of generalization.

INTRODUCTION

The space qualification process encompasses
different environmental tests for emulating
most of the activities and operational condi-
tions present at pre-launch, launch and post-
launch operations.

A satellite is composed of several sub-
systems that interact to each other to form a
whole system. In order to reach a fully opera-
tional status, the total system and, in particular,

the sub-systems must be tested and handled
for emulating as closely as possible the space
environmental conditions. Different from those
environmental condition available on earth the
satellite will be exposed to space conditions
during its lunching and its working life [1],
[2]. The interest here addresses the vibration
testing.

The estimation of future dynamical behavior
may be determined by using different tech-
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Fig. 1

OUTLINE FOR VIBRATION TESTING.

niques of system identification. Space systems,
such as satellites, however, are inherently non-
linear. While conventional identification tech-
niques are adequate for models or systems that
are linear in parameters, for systems that are
usually non-linear, identification methods used
in linear systems are not appropriated. Due to
that suitable nonlinear approaches should be
used.

Different approaches may be employed to
deal with this sort of problem. The effec-
tiveness of using computational/artificial intel-
ligence techniques based on Particle Swarm
Optimization and Fuzzy Logic modeling used
to space system qualification are demonstrated
in [3], [4], [5], [6]. The proposed approach
is based on computational/artificial intelligence
techniques inspired by biological neural model
of human beings. These techniques, related to
the field of Artificial Neural Networks (ANN),
are mainly characterized by its ability to learn
through experiences, to adapt to adverse con-
ditions, and to be tolerant to noise [7], [8], [9].

The use of ANN in vibration systems and/or
space sector is found in literature in diverse
approaches. For instance, the neuro-fuzzy sys-

tem design methodology employed for vibra-
tion control to adaptively adjust the fuzzy
membership functions and dynamically opti-
mize the linguistic-fuzzy rules was developed
in [10]. A model multilayer perceptron neu-
ral network based on backpropagation through
time algorithm is developed to minimize the
general quadratic cost function in forward and
backward pass stages. The problem of op-
timal large-angle single-axis maneuvers of a
flexible spacecraft with simultaneous vibration
suppression of elastic modes is discussed in
[11]. The structure of a five-layer feedforward
network is shown to determine systematically
the correct fuzzy logic rules, tune optimally
the parameters of the membership functions,
and performing accurately the fuzzy inference.
An adaptive structure with self-learning active
vibration control system is developed in [12]. A
fuzzy-neural network controller with adaptive
membership functions is presented. The exper-
imental setup of a two-bay truss structure with
active members is constructed, and the FNN
controller is applied to vibration suppression of
the truss. The paper accomplished in [13] de-
scribes some of the techniques which are being
proposed to control vibration aboard spacecraft
in order to secure the high-quality microgravity
environment. One of the presented techniques
is a model of the element-finite type used by
NASA for predict microgravity levels for Space
Station Freedom.

The objective in this paper is to show the fea-
sibility of employing a nonlinear identification
technique denominated neuro-fuzzy modeling
for forecasting the future behavior of vibration
systems. The vibration testing is one of the
tasks carried out to verify the structure of
the satellite and their sub-systems in order to
appropriately support the launcher lift-off and
to guarantee useful life when in orbit (Fig. 1).
Devices are exposed to the similar environ-
mental conditions that will be demanded from
launching to its working life.

The neuro-fuzzy model to describe the dy-
namical behavior is obtained through actual
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data measured during the qualification of space
systems in Integration and Testing Laboratory
(LIT) at the National Institute of Space Re-
searches (INPE). The problem is composed of
two parts. In the first one, the model uses
part of signals of low amplitude for training
the neuro-fuzzy system and then it is validated
with the remaining set of data. Afterward, this
proposed neuro-fuzzy model is employed to
estimate a distinct dynamical behavior when a
new input signal of high amplitude is applied
to the space system. Results of the structural
model used in the design of the satellite and of
their sub-systems are confronted with the real
behavior presented by the structure.

