

A Comparative Analysis of two Verification Techniques for DEDS: Model
Checking versus Model-based Testing

Rodrigo P. Pontes*, Marcelo Essado**, Paulo C. Véras*,

Ana Maria Ambrósio**, Emília Villani*

*Instituto Tecnológico de Aeronáutica, São José dos Camps – SP, Brazil
(e-mail: rpastl@gmail.com, pcv@ita.br, evillani@ita.br)

**Instituto Nacional de Pesquisas Espaciais, São José dos Camps – SP, Brazil
(e-mail: marcelo.essado@dem.inpe.br, ana@dss.inpe.br)

Abstract: This paper presents a comparative analysis of two verification techniques: (1) formal
verification of the system specification and (2) execution of FSM-derived test cases on the delivered
product. It uses as a testbench a didactic example of a coffee machine and a work team composed of
post-graduation students. The purpose is to analyze the advantages and drawbacks of each technique,
define the kind of errors detect by each one and highlight the contributions to the development process.

Keywords: verification, model checking, model based testing, requirements analysis, automata.

1. INTRODUCTION

According to John Rushby aput Young (1997) “comparisons
[between verification systems] are very useful, since they
provide the only reasonable way to compare claims for
‘readability’ or ‘expressiveness’ in specification languages,
and ‘power’ or ‘effectiveness’ in verification environments”.

In this context, this paper presents a case study that aims to
compare two verification techniques that are based on the
system modelling as state machines. The first technique is the
formal verification of the system specification using timed
automata and the model checker UPPAAL. The second
technique is the test execution of the delivered software
product. The specification of the test cases is based on the
COFi methodology, which uses FSMs (Finite State
Machines) to model the system interfaces and to derive the
testing sequences (Ambrosio, 2006).

The purpose of the case study is to map the advantages and
benefits of these techniques for the development of
embedded software. It uses the didactic example of a coffee
machine and is performed by a work team composed of post-
graduation students. Each person has taken a role in order to
avoid interferences in the application of each technique.

Although the example presented in this paper is a simple and
didactic one (an automatic coffee machine), the main
motivation for this work is the development of critical
embedded systems for aerospace applications. The coffee
machine example is the first step of this work. The simplicity
of the example is essential to illustrate both techniques for
software development teams. The results obtained give a first
insight in important questions made by embedded software
clients and customers in aerospace industry, such as:

1. Do formal verification techniques replace testing of the
delivered product?

2. What kind of error each technique usually detects?
3. To what extension model checking complement model-

based testing?
4. What kind of contribution formal technique brings to

embedded system design?
5. What are the strength and the weak points of each

technique?

This paper is organized as follows. Section 2 presents a
review of related work. Section 3 details the approach used
for comparing the two techniques and presents the results
obtained in the coffee machine example. Section 4 drives
some conclusions and details the next activities.

2. RELATED WORK

Most of the related work in the literature focuses either on the
comparison between simulation approaches or formal
approaches. Frequently, the purpose of the comparison is run-
time performance of different tools in the same category of
verification approach.

Seveg et al (2004) compares simulation and formal
verification approaches for on block level design of SOC
(System On a Chip). The two methods are compared with
respect to the time required to setup and the verification, the
required expertise, the ease of debugging the reported
failures, the size of the block supported by the method,
coverage and level of confidence of the method. The results
of the comparison point out that the time required to run each
verification method depends on the specific block under test.
Setting up the environment for formal verification is more
time costly since specifications and constraints should be
written in the appropriate language. Formal verification also
requires specific training. In the case of simulation, no special
tool is needed. Another disadvantage of formal verification is

that it is very memory and time intensive, and consequently
limited to small blocks. On the other hand, when the formal
verification process fails, it provides a trace that identifies the
failed property. It also includes input sequences that range
over the whole legal input domain, thus covers sequences
humans tend to overlook, and provides a better coverage,
which leads to a higher level of confidence in block
correctness (Seveg et al, 2004).

Romero et al. (2005) compares two simulation based
approaches for design verification, using the example of a
bluetooth baseband adaptor. The first approach follows the
traditional framework of applying random stimuli and
checking functional coverage aspects. In the second one, an
acceleration procedure, based on redundant stimuli filtering,
is included. The authors compare the execution time and the
amount of testcases to reach 100% coverage.

