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Abstract. Satellite systems are growing even more complex, making technical issues a significant driver of costs. The 

increasing complexity of these systems makes requirements engineering activities both more important and more 

difficult. Additionally, nowadays  strong market competition drive companies to improve the efficiency with which they 

design and manufacture space products and systems. This imposes a heavy burden on systems-of-systems engineering 

skills and particularly on requirements engineering which is an important phase in a system’s life cycle. A poorly 

attained requirement engineering approach may cause design failures, cost overrun and delays. One solution is to 

underpin the preliminary conceptual satellite design with computer-based information reuse and integration to deal 

with interdisciplinary nature of this problem domain. This can be attained by taking a model-driven engineering 

approach (MDE), in which models are the main artifact during system development. MDE is an emergent approach 

that tries to address system complexity by the intense use of models. This work outlines the use of SysML (Systems 

Modeling Language) for requirements engineering, more specifically requirements management and traceability. It is 

intended to use this approach in the conceptualphase of a semi-professional satellite system called ITASAT, currently 

being built by INPE and some Brazilian universities. 
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1. INTRODUCTION 

 

Space systems are complex systems designed to perform specific functions for a specified design life. Satellite 

projects, for instance, demand lots of resources, from human to financial, as well accounting for the impact they play on 

society. This requires good planning in order to minimize errors and not jeopardize the whole mission. 

Therefore satellite conceptual design plays a key role in the space project lifecycle as it caters for specification, 

analysis, design and verification of systems without actually having a single satellite built. Conceptual design maps 

client needs to product use functions and is where functional architecture (and sometimes the physical architecture) is 

decided upon. 

Moreover, the lack of a clear vision of the satellite architecture hinders team understanding and communication, 

which in turn often increases the risk of integration issues. The conceptual satellite design phase has been lacking 

efficient support. 

SysML is a new systems modeling language that supports specification, analysis, design, verification and validation 

of a broad range of complex systems (Soares and Vrancken, 2007). This work proposes to employ SysML as a satellite 

architecture description language in order to enable information reuse between different satellite projects. Additionaly, 

this approach facilitates knowledge integration and management over systems engineering activities. One of them is 

requirements engineering, more specifically requirements management and tracebility. This is an important phase in the 

life cycle of satellite systems. 

This work shows the main advantages of having user requirements being graphically modeled, their relationships 

explicitly mapped, and system decomposition considered in the early system development activities. In addition, 

requirements traceability is enhanced by using the SysML Requirements tables. The approach is illustrated by a list of 

user requirements for ITASAT, semi-professional satellite system, currently being built by INPE and some Brazilian 

universities. 

This work is organized as follows. Section 2 presents a short introdution to satellites and to SysML as an 

architecture description language. Section 3 shows the SysML satellite modeling. Section 4 covers the SysML satellite 

requirements enginerring. Section 5 describes further future work. Finally, Section 6 summarizes this research report. 

 

2. BACKGROUND 

 

This background section presents an overview of the satellite and SysML which will be important for the paper 

context. 
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2.1. Overview to satellites 

 

A satellite has generally two main parts: 

 The bus or platform where the main supporting subsystems reside and; 

 The payload, the part that justifies the mission. 

 

As an example, Figure 1 shows the Equatorial Atmosphere Research Satellite (EQUARS), a typical scientific 

satellite envisaged by INPE (Chamon, 2004). Its various payloads are aimed at studying the equatorial low, middle and 

upper atmosphere-ionosphere. To achieve this objective, the satellite shall be placed in a near equatorial orbit at 750 km 

Low Earth Orbit (LEO) altitude, and 20 degrees of inclination, in order to view low latitude regions of the Earth. 

 

 
 

Figure 1. EQUARS satellite (Chamon, 2004) 

 

A typical satellite bus has a series of supporting subsystems as depicted in Figure 2. The satellite system is built 

around a system bus also called the On-Board Data Handling (OBDH) bus. The main On-Board Computer (OBC) is the 

bus master which here incorporates functionalities from command and telemetry units for simplicity. The clients on the 

system bus are the various satellite subsystems and the payloads. Satellite subsystems may have their own computer and 

may even have an internal bus. The flight software manages all the spacecraft functionalities into a coordinated fashion. 

 

 
 

Figure 2. Block diagram of a typical satellite (de Souza, 2002) 

 

Any satellite is composed by subsystems pertaining to either paylod or the bus  (also called service module or 

platform). The payload depend on the satellite mission. The control segment on the ground monitors and controls the 

platform subsystems. These are typically the following:Structure of the satellite: 

 Power; 

 Propulsion; 
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 Stabilization and Attitude Control; 

 Thermal Control; 

 Environmental Control and; 

 Telemetry, Tracking and Command. 