NEURO-FUZZY SYSTEM

The model used in this work is the well es-
tablished hybrid system denominated Adaptive
Neuro-Fuzzy Inference System (ANFIS) [14].
Used in a synergetic manner the fuzzy systems
allows to deal with imprecise, uncertain and
vague in information while the Artificial Neural
Networks can learn with examples and produce
output for inputs no present in the period of
training due to its capacity of generalizing [15].

One of the main characteristics of fuzzy mod-
els is related to its capacity to mimic human
reasoning allowing knowledge representation
in the form fuzzy conditional rules and fuzzy
sets theory. Fuzzy sets also is appropriate to
deal with uncertainty, imprecise measures and
incomplete information. Nevertheless, it does
not allow learning by examples. In turn, artifi-
cial neural network are low-level computational
algorithms presenting learning capacity. This
approach is effective in the processing of nu-
merical data and presents distributed computa-
tional characteristic allowing that each node in
the network to adjust its connections to obtain
the best possible input-output mapping after
learning from data. When combining neural
networks and fuzzy systems it is possible to
obtain hybrid models with the capacities of
learning, adaptation, optimization, being ro-
bust, dealing with large amounts of numerical

data, knowledge representation through fuzzy
rules [16], and the ability to deal with imperfect
data, as well. The neuro-fuzzy model may as-
sume the fuzzy Takagi-Sugeno (TS) model [17]
and approach used in many problems of diverse
areas. The T-S models may be represented by
the following general form:

Rs(j) : IF < x1 is A
j
1 > AND . . .

AND < xm is Aj
m >

THEN yj = f(·) .

(1)

The <IF statements> defines the premise part
that is featured as linguistic terms in the propo-
sition form, < xi is A

j
i >, while the<THEN

functions> constitutes the consequent part of
the j-th rule of the fuzzy system. The vector
x = [x1, . . . ,xi]

T represents thei-th input
vector of the premise,∀ i = 1, . . . , m, and
so, the dimensionality of the premise space.
The termsA

j
i are linguistic labels of fuzzy

sets. Thej-th rule output,yj = f(xj,wj), is
usually function of the consequent input vector,
x = [xj

1, . . . ,x
j
qj

]T, w = [wj
1, . . . ,w

j
yj

]T, that
compose the consequent parameter set. One of
the advantage of the TS model does not contain
defuzzification interface because it process and
produces crisp data.

The firing strength of thej-th rule, Rs(j),
represents its activation level and may, for
instance, be chosen as the algebraic product:

wj(z) = w
A

j
1
(x1)wA

j
2
(x2) . . .w

A
j
m

(xm) . (2)

A neuro-fuzzy model equivalent to the
Takagi-Sugeno system is depicted in Fig. 2.

Fig. 2

ANFIS STRUCTURE.
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This example has two inputsx, y, one out-
put f and two rules. The ANFIS structure is
composed by the following elements:

1) Input Layer:
Computes the degree of relevancy of the

inputsx,y with relation of the subgroups fuzzy
that form the partition ofx andy, or either, the
process of fuzzification.

2) Membership Layer:
Computes the degree of activation of each

rule, with that degree the consequence of the
rule is being taken care of. The function for
this layer is aT-normthat uses the probabilistic
form. In this, the outputs of the neurons given
by eq. (3) are equivalent to (2):

w1 = µA1
(x1) · µA2

(x2) · µA3
(x3) (3)

3) Rule and Norm Layer:
Layer 3 is the degree of relevance of each

rule, already normalized. Each pointi calcu-
lates the reason for the firing strength of rule
j for the sum of the firing strength of all the
rules. The outputs of points this layer referring
to Fig. 2 are:

w̄1 = w1(w1 + w2 + w3)
w̄2 = w2(w1 + w2 + w3).