Parthasarathy et al (2003) compares two techniques used in
model checking: BDD (Binary Decision Diagram) based
model checkers and SAT based techniques in BMC
(Bounded Model Checking). The purpose is to characterize
the run-time performance of each algorithm for different
problems.

Garcia and Sanchez (2006) compare the run-time
performance of a proposed model checking tool with the
well-known tool Spin. It tests the verification of safety and
liveness properties given as linear temporal logic (LTL)
formulas. It uses a simple example consisting of a set of logic
controllers for driving the operation of pressurized tanks.

Hendriks and Verhoef (2006) compare the run-time
performance of the tools UPPAAL, POOSL/SHESIM,
SymTA/S and MPA for verifying timing properties of
embedded system.

Schuele and Schneider (2004) compares two techniques of
model checking for the case of infinite state systems: global
and local model checking. Global procedures first compute
those states of a transition system that satisfy a formula and
then checked whether this set is included in the set of initial
states. In contrast, local procedures directly answer the
question whether the initial states satisfy the formula
(Schuele and Schneider, 2004). In this work, both approaches
are compared regarding termination and the conclusion is that
for some specifications, one approach may terminate while
the other one does not, and vice versa.

Zaki et al (2006) surveys different formal verification
approaches applied for analog and mixed signal (AMS)
circuits. The AMS circuits are characterized as hybrid
systems, adding complexity to the verification process.
Traditionally, simulation is the solution adopted for
verification and is often done manually. It is eventually
complemented by symbolic techniques where the effect of
parameters variations on the system behavior is analyzed.
The paper compares the results of different works for three
formal verification approaches: (1) equivalence checking
between two system models, (2) model checking and
reachability analysis and (3) deductive methods. The
comparison analyses the type of system considered in the

work (linear, non linear), the model formalism (transfer
function, ODE-DAE, piecewise linear automata, etc.),
restrictions on the analysis region, analysis domain
(frequency or time), method for state space partitions (hyper
cubes, convex polyhedra, etc.), tools available and case
studies developed. According to this work, one important
direction of research, which is also related to our work, is the
incorporation of formal verification within the design flow,
hence complementing simulation, testing and symbolic
analysis.

3. THE CASE STUDY

1.1 The comparison approach

The approach used in this case study is illustrated in Figure 1
and is organized in nine steps. The activities were divided
among five teams in order to achieve unbiased results.

In the first step, Team 1 elaborated a description of system
and listed the requirements of the software under design.

Based on the requirement document provided by Team 1,
Team 2 modelled the system behaviour using timed automata
and UPPAAL (Step 2). It then verified the model using
simulation and model checking techniques (Step 3). Each
requirement of the requirement specification was mapped
into a set of properties that model must verified.

Fig. 1. The comparison approach.

The UPPAAL model of the system behaviour and the
requirement document was provided to Team 3, which
elaborated the software Product A (Step 4). For this purpose,
Team 3 used the Rational Rose Real Time (RRRT) platform,
which is a CASE tool that supports UML modelling and
automatic code generation. Basically, Team 3 adapted the
UPPAAL model to a statechart. The RRRT automatically
generated the corresponding software, which was then
complemented with additional code.

While the generation of Product A was under course, the
requirement document was also provided to Team 4 and

1 – Specification
of requirements

2 – Modelling
(UPPAAL)

9 - Analysis of the
results

3 – Verification
(UPPAAL)

5 – Specifying Test
cases (COFi and

Condado)

7 – Testing
Software A

8 – Testing
Software B

4 – Product A
(RRRT)

6 – Product B
(Rhapsody)

Team 5. Team 4 used the COFi methodology (described in
Section 1.7) to elaborate the testing cases from the
requirement document (Step 5). Team 5 developed the
software Product B directly from the requirements (Step 6).
They used the Rhapsody CASE tool, which supports SysML
modelling and automatic code generation. Similarly to Team
3, they elaborated a statechart and the CASE tool
automatically generated the corresponding code.

