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Abstract: This paper presents a comparative analysis of two verification techniques: (1) formal 
verification of the system specification and (2) execution of FSM-derived test cases on the delivered 
product. It uses as a testbench a didactic example of a coffee machine and a work team composed of 
post-graduation students. The purpose is to analyze the advantages and drawbacks of each technique, 
define the kind of errors detect by each one and highlight the contributions to the development process. 
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1. INTRODUCTION 

According to John Rushby aput Young (1997) “comparisons 
[between verification systems] are very useful, since they 
provide the only reasonable way to compare claims for 
‘readability’ or ‘expressiveness’ in specification languages, 
and ‘power’ or ‘effectiveness’ in verification environments”. 

In this context, this paper presents a case study that aims to 
compare two verification techniques that are based on the 
system modelling as state machines. The first technique is the 
formal verification of the system specification using timed 
automata and the model checker UPPAAL. The second 
technique is the test execution of the delivered software 
product. The specification of the test cases is based on the 
COFi methodology, which uses FSMs (Finite State 
Machines) to model the system interfaces and to derive the 
testing sequences (Ambrosio, 2006).  

The purpose of the case study is to map the advantages and 
benefits of these techniques for the development of 
embedded software. It uses the didactic example of a coffee 
machine and is performed by a work team composed of post-
graduation students. Each person has taken a role in order to 
avoid interferences in the application of each technique.  

Although the example presented in this paper is a simple and 
didactic one (an automatic coffee machine), the main 
motivation for this work is the development of critical 
embedded systems for aerospace applications. The coffee 
machine example is the first step of this work. The simplicity 
of the example is essential to illustrate both techniques for 
software development teams. The results obtained give a first 
insight in important questions made by embedded software 
clients and customers in aerospace industry, such as:  

1. Do formal verification techniques replace testing of the 
delivered product?  

2. What kind of error each technique usually detects?  
3. To what extension model checking complement model-

based testing? 
4. What kind of contribution formal technique brings to 

embedded system design?  
5. What are the strength and the weak points of each 

technique? 

This paper is organized as follows. Section 2 presents a 
review of related work. Section 3 details the approach used 
for comparing the two techniques and presents the results 
obtained in the coffee machine example. Section 4 drives 
some conclusions and details the next activities.  

2. RELATED WORK 

Most of the related work in the literature focuses either on the 
comparison between simulation approaches or formal 
approaches. Frequently, the purpose of the comparison is run-
time performance of different tools in the same category of 
verification approach. 

Seveg et al (2004) compares simulation and formal 
verification approaches for on block level design of SOC 
(System On a Chip). The two methods are compared with 
respect to the time required to setup and the verification, the 
required expertise, the ease of debugging the reported 
failures, the size of the block supported by the method, 
coverage and level of confidence of the method. The results 
of the comparison point out that the time required to run each 
verification method depends on the specific block under test. 
Setting up the environment for formal verification is more 
time costly since specifications and constraints should be 
written in the appropriate language. Formal verification also 
requires specific training. In the case of simulation, no special 
tool is needed. Another disadvantage of formal verification is 



 
 

     

 

that it is very memory and time intensive, and consequently 
limited to small blocks. On the other hand, when the formal 
verification process fails, it provides a trace that identifies the 
failed property. It also includes input sequences that range 
over the whole legal input domain, thus covers sequences 
humans tend to overlook, and provides a better coverage, 
which leads to a higher level of confidence in block 
correctness (Seveg et al, 2004). 

Romero et al. (2005) compares two simulation based 
approaches for design verification, using the example of a 
bluetooth baseband adaptor. The first approach follows the 
traditional framework of applying random stimuli and 
checking functional coverage aspects. In the second one, an 
acceleration procedure, based on redundant stimuli filtering, 
is included. The authors compare the execution time and the 
amount of testcases to reach 100% coverage.  

Parthasarathy et al (2003) compares two techniques used in 
model checking: BDD (Binary Decision Diagram) based 
model checkers and SAT based techniques in BMC 
(Bounded Model Checking). The purpose is to characterize 
the run-time performance of each algorithm for different 
problems.  