(4)

4) Layer consequent:
Layer 4 contains the function of activation of

the neurons, consequence part of the rules (Ci).
It is calculated by the product of the normalized
firing strength (Si∀i = 1, 2, 3) and the value of
the consequence of the rule. The output values
of each point of this layer are given by:

H1 = w̄1 · C1

H2 = w̄2 · C2.
(5)

5) Output layer:
It computes the necessary output of the net-

work as given by:

F = H1 + H2 . (6)

Learning on a neural network consists of
adjusting values in the synaptic connections.
It can be made by means of a system spe-
cialist or through an algorithm of learning
[18]. The initial weights, the learning constant

and momentum constant are among the most
important factors determining the convergence
of the backpropagation [15], [19].

The parameters of membership functions are
estimate by means of the backpropagation algo-
rithm. The algorithm backpropagation provides
a supervised learning. This approach attempts
to find out iteratively the low differentiates
between the desired outputs and actual mea-
sured outputs obtained by the neural network,
second a minimum error. The error signal is
back-forwarded then of the output layer for
each element of the previous intermediate layer
that it contributes directly to the formation
of the output. However, each element of the
intermediate layer just receives a portion of
the signal of error total, proportional just to
the relative contribution of each element in the
formation of the original output. This process
repeats, layer after layer, until each element
of the network receives an error signal that
describes its relative contribution for the total
error. Based on the error, the weights of the
connections are updated for each element al-
lowing the neural network to converge all the
patterns of the training group [18].

In each iteration of the learning method the
parameters of the premises are fixed. This out-
put is calculated from the linear combination
of the parameters of the consequent part.

The parameters of the consequences are iden-
tified by the method Least Mean Square-LMS,
which it carries through the adjustment of the
coefficients that will be used in the synaptic
weights during the stage of backpropagation.
The error signals backward propagated to adapt
the parameters of the premises, by means of the
descending gradient [18].

PROBLEM FORMULATION

The qualification of space systems in Brazil
is accomplished by the Integration and Test-
ing Laboratory (LIT) at the National Institute
of Space Researches (INPE). Space systems
are submitted to extensive ground testing to
ensure their successful operation. The nature
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of environmental simulation is able to emu-
late flights or other environmental conditions.
There are standards that settle environmental
criteria, testing requirements, and test methods
to ensure that system can reach post-launch
requirements.

Vibrations caused by the operation of launch
vehicle engines can be transmitted to the satel-
lite mechanically and acoustically. During the
lift-off space systems suffer vibration transmit-
ted for the useful load demands that tests are
accomplished in agreement with the charac-
teristics of each specimen. Resulting shocks
induce vibrations that correspond for 10 times
the value of originating from acceleration the
gravitational force of the Earth.

The vibration testing is one of the tasks
carried out to verify the structure of the satellite
and their sub-systems in order to support the
lift-off of the rocket appropriately (Fig. 1). De-
vices are exposed to the similar environmental
conditions that will be demanded from the lift-
off to the useful life when in orbit. Results
of the structural model used in the design
of the satellite and of their sub-systems are
confronted with the real behavior presented by
the structure, allowing eventual adjustments.

Their consequences are, for instance, wire
chafing, loosening of fasteners, intermittent
electrical contacts, touching and shorting of
electrical parts, seal deformation, component
fatigue, optical misalignment, cracking and
rupturing, loosening of particles of parts that
may become lodged in circuits or mechanisms,
and excessive electrical noise.

Vibration test standard are classified as devel-
opment, qualification, acceptance, pre-launch
validation, or other specific tests. Random vi-
bration test is defined in which all frequencies
are present at all times in various combinations
of intensity. The spectra are defined in terms
of acceleration spectral density and are defined
over a relevant frequency range. The vibration
levels are deliberately chosen to be greater than
the expected levels in service (Fig. 3).