Once both Product A and B were ready, they were submitted
to the test cases generated in Step 5 (Steps 7 and 8). The
results were then compared (Step 9).

1.2 The Coffee Machine Example

The system used as an example for the comparison is an
automatic coffee machine. The coffee machine offers three
different drinks (coffee, milk-coffee and cappuccino) and two
options for the amount of sugar (no sugar, with sugar). In
order to request a drink, the user must insert a token in the
machine, make the selections in the requested order and wait
for the drink. When the drink preparation is finished, it is
available for the user in a cup in the appropriate support.

Basically, the machine interface with the user is composed of
command devices and monitoring devices. The command
devices are a set of push buttons and an on/off retention
button. The monitoring devices are a set of LEDs that
indicate the state of machine and choices made by the user.
The machine has a set of sensors that indicates the level of
basic drink component (coffee, milk, chocolate and sugar) in
the machine reservoirs and the presence/absence of cups in
the stock of cups and in the support.

1.3 The Requirements

The coffee machine requirements were elaborated in textual
form. There are 15 requirements for describing the machine
behaviour from the point of view of the user. As an example,
this section presents some of the requirements:

R1 – The machine controller is turned on only when the on/off button is
pressed.

R2 – Whenever the machine controller is turned on, it must verify if there is
any cup in the stock of cups and if the sensors of the coffee, milk and
chocolate reservoirs indicate that there is enough component to produce any
drink. When there are enough products and cups, the controller can accept a
token, otherwise it must not accept any token until the product is replaced.

R3 – After a token is inserted in the machine, the machine controller must
accept only the following commands in the following order: choice of drink
(coffee, milk-coffee or cappuccino), choice of sugar (no sugar or with sugar).

R14 – If the on/off button is turned off while the drink is under preparation,
the controller should continue in operation and finalize the drink
preparation. Only after the drink is ready and available to the user, the
controller is turned off.

1.4 The UPPAAL Model

The model developed in UPPAAL encompasses not only the
behaviour of the machine controller software but also the
behaviour of the process and the machine devices. It is
composed of seven templates that model a generic user, the
machine buttons, sensors and controller, and a simplified
drink production process. With the exception of the
controller, all the models are basic and simple, with two or a
few states. The controller model, which is the object of the
verification approach, is presented in Figure 2.

Particularly, the user model considers that the user can press
any button at any time in any order. All the commands are
modelled as broadcast channel that can be ignored by the
controller when are not expected.

1.5 Verification of Requirements

The model verification is organized in three activities:

1. Simulation, which encompass random simulation and
specific scenarios. This first step detects most of the
model errors.

2. Verification of expected properties that are not
specifically related to requirements, such as absence of
deadlock and reachability of key states.

3. Verification of requirements, i.e, the definition of
properties in CTL that are related to the requirements
and its verification.

Quantity_Sugar_Selected_Switch_OffSugar_Led_On_Switch_OffProduct_Available_Switch_Off Product_Ready_Switch_Off
proc<=10

Use_Products_Switch_Off
proc<=10

Processing_Switch_Off
proc<=10

Product_Ready
proc<=10Product_Available Use_Products

proc<=10

Waiting_for_Order

No_Cup

Sensors_Verification

Order_is_Finished

Processing
proc<=10 Sugar_Led_On Quantity_Sugar_Selected

Beverage_Led_OnType_Beverage_SelectedCoin_Led_On

Switching_Off

Coin_InsertedSwitched_OnSwitched_Off

Switch_On?

sensor_selection=1

TurnOff_LedOnOff!

Switch_Off?

Switch_Off? Switch_On?

TurnOn_Led!
led_selection=7

Switch_Off? Switch_On?

TurnOn_Led!

Switch_Off? Switch_On!

proc>=10

Release_Cup!

led_selection=8

Switch_Off? Switch_On?Switch_Off? Switch_On?

Ends_Use! Begins_Use!

Switch_On?Switch_Off?

Switch_Off?

TurnOff_broad!
sensor_selection=1

Switch_Off?

Switch_Off?
Switch_Off?

Switch_Off?

TurnOff_broad!

sensor_selection=1

Switch_On?

Switch_Off?
Switch_Off?