Garcia and Sanchez (2006) compare the run-time 
performance of a proposed model checking tool with the 
well-known tool Spin. It tests the verification of safety and 
liveness properties given as linear temporal logic (LTL) 
formulas. It uses a simple example consisting of a set of logic 
controllers for driving the operation of pressurized tanks.  

Hendriks and Verhoef (2006) compare the run-time 
performance of the tools UPPAAL, POOSL/SHESIM, 
SymTA/S and MPA for verifying timing properties of 
embedded system. 

Schuele and Schneider (2004) compares two techniques of 
model checking for the case of infinite state systems: global 
and local model checking. Global procedures first compute 
those states of a transition system that satisfy a formula and 
then checked whether this set is included in the set of initial 
states. In contrast, local procedures directly answer the 
question whether the initial states satisfy the formula 
(Schuele and Schneider, 2004). In this work, both approaches 
are compared regarding termination and the conclusion is that 
for some specifications, one approach may terminate while 
the other one does not, and vice versa.  

Zaki et al (2006) surveys different formal verification 
approaches applied for analog and mixed signal (AMS) 
circuits. The AMS circuits are characterized as hybrid 
systems, adding complexity to the verification process. 
Traditionally, simulation is the solution adopted for 
verification and is often done manually. It is eventually 
complemented by symbolic techniques where the effect of 
parameters variations on the system behavior is analyzed. 
The paper compares the results of different works for three 
formal verification approaches: (1) equivalence checking 
between two system models, (2) model checking and 
reachability analysis and (3) deductive methods. The 
comparison analyses the type of system considered in the 

work (linear, non linear), the model formalism (transfer 
function, ODE-DAE, piecewise linear automata, etc.), 
restrictions on the analysis region, analysis domain 
(frequency or time), method for state space partitions (hyper 
cubes, convex polyhedra, etc.), tools available and case 
studies developed. According to this work, one important 
direction of research, which is also related to our work, is the 
incorporation of formal verification within the design flow, 
hence complementing simulation, testing and symbolic 
analysis. 

3. THE CASE STUDY 

1.1 The comparison approach 

The approach used in this case study is illustrated in Figure 1 
and is organized in nine steps. The activities were divided 
among five teams in order to achieve unbiased results.  

In the first step, Team 1 elaborated a description of system 
and listed the requirements of the software under design.  

Based on the requirement document provided by Team 1, 
Team 2 modelled the system behaviour using timed automata 
and UPPAAL (Step 2). It then verified the model using 
simulation and model checking techniques (Step 3). Each 
requirement of the requirement specification was mapped 
into a set of properties that model must verified.  

 

Fig. 1. The comparison approach. 

The UPPAAL model of the system behaviour and the 
requirement document was provided to Team 3, which 
elaborated the software Product A (Step 4). For this purpose, 
Team 3 used the Rational Rose Real Time (RRRT) platform, 
which is a CASE tool that supports UML modelling and 
automatic code generation. Basically, Team 3 adapted the 
UPPAAL model to a statechart. The RRRT automatically 
generated the corresponding software, which was then 
complemented with additional code. 

While the generation of Product A was under course, the 
requirement document was also provided to Team 4 and 
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Team 5. Team 4 used the COFi methodology (described in 
Section 1.7) to elaborate the testing cases from the 
requirement document (Step 5). Team 5 developed the 
software Product B directly from the requirements (Step 6). 
They used the Rhapsody CASE tool, which supports SysML 
modelling and automatic code generation. Similarly to Team 
3, they elaborated a statechart and the CASE tool 
automatically generated the corresponding code. 

Once both Product A and B were ready, they were submitted 
to the test cases generated in Step 5 (Steps 7 and 8). The 
results were then compared (Step 9).   

1.2 The Coffee Machine Example 

The system used as an example for the comparison is an 
automatic coffee machine. The coffee machine offers three 
different drinks (coffee, milk-coffee and cappuccino) and two 
options for the amount of sugar (no sugar, with sugar). In 
order to request a drink, the user must insert a token in the 
machine, make the selections in the requested order and wait 
for the drink. When the drink preparation is finished, it is 
available for the user in a cup in the appropriate support.  