 

2.2. SysML as an Architecture Description Language 

 

System modeling based on an architecture description language is a way to keep the engineering information within 

one information structure. Using an architecture description language is a good approach for the satellite systems 

engineering domain. 

Architectures represent the elements implementing the functional aspect of their underlying products. The physical 

aspect is sometimes also represented, for instance when the architecture represents how the software is deployed on a 

set of computing resources, like a satellite. 

SysML is a domain-specific modeling language for systems engineering and it supports the specification, analysis, 

design, verification and validation of various systems and systems-of-systems (SysML, 2009). It was developed by the 

Object Management Group (OMG) (OMG, 2009) in cooperation with the International Council on Systems Engineering 

(INCOSE) (INCOSE, 2009) as a response to the request for proposal (RFP) issued by the OMG in March 2003. The 

language was developed as an extension to the actual standard for software engineering, the Unified Modeling 

Language (UML) (UML, 2009) also developed within the Object Management Group consortium. 

Basically, SysML is used for representing system architectures and linking them with their behavioral components 

and functionalities. By using concepts like Requirements, Blocks, Flow Ports, Parametric Diagrams and Allocations, it 

is simple to achieve a profitable way to model systems. A comparison between SysML1.0 to UML2.0 in term of re-use 

is presented in Figure 3. It summarizes the various diagrams available in SysML (SysML, 2009). 

 

 
 

Figure 3. Relationship between UML and SysML (SysML, 2009) 

 

As shown in Figure 4, Requirements, Parametrics and Allocations are new diagrams available only in SysML. 

Activity and Block diagrams are reused from UML2.0 and extended in SysML. Finally, State Machines, Interactions 

and Use cases are reused from UML2.0 without modifications. 

 

 
 

Figure 4. SysML diagram taxonomy (SysML) 

 

This work explores some of the SysML capabilities through an example, the ITASAT student satellite system 

(Carvalho et al, 2008). The application of SysML presented in this work covers only some the diagrams available in 

SysML due to paper scope and page restrictions.  
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3.CONCEPTUAL SATELLITE DESIGN VIA SysML 

 

Systems Engineering attacks the problem of design complexity of engineering products as it grows larger, more 

complex and are required to operate as part of a system. 

The approach taken is formal and systematic since the great complexity requires this rigor. Another feature of 

systems engineering is its holistic view and it involves a top-down synthesis, development, and operation. This suggests 

the decomposition of the system into subsystems and further into components (Dieter, 1991). 

 

3.1.Motivation for the Satellite SysML Modeling 

 

Space Systems Engineering is a subclass of the previous mentioned in the sense that it is primarily concerned with 

space systems, e.g. satellite systems. Therefore it deals with the development of systems, including hardware, software, 

man-in-the-loop, facilities and services for space applications. 

The satellite conceptual stage follows the transformation of customer needs into product functions and use cases, 

and precedes the design of these functions across the space engineering disciplines (for example, mechanical, electrical, 

software, etc.). 

Model-Driven Engineering (MDE) is the systematic use of models as primary engineering artifacts throughout the 

engineering lifecycle (Schmidt, 2006). MDE can be applied to software, system, and data engineering. 

MDE technologies, with a greater focus on architecture and corresponding automation, yield higher levels of 

abstraction product development. This abstraction promotes simpler models with a greater focus on problem space. 

Combined with executable semantics this elevates the total level of automation possible. This work argues that MDE is 

quite suitable for information reuse and integration as will be shown later. 

 

3.2.The SysML Modeling Approach 

 

SysML allows incrementally refinable description of conceptual satellite design and product architecture. This helps 

systems engineers which are concerned with the overall performance of a system for multiple objectives (e.g. mass, 

cost, and power). The systems engineering process methodically balances the needs and capabilities of the various 

subsystems in order to improve the systems performance. 

SysML elements in the design represent abstractions of artifacts in the various engineering disciplines involved in 

the development of the system. The design represents how these artifacts collaborate to provide the product 

functionalities. The size, volume, and mass constraints often encountered in satellite development programs, combined 

with increasing demands from customers to get more capability into a given size, make systems engineering methods 

particularly important for this domain. 

This paper explores some of the diagrams available in SysML through the example of the ITASAT satellite system 

by basically, exploring the block diagram and top-level requirement diagram, both shown in short detail. 

SysML diagrams allow information reuse since they can be emploied in other similar satellite projects by adaptation 

and dealing with project variabilities. An exploration of these features for the on-board software design of satellites is 

shown in (dos Santos, 2008). As an example, take the use case diagram which describes a specific use of the system by 

a particular actor, i.e., some outside stimulus. The use case diagram represents a fully factored model since use cases are 

decomposed to find pieces that can be reused in multiple use cases. Its fragments are then composed into use cases 

using relationships like “extends” and “includes” precluding redundancies. 