Switch_Off?

proc>=10

Release_Cup!
led_selection=8 Ends_Use!

sensor_selection==6

Begins_Use!

Switch_Off?

Insert_Coin?
led_selection=1

sensor_selection<6

Sensor_On!

sensor_selection=sensor_selection+1

SensorCup_Off!

Switch_Off?

TurnOn_Led!

Option_Much_Sugar?
led_selection=6,
proc=0

Option_Little_Sugar?
led_selection=5,
proc=0

TurnOn_Led!
TurnOn_Led!
led_selection=7

TurnOn_Led!

Option_Cappuccino?
led_selection=4

Option_Coffee_Milk?

led_selection=3

Option_Pure_Coffee?
led_selection=2

TurnOn_Led!

TurnOff_broad!

TurnOn_LedOnOff!

sensor_selection=1

Switch_On?

Fig. 2. The controller model.

Among the three steps, the most critical is the last one. The
requirements are defined in informal language and there is no
rule to translate to CTL formulas. The following approaches
were used:

1) The requirement can be translated directly to one or a
few CTL formula. The verification of the requirement is
the proof of the CTL formulas.

2) The requirement is verified by inspection of the model.
Example: the maximum time of drink preparation is
verified by checking if the corresponding state has the
appropriate invariant.

3) The verification of the requirement is decomposed in the
proof of a CTL formula and a visual inspection of the
model. Example: the requirement R1 is verified by
proving that the controller is on when the on/off button is
on, and by certifying that the on/off button is the only
one that can turn the controller on. Note that when the
on/off button is off the controller can be on according to
requirement R13.

4) The verification of the requirement is proved with a
modified user model, which may have a particular
behaviour. Example: in order to verify the requirement
R3, the user model is modified such that the controller
answer to any command emit by the user (broadcast
channels are converted to normal channels). If the
controller allows a transition out of the correct order, the
user goes do a dead state. It is then proved that the dead
state is not reachable.

1.6 Contributions of the Model and Verification Process

The first most important result of the UPPAAL modelling
and verification process is a detailed review of the
requirements. This process resulted in the following
contributions for the list of requirements:

• As it is necessary to model actuators, sensors, button and
lights, the modeller detects incomplete requirements,
such as when the requirements do not indicate the
conditions to turn on or off a device. Example: the
requirements does not indicate when the ‘processing’ led
should be turned on.

• The modeller also detects errors in the requirements. An
example is the omission of the sugar sensor in the
requirement R2.

• By elaborating the CTL queries, the modeller detects
implicit conditions on the requirements that should be
explicit. Example: requirement R3 should include the
turn off command.

• The modelling and verification process highlights
inconsistencies among requirements.

• The definition of the CTL formula leads the modeller to
suggest modification on the requirements in order to
achieve a clearer and more objective set of requirements.

1.7 The CoFI Testing methodology and the Condado tool

CoFI stands for Conformance and Faul Injection as it drives
the conformance and robustness tests cases generation. This
methodology guides a tester to create simple FSMs starting
from a textual description, in this case the specification of
requirements. Instead of counting with a single behaviour
model of the system, it guides the creation of a set of small
FSMs representing the partial behaviour to cover test
objectives. The first step is to identify a set of services the
system provides; and then, to each service to create different
FSMs, taking into account the following classes of inputs: (i)
normal, (ii) specified exception, (iii) inopportune input (i.e.,
corrects but in wrong moments) and (iv) invalid inputs
caused by external faults. So, decomposition of the system
complexity in small FSMs is driven in terms of: (i) the
services and (ii) types of behaviour, namely, normal,
specified-exception, sneak-path, and, fault-tolerance.

Once the FSMs are defined, they are submitted to a tool that
can automatically generate test cases, as those used for
protocol testing. (Lai, 2002) cite some several of these kinds
of tools. In this experiment we have used Condado tool
(Martins, 1999). Condado tours the FSM, starting from the
initial to final state, and identifies paths. Each path comprises
a set of inputs and corresponding outputs marked in the
transitions. Each path is a test case.