Basically, the machine interface with the user is composed of 
command devices and monitoring devices. The command 
devices are a set of push buttons and an on/off retention 
button. The monitoring devices are a set of LEDs that 
indicate the state of machine and choices made by the user. 
The machine has a set of sensors that indicates the level of 
basic drink component (coffee, milk, chocolate and sugar) in 
the machine reservoirs and the presence/absence of cups in 
the stock of cups and in the support.  

1.3 The Requirements 

The coffee machine requirements were elaborated in textual 
form. There are 15 requirements for describing the machine 
behaviour from the point of view of the user. As an example, 
this section presents some of the requirements:  

R1 – The machine controller is turned on only when the on/off button is 
pressed.  

R2 – Whenever the machine controller is turned on, it must verify if there is 
any cup in the stock of cups and if the sensors of the coffee, milk and 
chocolate reservoirs indicate that there is enough component to produce any 
drink. When there are enough products and cups, the controller can accept a 
token, otherwise it must not accept any token until the product is replaced.  

R3 – After a token is inserted in the machine, the machine controller must 
accept only the following commands in the following order: choice of drink 
(coffee, milk-coffee or cappuccino), choice of sugar (no sugar or with sugar). 

R14 – If the on/off button is turned off while the drink is under preparation, 
the controller should continue in operation and finalize the drink 
preparation. Only after the drink is ready and available to the user, the 
controller is turned off. 

1.4 The UPPAAL Model 

The model developed in UPPAAL encompasses not only the 
behaviour of the machine controller software but also the 
behaviour of the process and the machine devices. It is 
composed of seven templates that model a generic user, the 
machine buttons, sensors and controller, and a simplified 
drink production process. With the exception of the 
controller, all the models are basic and simple, with two or a 
few states. The controller model, which is the object of the 
verification approach, is presented in Figure 2. 

Particularly, the user model considers that the user can press 
any button at any time in any order. All the commands are 
modelled as broadcast channel that can be ignored by the 
controller when are not expected. 

1.5 Verification of Requirements 

The model verification is organized in three activities: 

1. Simulation, which encompass random simulation and 
specific scenarios. This first step detects most of the 
model errors.  

2. Verification of expected properties that are not 
specifically related to requirements, such as absence of 
deadlock and reachability of key states. 

3. Verification of requirements, i.e, the definition of 
properties in CTL that are related to the requirements 
and its verification. 
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Fig. 2. The controller model. 



 
 

     

 

Among the three steps, the most critical is the last one. The 
requirements are defined in informal language and there is no 
rule to translate to CTL formulas. The following approaches 
were used: 

1) The requirement can be translated directly to one or a 
few CTL formula. The verification of the requirement is 
the proof of the CTL formulas. 

2) The requirement is verified by inspection of the model. 
Example: the maximum time of drink preparation is 
verified by checking if the corresponding state has the 
appropriate invariant.  

3) The verification of the requirement is decomposed in the 
proof of a CTL formula and a visual inspection of the 
model. Example: the requirement R1 is verified by 
proving that the controller is on when the on/off button is 
on, and by certifying that the on/off button is the only 
one that can turn the controller on. Note that when the 
on/off button is off the controller can be on according to 
requirement R13. 

4) The verification of the requirement is proved with a 
modified user model, which may have a particular 
behaviour. Example: in order to verify the requirement 
R3, the user model is modified such that the controller 
answer to any command emit by the user (broadcast 
channels are converted to normal channels). If the 
controller allows a transition out of the correct order, the 
user goes do a dead state. It is then proved that the dead 
state is not reachable. 

1.6 Contributions of the Model and Verification Process 

The first most important result of the UPPAAL modelling 
and verification process is a detailed review of the 
requirements. This process resulted in the following 
contributions for the list of requirements:  

• As it is necessary to model actuators, sensors, button and 
lights, the modeller detects incomplete requirements, 
such as when the requirements do not indicate the 
conditions to turn on or off a device. Example: the 
requirements does not indicate when the ‘processing’ led 
should be turned on. 