SysML allows the utilization of use case diagrams which were inherited from the UML without changes (Balmelli, 

2007). Use case diagrams are emploied to describe systems functionalities by its actors looking forward to achieving a 

system goal. The use case diagram can be seen as functionalities and\or capabilities which are implemented by means of 

interaction between actors and the use cases. The use case diagram has been widely applied to specify system 

requirements. 

The interaction between ITASAT actors and some key use cases is shown in Figure 5. This diagram depicts five 

actors and how they relate to the use cases that they trigger in the high-level system view. The figure still describes 

schematically the composition of a series of low-level use cases hierarchically modeled by employing an <<include>> 

dependancy relationship between them. SysML also allows the representation of test use cases which will further 

explored in the validation, verification and testing project phases. Figure 5 depicts, as an example, the Test On-Board 

Management Functions use case and how are its <<include>> dependancies are related to other two test use cases, Test 

Other On-Board Functions and, Test Power Supply Functions. 
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Figure 5. ITASAT high-level use case to specify system requirements (Carvalho et al, 2008) 

 

The SysML block diagram is used to show features and high-level relationships. It is used to allow systems engineer 

to separate basically the responsibilities of the hardware team from the software team. Figure 6 shows the various 

ITASAT blocks and their interdependencies.  

 

 
 

Figure 6. The ITASAT satellite SysML block diagram (Carvalho et al, 2008) 
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The requirements diagram plays a key role into the SysML model as requirements present in this diagram can also 

appear in other SysML diagrams linking the problem and solution spaces. Furthermore, the requirements diagram 

notation provides a means to show the relationships among requirements including constraints, see Figure 7 for details. 

This topic is of high importance to this work hence it is further developed in the next section. 

 

 
 

Figure 7. Relationships used in a SysML requirement diagram (OMG–SysML, 2009) 

 

4. THE MODEL-DRIVEN REQUIREMENTS ENGINEERING APPROACH 

 

The process of requirements engineering involves various key activities, such as elicitation, specification, 

prioritization and management of requirements. This section shows how SysML can enable a model-driven 

requirements engineering approach to conceptual satellite design. 

The SysML standard identifies relationships that enable the modeler to relate requirements to other requirements as 

well as to other model elements. These include relationships for defining a requirements hierarchy, deriving 

requirements, satisfying requirements, verifying requirements, and refining requirements (SysML, 2009). 

Figure 8 shows a simplified view of the ITASAT requirement tree structure (Carvalho et al, 2008). It also shows 

how a constraint is attached to a low-level requirement and how traceability may be established. 

 

 

 
 

Figure 8. Requirements tree structure for the ITASAT satellite (Carvalho et al, 2008) 
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After top-level requirements are ellicited, then starts the decomposition of every system requirement into 

progressively lower levels of design. This is done by defining the lower-level functions which determine how each 

function must be performed. Allocation assigns the functions and its associated performance requirements to a lower 

level design element. Decomposing and allocation starts at the system level, where requirements derive directly from 

mission needs, and proceeds through segment, subsystem, and component design levels (Larson and Wertz, 2004). This 

process must also warrant closure at the next higher level meaning that satisfying lower-level requirements warrants 

performance at the next level. Additionally, it roundtrips all requirements tracing back to satisfying mission needs. 

Managing requirements is the capability of tracing all system components to output artifacts that have resulted from 

their requirement specifications (forward tracing) as well as the capability of identifying which requirement has 

generated a specific artifact or product (backward tracing) (Pressman, 1995). 

The great difficulty on tracing requirements is responding the following questions: What to track? and How to 

track?. One can say that a requirement is traceable when it is possible to identify who has originated it, why it exists, 

which are the requirements related to it? how is it related to other project information. These information is used to 

identify all requirement\elements affected by Project changes. The specification of requirements can facilitate the 

communication between the various project stakeholder groups. 

There are several published works on requirement engineering and the most common way they employ to 

requirement tracking is by posing basic questions about the underlying domain (Aurum, 2005). Unfortunately, such 

questionaire does not offer generally any classification on the sufficient elements in order to identify all model 

elements. 

By using a SysML requirements diagram, system requirements can be grouped, which contributes to enhance 

project organization showing explicitly the various relationship types between them (Soares and Vrancken, 2008). 

These include relationships for defining requirements hierarchy or containment, deriving requirements, satisfying 

requirements, verifying requirements and refining requirements (OMG-SysML, 2009). Moreover, the SysML 

requirements diagram can be emploied to standardize how requirements are documented following all their possible 

relationships. This can provide systems specification as well as be used for requirements modeling. 