1.8 The FSM models and the test cases

The identified services are: (1) produce a cup of coffee; (2)
produce a cup of cappuccino, (3) produce a cup of milk-
coffee. FSMs were created for the four type of behavior.
Figure 3 illustrates the specified exceptions for the Service 1.

In order to model the behaviour under external faults, the
following faults were taken into account:

f.btn Blocked button
f.fch Fault on the liberation of the token compartiment
f.scp Fault on the cup sensor
f.scf Fault on the coffee sensor
f.slt Fault on the milk sensor
f.acu Fault on the sugar sensor
f.sch Fault on the chocolate sensor

Example of FSM representing the coffee machine behaviour
under external faults is illustrated in Figure 4.

The test case format generated by Condado tool is showed in
Table 1. Senddata means data to be entered and recdata
means the output expected on reaction of the corresponding
input.

In total 21 FMSs were designed, being seven to each service.
Each FSM was submitted to Condado tool producing 228 test
cases (76 to each service). The test cases were executed under
the Software A and under Software B. Team 4 spent 8h 4m to
execute them manually.

Fig. 3 Specified exception FMS of Service 1.

Fig. 4 Fault tolerance FMS of Service 1.

Table 1. Example of test profile.

Input Output

senddata(L,BtnOnOffOn) recdata(L,LedOnOn)
recdata(L,CheckProduct)

senddata(L,ProductOk) recdata(L,AllowToken)

senddata(L,InsertToken) recdata(L,LedCreditOn)

senddata(L,BtnMilkCoffee) recdata(L,LedMilkCoffeeOn)

senddata(L,fACU) recdata(L,NotSugar)

senddata(L,BtnWithSugar) recdata(L,LedWithSugarOn)
recdata(L,AllowCup)
recdata(L,LedProcessingOn)
recdata(L,Start10s)

senddata(L,End10s) recdata(L,LedAvailableOn)
recdata(L,CupWithoutSugar)
recdata(L,LedProcessingOff)

1

senddata(L,RetiraCopo) recdata(L,LedWithSugarOff)
recdata(L,LedMilkCoffeeOff)
recdata(L,LedCreditOff)
recdata(L,LedAvailableOff)

1.9 Contributions of the COFi Process

The COFi methodology requires an activity of modelling the
system behaviour, so it helps to found missing and
misunderstanding in the specification. The problems detected
in the specification of requirements were:

a. No requirement for fault tolerance in case of hardware
malfunctioning was explicitly defined. Although, this
coffee machine is not a fault tolerance system, it has
product sensors and special buttons to avoid operational
problems, then requirements to protect operational
faults should be explicited. .

b. Missing requirements to erroneous operations.

c. No requirement of testability does exist.

1.10 Testing Results

The application of the COFi tests to Product A resulted in 15
erroneous results that are related to the following software
errors:

1. On pressing the no-sugar button, the with-sugar led is
turned on.
2. On pressing the with-sugar button, the no-sugar led is
turned on.
3. The on/off led is turned off and immediately turned on
when the processing of a drink ends.
4. The controller does not allow the user to turn off the
machine after the end of a drink processing if the cup is not
moved out.

Errors 1, 2 and 4 were not in the UPPAAL model. They were
introduced in the translation of the UPPAAL model to the
software model in the RRRT environment. Error 3 was also
in the UPPAAL model and is the result of different
interpretations of a requirement.

Some fault cases could not be executed against the Product A
because there is no entry foreseen in the Product A (this is a
testability problem).

The application of the COFi tests to Product B resulted in the
following software errors:

1. The processing led was not turned off when the processing
of a drink ends.

2. The on/off led is turned off and immediately turned on
when the processing of a drink ends.

3. The controller accepts another token after the choice of
the kind of drink. The token should not be accepted.

4. The controller accepts another token after the choice of
sugar. The token should not be accepted.

5. The controller accepts another token before the cup of
drink is taken by the user. The token should not be
accepted.

6. After processing a drink, the on/off button was turned off.
The controller was turned off but the leds were not.

7. When the on/off button is pressed immediately after the
choice of sugar, the controller is turned off. It should end
the processing of the drink before being turned off.

Error 1 is a requirement error propagated to the software
product. Error 2 is the result of different interpretations of a
requirement. Errors 3, 4, 5, 6 and 7 are implementation error.