Conditioning testing is used to prove to the
customer the ruggedness and structural ade-

Fig. 3

A) PRE-CONDITIONING: INPUT x OUTPUT B) ACCEPTANCE: INPUT x

OUTPUT C) PRE-CONDITIONING x ACCEPTANCE OUTPUT.

quacy of a design and demonstrate that ad-
equate margins exist in the final product to
assure that required specifications are met.

Acceptance testing is used to prove that
production units are as high in quality as was
the qualification model. Amplitudes applied in
acceptance testing are somewhat greater than
the average signal level expected in service, but
lower than the level used in qualification test.

Good acceptance amplitude, with levels

Fig. 4

OUTPUT (O) AND INPUT (.) CORRELATIONS.
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Fig. 5

DATA FOR IDENTIFICATION AND VALIDATION .

slightly over those expected in service would
be sufficiently severe to detect and eliminate
causes of infant mortality, but would not be
severe as to encroach on the service life of a
reliable design. Prior to the application of the
randomly conditioning signal of higher ampli-
tude, a preliminary lower level excitation may
be necessary for equalization and preliminary
analysis.

Close examination of a preliminary lower
level can be very useful in finding out the im-
portant dynamical behaviors of the specimen.
This analysis can assist, for instance, to deter-
mine critical frequencies in which mechanical
resonance and other effects occur or in which
malfunction, deterioration of performance are
exhibited. Thus, the advantage of forecasting
future dynamical behavior is useful to mini-
mize and avoid damages when a high level
of excitation signal is employed in condition-
ing testing. Besides, the upper displacement
achieved by estimation techniques can help in
determining notching levels used to limit and
protect satellites.

Reliable methods will afford the opportunity
of identifying crossover frequencies and ap-
proximate future displacement to be performed
by the electro-dynamical vibrator used during
the tests where the actual input level is greater

than the level used in preliminary analyses.
The performance parameter measurements

should establish a baseline that can be used to
assure that there are no data trends established
in successive tests which indicate a constant
degradation of performance within specifica-
tion limits that could result in unacceptable
performance in flight. It is demanded therefore,
that studies are accomplished in the intention of
obtaining models capable to reduce the effects
of this vibration and to guarantee that the space
mission has their project requirements met.

EXPERIMENTAL RESULTS

The type and the amount of membership
functions that compose the models are the
parameters modified to check which better
model represents the dynamics of the system.
The learning method is also modified during
the simulations. The method backprogation ap-
proach is used in its original form and in the
hybrid form, such that, the filter least mean
square is used as auxiliary mechanism. The
learning method in the hybrid form (backprop-
agation with LMS) provides the best results.

The data used for system identification is
shown in Fig. 5. The process of identification
is accomplished by using two structures. In the
first, the system presents one input associated
to low amplitude signals. In the second, it is
utilized as input the low amplitude signals and
signal variation. Several combinations of data
set were tested. For the current application,
the data selected is the most appropriate. To
validate the model it is used all the data set of
low and high amplitude.

The root mean square error is used as mea-
sure of precision of the model. The closer of
unit value, the better are the results supplied
by the model. The stop criterion used is300
epochs for the model with one input and180
epochs for the model with two inputs. For the
learning parameters: (i) initial step-size, (ii)
tax of decrement (step-size decrease rate), and
(iii) tax of increase (step-size increase rate)
are selected, respectively, the values,0.01, 0.09
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TABLE 1

NEURO-FUZZY MODELS WITH ONE INPUT.

Amount of Bell Gaussian
membership Amplitude Amplitude
functions Low High Low High

2 0.0098 0.0476 0.0097 0.0563

3 0.0096 0.0561 0.0098 0.0628

4 0.0097 0.0502 0.0097 0.0586

5 0.0099 0.0427 0.0097 0.0536

6 0.0096 0.0651 0.0097 0.0575
∗Learning method backpropagation with LMS filter.

and1.1. After analyzing the data shown in the
Table 1 and Table 2, the model that supplied
the best results satisfying the RMSE criterion
is selected.