• The modeller also detects errors in the requirements. An 
example is the omission of the sugar sensor in the 
requirement R2. 

• By elaborating the CTL queries, the modeller detects 
implicit conditions on the requirements that should be 
explicit. Example: requirement R3 should include the 
turn off command. 

• The modelling and verification process highlights 
inconsistencies among requirements.  

• The definition of the CTL formula leads the modeller to 
suggest modification on the requirements in order to 
achieve a clearer and more objective set of requirements.  

1.7 The CoFI Testing methodology and the Condado tool 

CoFI stands for Conformance and Faul Injection as it drives 
the conformance and robustness tests cases generation. This 
methodology guides a tester to create simple FSMs starting 
from a textual description, in this case the specification of 
requirements. Instead of counting with a single behaviour 
model of the system, it guides the creation of a set of small 
FSMs representing the partial behaviour to cover test 
objectives. The first step is to identify a set of services the 
system provides; and then, to each service to create different 
FSMs, taking into account the following classes of inputs: (i) 
normal, (ii) specified exception, (iii) inopportune input (i.e., 
corrects but in wrong moments) and (iv) invalid inputs 
caused by external faults. So, decomposition of the system 
complexity in small FSMs is driven in terms of: (i) the 
services and (ii) types of behaviour, namely, normal, 
specified-exception, sneak-path, and, fault-tolerance.  

Once the FSMs are defined, they are submitted to a tool that 
can automatically generate test cases, as those used for 
protocol testing. (Lai, 2002) cite some several of these kinds 
of tools. In this experiment we have used Condado tool 
(Martins, 1999). Condado tours the FSM, starting from the 
initial to final state, and identifies paths. Each path comprises 
a set of inputs and corresponding outputs marked in the 
transitions. Each path is a test case.  

1.8 The FSM models and the test cases  

The identified services are: (1) produce a cup of coffee; (2) 
produce a cup of cappuccino, (3) produce a cup of milk-
coffee. FSMs were created for the four type of behavior. 
Figure 3 illustrates the specified exceptions for the Service 1.  

In order to model the behaviour under external faults, the 
following faults were taken into account:  

f.btn Blocked button 
f.fch Fault on the liberation of the token compartiment 
f.scp Fault on the cup sensor  
f.scf Fault on the coffee sensor  
f.slt Fault on the milk sensor 
f.acu Fault on the sugar sensor 
f.sch Fault on the chocolate sensor 

Example of FSM representing the coffee machine behaviour 
under external faults is illustrated in Figure 4.  

The test case format generated by Condado tool is showed in 
Table 1. Senddata means data to be entered and recdata 
means the output expected on reaction of the corresponding 
input. 

In total 21 FMSs were designed, being seven to each service. 
Each FSM was submitted to Condado tool producing 228 test 
cases (76 to each service). The test cases were executed under 
the Software A and under Software B. Team 4 spent 8h 4m to 
execute them manually. 



 
 

     

 

 

Fig. 3 Specified exception FMS of Service 1. 

 

Fig. 4 Fault tolerance FMS of Service 1. 

Table 1. Example of test profile. 

# Input Output 

senddata(L,BtnOnOffOn) recdata(L,LedOnOn)  
recdata(L,CheckProduct) 

senddata(L,ProductOk) recdata(L,AllowToken) 

senddata(L,InsertToken) recdata(L,LedCreditOn) 

senddata(L,BtnMilkCoffee) recdata(L,LedMilkCoffeeOn) 

senddata(L,fACU) recdata(L,NotSugar) 

senddata(L,BtnWithSugar) recdata(L,LedWithSugarOn)  
recdata(L,AllowCup)  
recdata(L,LedProcessingOn)  
recdata(L,Start10s) 

senddata(L,End10s) recdata(L,LedAvailableOn)  
recdata(L,CupWithoutSugar)  
recdata(L,LedProcessingOff) 

1 

senddata(L,RetiraCopo) recdata(L,LedWithSugarOff)  
recdata(L,LedMilkCoffeeOff)  
recdata(L,LedCreditOff)  
recdata(L,LedAvailableOff) 

1.9 Contributions of the COFi Process 

The COFi methodology requires an activity of modelling the 
system behaviour, so it helps to found missing and 
misunderstanding in the specification. The problems detected 
in the specification of requirements were:  

a. No requirement for fault tolerance in case of hardware 
malfunctioning was explicitly defined. Although, this 
coffee machine is not a fault tolerance system, it has 
product sensors and special buttons to avoid operational 
problems, then requirements to protect operational 
faults should be explicited.  . 

b. Missing requirements to erroneous operations.   

c. No requirement of testability does exist.  