It is important to observe that a UML statechart diagram was
created for the design of both Product A and B, and a CASE
tool with automatic code generation supported the software
programming.

6. CONCLUSIONS

This paper presents a preliminary study about the
contributions of two verification techniques to the validation
of embedded software. The techniques under analysis are
model checking applied to the requirement specification and
model-based testing of the delivered software product.

Although the example of the coffee machine is a simple one,
on the other hand the teams that participate in the study are
not professional. From a qualitative point of view, we can
expect similar results when dealing with real world problems
and professional teams.

The conclusions obtained with this study are preliminary, but
they do indicate that the two techniques have distinct
contributions to the software design and they both have weak
points. They are therefore complementary to each other.

The first conclusion is that model checking does help to
reduce the number of error in the software product, but does
not assure the absence of errors. As used in this work, model
checking has two weak points that are potential sources of
errors: the definition of model properties that are equivalent
to the requirements and the conversion of the model to a
software product.

The application of model checking using as a start point the
software specification results in a deep revision of the
requirements. It detects inconsistent and incomplete
requirements and guides a clear and objective redefinition of

the requirements specification. This contribution is essential
to critical systems were safety is a major concern, as for
aerospace applications. It also avoids rework, as it detects
eventual problems in an early stage of the software design.

If the COFi models are generated in the early stages of the
software design, it also contributes to the requirements
revision but in distinct ways. The COFi methodology goes
beyond the requirements when it checks for inopportune
events and external faults. It assures the introduction of
testability requirements and an adequate treatment of all
exceptions. These points are not approached by the model
checking.

Future works are related to the extension of this work to on
board data handling software of satellites.

REFERENCES

Ambrosio, A. M.; Martins, E.; Vijaykumar, N.L.; de
Carvalho, S.V. (2006) A Conformance Testing Process
for Space Applications Software Services. Journal of
Aerospace Computing, Information, and Communication
(JACIC)/AIAA, v. 3, n. 4, p. 146-158.

Lai, R. (2002) A survey of communication protocol testing.
The Journal of Systems and Software, n. 62, p. 21-46.

Martins, E.; Sabião, S.B.; Ambrosio, A. M. (1999). ConData:
a tool for automating specification-based test case
generation for communication systems. Software Quality
Journal, v.8, n. 4, p. 303-319.

Parthasarathy, G. et al. (2003) A comparison of BDDs, BMC,
and sequential SAT for model checking. Proc. of the 8th
IEEE International Workshop on High-Level Design
Validation and Test Workshop, p. 157-163.

Schuele, T.; Schneider, K. (2004) Global vs. Local Model
Checking: A Comparison of Verification Techniques for
Infinite State Systems. Proc. of the 2nd Int. Conference
on Software Engineering and Formal Methods.

Zaki, M.H., et al. (2006) Formal Verification of Analog and
Mixed Signal Designs: Survey and Comparison. IEEE
North-East Workshop on Circuits and Systems, p. 281-
284.

García, F., Sánchez, A. (2006) Formal Verification of Safety
and Liveness Properties for Logic Controllers. A Tool
Comparison. 3rd International Conference on Electrical
and Electronics Engineering, p. 1-3

Young, D. W. (1997) Comparing Verification Systems:
Interactive Consistency in ACL2. IEEE Transactions on
Software Engineering, v. 23, n. 4, p. 214-223.

Romero, E. L. et al (2005) Comparing Two Testbench
Methods for Hierarchical Functional Verification of a
Bluetooth Baseband Adaptor. Proc. of the 3rd
IEEE/ACM/IFIP Int. Conf. on Hardware/Software
Codesign and System Synthesis, p.327-332.

Seveg, E. et al (2004) Evaluating and Comparing Simulation
Verification vs. Formal Verification approach On Block
Level Design. Proc. of the 11th IEEE Int. Conf. on
Electronics, Circuits and Systems (ICECS), p. 515- 518.

Hendriks, M.; Verhoef M. (2006) Timed Automata Based
Analysis of Embedded System Architectures. 20th Int.
Parallel and Distributed Processing Symposium, 8 pp.