The eq. (7) and eq. (9), respectively, represent
the models with one and two inputs. The learn-
ing method backpropagation with LMS filter
provides the best results for the models with
one input. However, for the models with two
inputs the learning method backpropagation
provides better results.

The model with one input is given by:

R1 : IF x1 is NZ THEN y1 = is NZ

R2 : IF x1 is P THEN y2 = is P

R3 : IF x1 is PS THEN y3 = is PS

R3 : IF x1 is PM THEN y3 = is PM

R4 : IF x1 is PL AND xm is PL
(7)

wherex1 is concerned the low amplitude sig-
nal. The linguistic terms for one input ANFIS
model are: NZ (near zero), P (positive), PS
(positive small), PM (positive medium), and
PL (positive large). The Bell membership func-
tions given by eq. (8) provide the best results
for the .

µMi
(xi) =

1

1 + |
x − c

a
|2b

. (8)

The fuzzy sets of model are shown in Fig. 6(a).
The accuracy of the model when validated
with signals of low and high amplitude is,
respectively, shown in Fig. 6(e) and Fig. 6(f).
In turn, the RMSE is show in Fig. 6(b).

The eliciting neuro-fuzzy model containing

TABLE 2

NEURO-FUZZY MODELS WITH TWO INPUTS.

Amount of Bell Gaussian
membership Amplitude Amplitude
functions Low High Low High

2 0.0113 0.0500 0.0113 0.0500

3 0.0115 0.0645 0.0115 0.0645

4 0.0409 0.0576 0.0409 0.0576

5 0.0789 0.2946 0.0789 0.2946

6 0.0117 0.0796 0.0117 0.0796
∗Learning method backpropagation.

two input is given by:

R1 : IF x1 is PS ANDxm is PS

THEN y1 = is PS

R2 : IF x1 is PS AND xm is PL

THEN y2 = is PL

R3 : IF x1 is PL AND xm is PS

THEN y3 = is PS

R4 : IF x1 is PL AND xm is PL

THEN y1 = is PL
(9)

wherex1 is low amplitude signal andx2 is its
variation (varLow). The Gaussian membership
function (10) is used. The RMSE is show in
the Fig. 6(d). The control surface of the neuro-
fuzzy model is show in the Fig. 6(c).

µMi
(xi) = exp

[

−
1

2

(zi − mij)
2

σij2

]

(10)

CONCLUSION

An alternative for forecasting the dynamic
behavior of vibration systems in satellite qual-
ification is proposed in this work.

The neuro-fuzzy model is used for identifica-
tion and modeling of non-linear system. Neuro-
fuzzy is an hybrid model characterized as being
robust, dealing with uncertain, imprecise mea-
sures and is able to learn with experience, i.e.,
data.

The analysis of the dynamic behavior can
help to avoid breaks and other damages and
to allow feasible adjustments in the structure
model. Results show that the models have good
capacity of generalization. These results were
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improved when used the variation of the signal
of low amplitude as input. The criterion for
validation of the models adopted is Root Mean
Square Error. The RMSE values indicated in

some cases accuracy of 99% and 95%.

Future works can be carried through using
others intelligent techniques, as Particle Swarm
Optimization (PSO) in order to compare the

(a) Fuzzy sets of input of model with one input. (b) RMSE for model with one input.

(c) Fuzzy surface for the two inputs model. (d) RMSE for model with two inputs.

(e) System output and Neuro-Fuzzy models - results for
signals of low amplitude

(f) System Output and Neuro-Fuzzy models - results for
signals of high amplitude.

Fig. 6

NONLINEAR ANFIS MODELING WITH ONE INPUT (LOW AMPLITUDE) AND WITH TWO INPUTS (LOW AMPLITUDE AND ITS VARIATION ).
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answers produced for these techniques in the
solution of the considered problem.
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