New requirements can be created during the requirement analysis phase and can be related to the existing 

requirements or complement the model. Figure 9 presents an excerpt from the ITASAT requirements diagram which 

utilizes the <<deriveReqt>> relationship type showing the derived Satellite State requirement from the source Telemetry 

Design requirement inside the Operability requirement SysML package. This allows, for example, a link between high-

level (user oriented) and low-level (system oriented) requirements which contributes to explicitly relates the 

dependency of user requirements mapped into systems requirements. 

 

 
 

Figure 9. An excerpt of the ITASAT requirements diagram with a <<deriveReqt>> relationship (Carvalho et al, 2008) 

 

Similarly, Figure 10 presents another excerpt from the ITASAT power subsystem requirements diagram which 

utilizes three relationships. Requirements are abstract classes with no operations neither attributes. Subrequirements are 

related to their “father” requirement by utilizing the <<containment>> relationship type. This is shown in Figure 10 as 

many subrequirements from the Power Supply Requirements requirement are connected employing <<containment>> 

relationships. The “father” requirement can be considered a package of embedded requirements. 
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Figure 10. An excerpt of the ITASAT power subsystem requirements diagram with containment <<satisfy>> and 

<<verify>> relationships (Carvalho et al, 2008) 

 

Additionally, Figure 10 presents the <<satisfy>> relationship type which shows how a model satisfies one or more 

requirements. It represents a dependency relationship between a requirement and a model element, in this case the 

Power Supply Functions use case is satisfied by the Power Supply Requirements. Finally, it is shown the <<verify>> 

relationship type where the Test Power Supply Functions test use case is verified by the functionalities provided by the 

Power Supply Requirements. This may include standard verification methods for inspection, analysis, demonstration or 

test. 

 

Lastly, SysML allows requirements traceability by using tabular notations. This allows model elements to be traced 

in SysML via requirements tables which may contain fields like: identifier (ID), name, which requirement is related to 

it, what type of relationship is held among them. 

One such SysML tabular notation for requirements traceability is shown in Figure 11 which is suitable for 

crossrelating model elements. The figure shows a requirement matrix table where cross-tracing is done between 

requirements, blocks defined in the ITASAT block diagram and high-level use cases. This table is quite important as it 

allows requirements traceability towards issues like: 

 Understanding of requirements origin; 

 Project scope management; 

 Requirements change management; 

 Impact analysis of requirement changes; 

 Impact analysis of requirement test failures (i.e., if a test fails then a requirement may not be met); 

 Verification if all system requirements are mapped into implementation and; 

 Validation if the final application only performs what it was previously expected. 
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Figure 11. The tabular matrix notation used to display power related requirements and their relationships to other model 

elements (Carvalho et al, 2008) 

 

Additionally, requirements can be traced also by navegating through SysML requirement diagrams on the anchors 

points shown in Figure 10 by means of stand-out notes. The anchors contain information like the relationship type and 

with which model element the requirement is related and vice-versa, given a model element it may reference all 

requirements related to this element. Doing so, it allows a quick and simple way to identify, prioritize and improve 

requirements traceability. 

The resources provided by the SysML are by far beyond the capabilities here presented due to paper page limitation. 

 

5. FUTURE WORK 

 

Currently more complete ITASAT SysML modeling is also expected which include: 

 Enhancing Block Diagram representation to model detailed subsystems and components, and ports describing 

their interfaces; 

 Checking dependencies (e.g. analytical) between structural properties expressed using constraints and 

represented using the parametric diagram; 

 Exploring features behavior modeling, namely interactions, state machine and activities; 

 Employing SysML for providing a mechanism to relate different aspects of the model and to enforce 

traceability across it; 

 Developement of a novel knowledge-based software tool, named SatBudgets, is being performed to support 

preliminary budgetings on conceptual satellite design which demands interdisciplinary skills and; 

 Provide an interface for Eclipse IDE aggregation as well as for docking to an in-house Satellite Simulator. 

 

6. CONCLUSIONS 

 

Space systems requires strong systems engineering to deal with systems-of-systems complex issues, manufacturing 

demands and keep risks managable. Requirements Engineering for these systems is a difficult issue as when this is 

poorly performed, various problems may occur, such as failures, cost overrun and delays. A case study was presented in 

this work introducing the use of SysML satellite modeling for requirements engineering. This allows user requirements 

being graphically modeled, their relationships being explicitly mapped and, system decomposition being considered in 

the early system development activities. By employing SysML as a satellite architecture description language, it also 

enables information reuse between different satellite projects as well as it facilitates knowledge integration and 

management on systems engineering activities. This work will be further extended to implement MDE automation 

concepts into the ordinary workflow of satellite systems engineering. 
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