1.10 Testing Results 

The application of the COFi tests to Product A resulted in 15 
erroneous results that are related to the following software 
errors: 

1. On pressing the no-sugar button, the with-sugar led is 
turned on. 
2. On pressing the with-sugar button, the no-sugar led is 
turned on. 
3. The on/off led is turned off and immediately turned on 
when the processing of a drink ends.  
4. The controller does not allow the user to turn off the 
machine after the end of a drink processing if the cup is not 
moved out.  

Errors 1, 2 and 4 were not in the UPPAAL model. They were 
introduced in the translation of the UPPAAL model to the 
software model in the RRRT environment. Error 3 was also 
in the UPPAAL model and is the result of different 
interpretations of a requirement.  



 
 

     

 

Some fault cases could not be executed against the Product A 
because there is no entry foreseen in the Product A (this is a 
testability problem). 

The application of the COFi tests to Product B resulted in the 
following software errors: 

1. The processing led was not turned off when the processing 
of a drink ends.  

2. The on/off led is turned off and immediately turned on 
when the processing of a drink ends.  

3. The controller accepts another token after the choice of 
the kind of drink. The token should not be accepted.  

4. The controller accepts another token after the choice of 
sugar. The token should not be accepted. 

5. The controller accepts another token before the cup of 
drink is taken by the user. The token should not be 
accepted. 

6. After processing a drink, the on/off button was turned off. 
The controller was turned off but the leds were not.   

7. When the on/off button is pressed immediately after the 
choice of sugar, the controller is turned off. It should end 
the processing of the drink before being turned off.  

Error 1 is a requirement error propagated to the software 
product. Error 2 is the result of different interpretations of a 
requirement. Errors 3, 4, 5, 6 and 7 are implementation error.  

It is important to observe that a UML statechart diagram was 
created for the design of both Product A and B, and a CASE 
tool with automatic code generation supported the software 
programming. 

6. CONCLUSIONS 

This paper presents a preliminary study about the 
contributions of two verification techniques to the validation 
of embedded software. The techniques under analysis are 
model checking applied to the requirement specification and 
model-based testing of the delivered software product.  

Although the example of the coffee machine is a simple one, 
on the other hand the teams that participate in the study are 
not professional. From a qualitative point of view, we can 
expect similar results when dealing with real world problems 
and professional teams.  

The conclusions obtained with this study are preliminary, but 
they do indicate that the two techniques have distinct 
contributions to the software design and they both have weak 
points. They are therefore complementary to each other.  

The first conclusion is that model checking does help to 
reduce the number of error in the software product, but does 
not assure the absence of errors. As used in this work, model 
checking has two weak points that are potential sources of 
errors: the definition of model properties that are equivalent 
to the requirements and the conversion of the model to a 
software product.  

The application of model checking using as a start point the 
software specification results in a deep revision of the 
requirements. It detects inconsistent and incomplete 
requirements and guides a clear and objective redefinition of 

the requirements specification. This contribution is essential 
to critical systems were safety is a major concern, as for 
aerospace applications. It also avoids rework, as it detects 
eventual problems in an early stage of the software design.  

If the COFi models are generated in the early stages of the 
software design, it also contributes to the requirements 
revision but in distinct ways. The COFi methodology goes 
beyond the requirements when it checks for inopportune 
events and external faults. It assures the introduction of 
testability requirements and an adequate treatment of all 
exceptions. These points are not approached by the model 
checking.  

Future works are related to the extension of this work to on 
board data handling software of satellites.  
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